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Low-frequency response of pinned charge-density-wave condensates
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The frequency-dependent conductivity a(e) was investigated in the 10 Hz to -500 MHz range in

materials with an incommensurate charge-density wave. NbSe3, orthorhombic TaS3, and (TaSe4}~I.
Over a wide range of frequencies both Reer(co) and Imo(m) are described by the expression
o(co)=C(ice/G } with cx g 1, and have different values for each material. The co-dependent response
is in clear disagreement with descriptions which neglect the internal degrees of freedom of the con-
densate. The excess low-frequency conductivity is due to the disorder caused by random distribution
of pinning centers. The results are compared with calculations based on a microscopic phase Hamil-

tonian, which takes impurity pinning into account. The results are in semiquantitative agreement
with a modified form of the Mott-Berezhinskii law for one-dimensional hopping conductivity, and

they are in qualitative agreement with the classical, relaxational dynamics approach in the re~0
limit. %e also discuss the relation of our experimental findings to other studies of the frequency-
dependent response in these materials.

I. INTRODUCTION

The highly anomalous transport properties which arise
as a consequence of the development of incommensurate
charge-density waves (CDW's) in metallic quasi-one-
dimensional compounds are of considerable current in-
terest. ' It is by now well established that in certain inor-
ganic linear chain compounds, such as NbSe& or
orthorombic TaSs (o-TaS3), the collective mode is pinned
by impurities, grain boundaries, etc. This results in zero
dc CDW conduction for small applied electric fields. The
interaction between the CDW and the pinning centers is
weak, however, and the characteristic pinning energy can
be orders of magnitude smaller than the relevant single-
particle energies such as the band gap or bandwidth.
Consequently, the pinned mode displays strongly-
frequency-dependent response and associated giant dielec-
tric constant in the spectral reIlion between audio and mil-
limeter wave frequencies. In general, the in-phase
part of the conductivity Retr(co) smoothly increases with
increasing frequency in the megahertz frequency region,
and has a broad maximum at millimeter wave frequencies.
The out-of-phase component, Imo(to), has a maximum
where Reer(co) strongly increases with increasing co, and it
crosses zero where Retr(to) has it's maximum, being nega-
tive at high frequencies.

Several models have been advanced to account for this
typical behavior. In one model, the equation of motion
for the average CDW phase is that of a classical damped
harmonic oscillator. Another approach interprets the
strongly-frequency-dependent conductivity in terms of
coherent Zener tunneling of CD%' electrons through a
small pinning gap, hz. This so-called "tunneling model'*
leads to a scaling relation between the frequency- and
voltage-dependent conductivities, which is well obeyed in
the radio-frequency range both in NbSes and in TaSs.
Figure 1 illustrates the overa11 good agreement between
their predictions and experimental data in NbSes. (For

the situation in the microwave and millimeter spectral
range, see Ref. 26). The details of the figure will be dis-
cussed in Sec. IV. Here we emphasize that both of these
approaches neglect the local deformations of the collective
mode around the various pinning centers, and the result-
ing loss of long-range phase coherence. Consequently,
pinning is described by a single parameter: an average
pinning frequency too or an average pinning gap bp. Yet
various studies on irradiated materials and on alloys
indicate that randomly distributed impurities play a fun-
damental role in the observed frequency and electric
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FIG. 1. Reer(m) and Imcr(m) for NbSe3 at 42 K. The solid
lines are fits to classical harmonic-oscillator description, Eqs. (4)
and (5) with parameters o =1.2&10 (Qcm} ', co /2m=150
MHz. The dashed line is a fit to tunneling model Eq. (6) with
mT!2m =SO MHz and Eo/E as given by Ref. 44.
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field-dependent response. This in turn suggests that the
dynamics of internal deformations may play an important
role.

