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Structure of a solid film on an imperfect surface
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Two-dimensional solid films physisorbed on a substrate having quenched random imperfections
are studied within the continuum elastic theory. Correlation functions describing positional and
orientational order at zero temperature are found. In the presence of arbitrarily weak disorder in a
substrate, only the short-range positional order survives in a film. Orientational order is long-
ranged or quasi-long-ranged depending on the strength of the substrate-generated orientational field.

I. INTRODUCTION

There is now considerable theoretical and experimental
interest in structures of two-dimensional (2D) solids.! As
is known,>~* thermal fluctuations destroy crystalline
long-range order (LRO) in a 2D solid. Although this has
been known for 50 years, significant progress in the
understanding of the structure and thermodynamics of
2D solids has been achieved during the last decade. In
particular, it has been realized that the phase diagrams of
2D solids can be even richer than the phase diagrams of
three-dimensional (3D) solids. Berezinskii® and Kosterlitz
and Thouless (KT)® originally proposed that the unbind-
ing of dislocation pairs with increasing temperature would
drive a continuous melting of a 2D solid. Building on this
prediction, Halperin and Nelson (HN),” Nelson,® and
Young® developed a comprehensive theory of two-
dimensional phases. The major points of this theory are
as follows.

Periodic density modulations in a crystalline solid cor-
respond to broken translational invariance. It is measured
via the positional order parameter

pg(r)=exp[iG-u(r)], (1.1)

where G is a reciprocal-lattice vector and u(r) is the pho-
non displacement field. Global rotational invariance is
also broken in a crystal with positional LRO. It can be
broken, however, even if there is only positional short-
range order (SRO). This state would be characterized by
extended correlations in the orientations of locally defined
crystallographic axes. For a triangular 2D lattice the
orientational order parameter is

Y(r)=exp[6i0(r)] , (1.2)

where 6(r) is the angle which one of the crystalline axes
makes with some fixed direction at the point r. When
T < Tkt the crystal has orientational LRO and positional
quasi-LRO, that is, correlations between pg(r) at two
points decay algebraically with the distance between the
points. For Tyt < T < Ty the dislocation pairs dissoci-
ate into free dislocations and the solid melts into a hexatic
phase with orientational quasi-LRO and positional SRO.
When T > Tyn the dislocations dissociate into free dis-
clinations which transforms the hexatic phase into a true
liquid with both orientational and positional SRO.
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Nelson!® argued that the phase state of a 2D solid
should depend also on quenched randomness in the sys-
tem. In particular, quenched random impurities
transform positional LRO at 7 =0 into quasi-LRO.
Note that quenched randomness has been the subject of
many recent theoretical investigations.!! In part, they
were inspired by the work of Imry and Ma!? who showed
that in systems with a continuous-symmetry order param-
eter arbitrarily weak symmetry-violating random fields
destroy LRO for D <4. An example of such a system is
an amorphous ferromagnet with weak local random aniso-
tropy.!> Consideration of crystalline order in a solid with
quenched defects!® is not based on the Imry-Ma theorem,
however. Indeed, in the presence of quenched defects the
continuum elastic free energy of a (isotropic for simplici-
ty) crystalline solid is'*

F:% der(2puil}+)»u,fk)+dera,-ju,-j ’

where u;;(r) is the strain tensor

(1.3)

u,'jzé[a,-uj(r)+aju,~(r)] ’ (14)
u and A are Lamé elastic constants, and oy; is the stress
due to the defects. Even in the presence of defects the
free energy (1.3) remains invariant under a uniform
translation

u(r)—u(r)+uy, (1.5)

which is an obvious consequence of the fact that
quenched defects are allowed to move with the solid ma-
trix. That is why D =2, but not D =4, turns out to be a
lower dimension where arbitrarily small concentrations of
quenched defects first destroy positional LRO in crystal-
line solids at T =0.1°

We study the low-temperature phase of a 2D solid film
physisorbed on a flat inhomogeneous surface. The inho-
mogeneity is due to the quenched randomness in the sub-
strate. The structure of the film is defined by two factors.
Firstly, atoms of the film seek relative positions which
minimize the energy of their elastic interaction. Secondly,
they seek positions on the substrate with smaller
substrate-adsorbate—interaction energies. Within the
framework of continuum elastic theory, the latter factor
can be taken into account in terms of a substrate-
generated random force acting in the plane of the film
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with a surface density f(r). The corresponding elastic
free energy can be written as

F=7 [ d*rQuu}+rup)— [ d* fiu; . (1.6)

Note that f;(r) is not reduced to d; 0 ; therefore, Eq. (1.6)
cannot be reduced to Eq. (1.3) by integrating by parts in
the second term. We shall assume a Gaussian distribution
for probabilities of given configurations of f(r),

. (L.7)

P[f(r)] <exp —ifdzr[f(r)]2

Since the free energy (1.6) is now not invariant under the
transformation (1.5), one should expect that the system
satisfies the Imry-Ma theorem. For the decay of position-
al order at T =0, we find

(pG(R)p&(0)) =exp[ —(kiRE+KkIRIIN(L/R)],  (1.8)

where R and R, are the longitudinal and transverse
components of R with respect to G, L is the linear size of
the 2D solid, and both k| and k, are proportional to V.
Extending this calculation to higher dimensionalities, one
finds

(pg(R)pG(0)) =exp(—kR) ,

with k <o for D =3, algebraic decay of (pg(R)pG(0))
for D =4, and positional LRO for D >4, which is in ac-
cordance with the Imry-Ma theorem.

The orientational field 6(r) is locked at low tempera-
tures to the 2D curl of the phonon displacement field,’

6(r)=3Vxu(r) . (1.9)
For decay of orientational order, we find
a 90 /2mu?
(Y(R)WY*(0)) = R , (1.10)

where a is the average interatomic distance.

Possible systems which could produce the kind of disor-
der studied here include monolayers physisorbed on a
glassy substrate and incommensurate monolayers phy-
sisorbed on an imperfect crystalline surface.!® The latter
systems are characterized by “orientational epitaxy,” that
is, the ground-state energy of a 2D crystal is minimized
when its crystalline axes have a definite orientation with
respect to the substrate.'® This effect can be expressed in
terms of the substrate-generated orientational field A.

Nonzero h provides the appearance of additional charac-
teristic length 8=(K 4 /h)'/%, where K 4 is the Frank elas-
tic constant.” For R <<8, (#(R)¥*(0)) is still defined by
Eq. (1.10), while for R > & we find
_ 902 In
2T

3
a

(Y(R)Y*(0)) =exp (1.11)

In Sec. II we consider positional order in a 2D solid on
a substrate with quenched randomness. Orientational or-
der is studied in Sec. III. Section IV is devoted to the ef-
fect of the orientational epitaxy. The relevance of our re-
sults to the experiments on physisorbed monolayers is dis-
cussed in Sec. V.

II. POSITIONAL ORDER

At low temperatures the statistical mechanics associat-
ed with the free energy (1.6) must be dominated by ex-
tremal configurations of the displacement field u(r) satis-
fying

(A+p)V(V-u)+uViu+f=0. 2.1

The solution of this equation for a given configuration
f(r)is

u(n= [ d*'Gyr—r)f;(r), (2.2)

where Gj;(r) is the Green’s function for the two-
dimensional equation (2.1) (see the Appendix):

G,-j(r)=aninj+[38ijlnr, n=r/r (2.3)
% N S5 o T 2.4)

= a2’ PT T dmpirow)

To describe positional order in the system we shall cal-
culate the correlation function

(pa(R)p&(0)) = (exp{iG-[u(R)—u(0)]}) ,

where we have used definition (1.1) for the positional or-
der parameter. With the help of Eq. (2.2) we have

(2.5)

u;(R)—u;(0)= [ d’r[Gy(r—R)—G;(r)If;(r) . (2.6)