It is the principal goal of this paper to document the ef-
fects of the random distribution of pinning centers on the
low-frequency conductivity by incommensurate CDW's.
Vfe report extensive complex conductivity measurements
over a broad frequency range (100 Hz) to 500 MHz) in
three model compounds for CDW conduction: NbSe3,
orthorhomic TaS3 (o-TaS3), and (TaSe4)2I. In all cases, at
low frequencies the conductivity can be approximately
described by the empirical form:

cr(ro) =C
lN

N
ag1

over a broad range of frequencies below the peak in Imo.
The exponent n & 1 varies from material to material and is
only weakly temperature dependent. At frequencies be-
tween 10 and 10s Hz both Reer(co) and Imcr(co) exceed
the predictions of both the classical and tunneling models
by orders of magnitude. Equation (1) is often observed in

glassy materials z and its applicability to CDW conduc-
tors demonstrates, in general, the importance of random-
ness in these materials.

The power-law form is entirely empirical; it is likely
that the true form for n(co) has some other functional
dependence which may be approximated by Eq. (1) over
the relevant range of frequency. For example, it may be
regarded as a limiting case of some Cole-Cole or Cole-
Davidson —like function. 3 While the latter forms are
equally empirical, they have been motivated on the basis
of distributions of material parameters, such as relaxation
times or characteristic energies. From this perspective
the connection between Eq. (1) and randomness begins to
take shape. However, we prefer to look for a more micro-
scopic origin to the low-frequency behavior. The disorder
is expected to lead to metastable states ' associated with
regions of the CDW which are more weakly pinned than
the average. One can visualize at least two ways in which
these metastable states can contribute to the conductivity.
(1) If two metastable states are spatially well separated but
close in energy, then the low-frequency conductivity may
be enhanced with a frequency-dependent response similar
to that obtained for single-~article localized states (e.g.,
the Mott-Berezhinskii} law. (2) If two rnetastable
states are near neighbors, the potential-energy barriers be-
tween them (due to randomness} have a distribution of
heights. In the thermodynamic limit, the distribution
may extend nearly to zero, ' and thermal activation over
these barriers will introduce a cusphke enhancement into
the low-frequency dielectric constant. ' The same two
processes are relevant to interpreting the long-time-scale
relaxations which follow current pulses or thermal
quenches.

The outline of the paper is as follows. After discussing
the experimental methods and details in Sec. II, the exper-
imental results observed in NbSe3 0 TaS3, and (TaSe4)2I
will be presented in Sec. III. This will be followed in Sec.
IV by a detailed comparison of the experimental results
with the various theories of frequency-dependent trans-

port in pinned charge-density-wave systems. Our con-
clusions are summarized in Sec. V.

Short accounts of our experimental findings on the
low-frequency behavior of the conductivity have been re-
ported earlier. '6'2'

II. EXPERIMENTAL METHODS

NbSe3, orthorhombic TaS3 (0-TaS3), and (TaSe4}zl
samples used in this study were prepared by the gradient
furnace method. High-purity starting materials were
sealed in an evacuated quartz tube and held at the growth
temperature for a time extending from a few days to a few
weeks. The temperature dependence of dc resistance and
threshold field of nonlinear conductivity indicate that our
specimens have a purity comparable to those reported in
the literature. The typical sample dimensions are 20
pmX5 pmX1. 5 mm, the long axis being the chain direc-
tion.

Electrical contacts were made by using silver paint or,
in the case of (TaSe4)2I, by platinum paint or evaporated
gold. Four-probe dc measurements indicated that the
contact resistance was always much less than the sample
resistance. We also found that for o-TaS3, the contact
resistance is temperature dependent. It may increase from
a few ohms to a few hundred ohms as the sample is
cooled from room temperature to 77 K, but it remains
much smaller than the dc resistance of the sample.
Several specimens with widely differing resistances were
investigated to ensure that contact effects do not play a
role in the experimental results. Furthermore, at low fre-
quencies both four-probe and two-probe configurations
were used with identical results.