The angular brackets { ) in Eq. (2.5) mean an average
with respect to possible configurations of f(r) which
occur with the probabilities given by Eq. (1.7). Thus the
correlation function (2.5) is defined by the path integral

fD[f(r)]exp ifderj(G,R,r)fj(r)-i fdzr[f,.(r)]z]
(pG(R)pG(0)) = , 2.7
J pUtmlexn |~ 5= [ a¥ sy
where
K;=G;[G;(r—R)—G(r)] . 2.8)

Integration over f(r) gives'’
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(pc(R)p&(0)) =exp —%fdzr[Kj(G,R,r)]z . 2.9)

For K 1-2, with the use of Eq. (2.3), we obtain

+2aB[(G*N)*—(G-n)*]In

K} =a[(G-NP +(G-0)*~2G-N)XG-n)(N-n)] + £G71n? | =R

J%L } . (2.10

where N=(r—R)/|r—R|. Two remarks should be made on the integration in Eq. (2.9). Firstly, no shifts re=r—R are
allowed in separate terms under the integral if they do not go to zero when r— «. Secondly, at large r the integral must

be cut off by the linear size of the film L. Then a somewhat tedious but straightforward calculation gives

f d*r K}:ﬂ'(az—}-Bz—aB)Gszln(L /R)+2maB(G-R)*In(L /R) .

(2.11)

After substitution of Eq. (2.11) into Eq. (2.9), the positional order correlation function can be presented in the form

G;G; G;G;
(pc(R)pG(0)) =exp { — kﬁ—éz—urk} 8.7—&—2’
where
G |1 3
k=215 (2.13)
= 32r |2 T 2w
G? |3 1
k=272 (2.14)
Y u? + (A42p)?

In our model the strength of the substrate-generated
disorder is approximated by the parameter o. Since posi-
tional correlations decay exponentially with increasing R,
irrespective of how small o is, we should emphasize that
only positional SRO survives in a 2D solid on an imper-
fect substrate at T'=0. It should be noted, however, that
for a weak imperfection, the domains where the crystal-
line order persists can be rather large. Indeed, taking into
account that In(L /R) cannot be too large, one can esti-
mate the longitudinal and transverse correlation lengths of
the positional order as §”~k|'|'1 and £, ~k['. Both &
and £, diverge as 1/V'o when 0—0. Note also that the R
dependence of the correlation function (2.12) is similar to
that of the spin-spin correlation function for a 2D fer-
romagnet with quenched random anisotropies.'®

III. ORIENTATIONAL ORDER

Now we shall find the local rotation (1.9) caused in a
2D solid by the substrate-generated force f(r). With the
help of Eq. (2.2), we have
6 = Fendu=teu [ dr'2=Gylr—r)fy(r), (.1

i
where Gy; is given by Eq. (2.3), and € is the unit an-
tisymmetric tensor, €,, = 1. Further calculation gives

60 =1(a—Pe [ ar . _';'ij(r'). (3.2)

(r'—r

The orientational order in the system is described by the
correlation function

($(R)Y*(0)) =(exp{6i [6(R)—6(0)]} ) , (3.3)

where we have used the definition of the orientational or-

R,-Rj In

) (2.12)

L
R

der parameter (1.2). Substituting Eq. (3.2) into Eq. (3.3),
we obtain

<¢(R>¢‘(0))=<exp

ifd2rQ,.(R,r)f,-(r)]>, (3.4)
where

r; r,~—R,~

Qj=3(a—B)e,-_,- ;2 - (r——R)Z

(3.5)

The averaging in Eq. (3.4) with respect to f(r) configura-
tions is analogous to that made in Sec. II. The result of
the averaging is

(YR O) =exp [~ 1o [ a7 [QRNT|. (6)

For Qf, with the help of Egs. (2.4) and (3.5), we find

2 R2

rr—R)?

3
27

0} = 3.7)

To perform the integration in Eq. (3.6) one should recall
that there is a minimal resolution in the spatial variables r
and R brought about by the atomic structure of a solid.
Thus the integrals of the form f dr(1/r) should be cut
off at small r by the average interatomic distance a. In-
tegration over r then gives

[aroi=—"m|R (3.8)
T
Substituting Eq. (3.8) into Eq. (3.6), we finally find
90/2#;42
(Y(R)WY*(0)) = R (3.9)

The algebraic decay of the orientational order given by
Eq. (3.9) is weaker than the exponential decay of the posi-
tional order studied in Sec. II. Therefore, for a 2D solid
on an imperfect substrate, correlations in the orientations
of locally defined crystallographic axes should be much
more extended than correlations in the positions of atoms.
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For weak disorder in the substrate, i.e., small o, orienta-
tional quasi-LRO could be hardly experimentally dis-
tinguished from a true LRO.

IV. ORIENTATIONAL EPITAXY

Here we shall take into account the effect of a
substrate-generated orientational field. For this purpose
note that Eq. (3.2) can be written in the form

o) =mla—Bley [ d'=Gle—rfr), @D

where G(r)=(1/2m)Inr. Substituting a and B from Eq.
(2.4) into Eq. (4.1) and integrating by parts, we obtain

o(r)= 71;1_ [ d'Gr—r)esa,f5(r) . 42)

Taking into account that E}(r) is the Green’s function for
the 2D Laplacian, i.e., V2G (r)=¥6(r), it can be easily seen
that O(r) satisfies the equation

2uV%0+€;0,f;=0. (4.3)

This allows one to consider the effective free energy
K K
Fa==" [ dr(Vor+ o0 [ dreyfio, 44

which generates the variational equation (4.3). Note that
only the ratio of the coefficients in front of the integrals
in Eq. (4.4) is determined by the form of Eq. (4.3). We
have chosen these coefficients from the requirement that
the first term in Eq. (4.4) coincide with the orientational
free energy in the Halperin-Nelson theory,” where K 4 is
the Franck elastic constant similar to that found in liquid

|

(P(R)Y*(0)) =exp ‘—~ 21’_”

For R <<§, integration over r gives

90

NES
'’

a

(Y(R)Y*(0)) =exp | —

) (4.11)

which coincides with Eq. (3.9).
tion gives

When R > §, the integra-

90
T

(HRIW*(0)) =exp | — %

(4.12)

An important remark should be made on the latter equa-
tion. Observing that ((R)¥*(0))—const as R — w0, One
would think that an arbitrarily weak substrate-generated
orientational field # would restore orientational LRO ir-
respective of the strength o of the substrate disorder.
Note, however, that for a mere definition of the orienta-
tional LRO, fluctuations in the orientation of any crystal-
lographic axis must be small in comparison with the angle
between two different axes. For a triangular 2D lattice
this angle is 7/3. Thus, orientational LRO persists in a
system only if the modulus of the power in Eq. (4.12) is

2
] [ a* lK (r/8)—Ky(r/8)K(|r—R | /8)

crystals. In the presence of the substrate-generated orien-
tational field, an additional term’ +h f d*r 6% must be
included in the free energy, so that we have

K
Fuf = —‘ [ d*vey

+—— [ d*re;f;0,0+= fd2r92 4.5)

Variation of this functional with respect to 8(r) gives
V20 —5-2=—— 2 —€;9:if; (4.6)

where we have introduced 8=(K 4 /h)!/2. The solution of
this equation can be presented as

o(r)= -2—1; f d?r'Gy(r—r')e;; 3, f;(r') 4.7)
where Gj,(r) is the Green’s function for Eq. (4.6),
Gult)= — —=Ko(r/8) 4.8)
27

and K,(r) is the modified Hankel function. Integrating

by parts in Eq. (4.7), we obtain

(ri—ri)
|r—r'|

fitr'),

(4.9)

‘| /8)

where we have used Ko = —K.

Calculations analogous to those made in Sec. III, but
with Eq. (4.9) instead of Eq. (3.2), give the following ex-
pression for the orientational-order correlation function:

(4.10)

r(r—R)
r{r—R|

f

small. It defines the critical value of A which restores
LRO for a given o,
K4 4mp?
hy~—2exp | — 2B (4.13
e~ exp % )

For the weak disorder in a substrate, h. is exponentially
small.
V. DISCUSSION

We have shown that the structure of a 2D solid on an
imperfect substrate at zero temperature is characterized
by positional SRO and orientational quasi-LRO. This
state of the solid can be called a quenched hexatic phase,
by analogy with the high-temperature hexatic phase
which results from a dislocation-unbinding phase transi-
tion.” The kind of disorder studied here can be realized in
incommensurate monolayers physisorbed on an imperfect
crystalline surface or on a glassy substrate. Consideration
of the latter case, however, should also include the effect
of random topography!® because the surface of an amor-
phous solid could hardly be as flat as a crystalline surface.
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In the case of an imperfect crystalline substrate, the effect
of the substrate-generated orientational field should be
taken into account. We have shown that there is a finite
critical value of the orientational field which restores
orientational LRO in a monolayer. Our conclusion as to
the positional order is that in the presence of an arbitrari-
ly weak quenched disorder in the substrate, positional
correlations in the monolayer should decay exponentially.
In the case of weak disorder the domains where positional
order persists could be rather large, however.

An important realization of a 2D solid is provided by
rare-gas monolayers on graphite. These systems have
been the subject of intensive recent experimental study.!
In particular, a melting transition” and, probably, a hex-
atic phase?! have been observed in monolayer xenon on
graphite using x-ray scattering. In such experiments the
surface of the substrate must be as perfect as possible to
ensure that corresponding effects exist as a consequence of
thermal fluctuations in the adsorbate, not the substrate in-
teraction. The inevitable weak quenched disorder in the
substrate should be unessential, because at T =0 crystal-
line domains in a monolayer would be greater than the
whole surface under investigation. For strong random-
ness in the substrate, the positional correlation length be-
comes small. In this case the quenched hexatic phase of
the adsorbate should be observed right down to T =0.
With increasing temperature one should expect that un-
binding of dislocation pairs within the crystalline domains
would lead to a further decrease of the positional correla-
tion length. A disclination-unbinding phase transition
would be necessary to complete the transition from hexat-
ic to liquid.” In conclusion, note that a comprehensive
consideration of the case of strong substrate disorder
should also include an investigation of the possibility??
that grain boundaries form in a 2D solid. This, however,
exceeds the limits of the approach based on the continu-
um elastic theory.
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APPENDIX

In this appendix we will calculate the Green’s function
for the 2D equation of the elastic theory. Let us first con-
sider an external force f(r) of the form f,(r)=/,5(r),
fy=0. For u,(x,y) and u,(x,y), Eq. (2.1) then gives

)2 |2 O | o 1 ps(0=0, (A1
+uax 8x+ay +uVu, +£,0(r)=0,
3 |Ouy du, )
A — |+ Véu,=0. A2
(+p)ay ax+ay +uViu, (A2)
With the help of the ansatz,
_% 3  _9dp 0y 3
= T Ty ax A3
Equations (A1) and (A2) can be written as
A+2u0v232 02 8% | £ 50, (A4)
ox ady
22@_ _ 2% =0 AS
(A+2u)V 3y uv ™ . (AS)
Solutions of these equations are sought in the form
a2, y_pP A6
p=a3_ ¥ "’ (A6)
where a,b do not depend on coordinates, and
p=rilnr —r?. (A7)
Taking into account that
V2p=4lnr, Viinr =278(r) , (A8)
substitution of Eq. (A6) into Eqgs. (A4) and (AS5) gives
=___£__3b=_li_ (A9)
8m(A+2u) 8mu
For u, and u,, with the help of Eq. (A3), we obtain
2 2
ux:____._["___.___a_ﬂ_f_"iﬂy (A10)
8m(A+2u) ax2  8mu 9y?
2
wy— | L Ix 9p (Al1)
8w 8m(A+2u) | dxdy

Extending this calculation to the case of two-component
f(r) of the form f, =f, =58(r), we find that u; caused by
fj is given by

Gy=— 5,;Vp— %fiz‘-‘—a,-ajp : (A12)

L
87
which is equivalent to Egs. (2.3) and (2.4) is f(r) in Eq.

(2.2) satisfies the condition of zero resultant force,
f d*r f(r)=0.
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