In order to cover a large frequency range, several dif-
ferent methods were used to measure the complex conduc-
tivity. At high frequencies (4—500 MHz) a Hewlett-
Packard HP8754 network analyzer was used. The im-
pedance of the specimens was compared with a 50-0
resistive impedance, and consequently highest accuracy
was achieved for samples with impedance of the same or-
der of magnitude. Careful calibration using both resistive
and capacitive components was required, especially at the
higher frequencies where the effect of finite cable lengths
became important. At intertnediate frequencies (500 kHz
to 100 MHz) an rf bridge circuit built by us was em-
ployed. The voltage drop across the specimen was corn-
pared .to a variable capacitor (varactor} and a variable
resistor (trimmer potentiometer) in the other arin of the
bridge. Again, calibration at each frequency was neces-
sary. The calibration was performed immediately after
each experimental run by substituting for the sample
discrete resistive and capacitive components, whose values
of R and C were appropriate to the observed range of
sample admittances.

The total admittance of the specimens YT was assumed
to consist of G~, the (real) conductance of normal elec-
trons thermally excited across the CDW gap, in parallel
with YcD+, the (complex) CDW admittance, YT
=G~+ Fc~~. ~en either the network analyzer or the
rf bridge was used, the separately measured dc, linear con-
ductance GN was subtracted numerically after the total
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FIG. 2. Bridge configuration employed to measure the lom-

frequency conductivity.

admittance of the sample was determined. Because both
CDW contributions Retr and Imo decrease rapidly with
decreasing co, FT and G~ become comparable in magni-
tude at low frequency, and the numerical subtraction be-
comes more susceptible to errors. Therefore, measure-
ments below 100 kHz were performed with bridge circuits
where the normal electron contribution is balanced out.
One such circuit which we used was described in Ref. 6.
Another very simple arrangement using the differential
input of a Princeton Applied Research PAR 5204 lock-in
amplifier is depicted in Fig. 2. At any given temperature
either circuit was first balanced using dc applied fields.
At finite frequencies the lock-in amplifier detects an un-
balance voltage which is due to the CDW contribution to
the conductivity. The in-phase and out-of-phase com-
ponents of the measured voltage were used to calculate
Retr(co) and Imo(co). We note that Reer obtained in this

way is subject to a error which decreases with increasing
frequency. But no error is introduced into the out-of-
phase component Imo, and, most importantly, our sensi-
tivity to small values of Re+ was increased by orders of
magnitude by using this technique.

Accurate results can be obtained only after minimizing
the stray capacitances in the measuring circuit. In order
to reduce the spurious capacitive effects various gas flow
systems were designed with typical cable lengths of 10 cm
or less. Temperature stability is also important, especially
at low frequencies where the conduction is dominated by
the strongly-temperature-dependent dc conductance, Gq.
To solve this problem, we built a liquid-N2-cooled mini-
cryostat, with temperature stability of 3)&10 i K in the
temperature range of SO—200 K.

CDW conductors are inherently nonlinear systems, and
nonlinear ac response has recently been reported in a relat-
ed system Ko 3Mo03, and also for o-TaS3. In Fig. 3 we
show our data for the dependence of Imo on amplitude
V«of the ac driving voltage. While the CDW response is
presumably nonlinear down to the lowest values of V„,
this data indicates that Imcr is independent of V«within
our experimental error for values approximately
V &0.4'. Further studies of the nonlinear response
will be published separately. All experimental results re-

ported in the rest of this paper were measured with
V &0.1Vz and therefore are expected to represent the
linear ac response to good accuracy.
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FIG. 3. The ac amplitude dependence of the CD%' conduc-
tivity detected in o-TaS3 at f=1 kHz and at several tempera-
tures.

FIG. 4. Reo(~) and Imo. &co) as the function of frequency for
NbSe3 at 46.S K, (TaSe4)2I at 180 K, and o-TaS3 at 81 K. The
solid lines are fits to Eq. (1) with exponents a =0.96, 0.94, 0.90,
respectively.
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FIG. 5. The frequency-dependent conductivity observed in o-TaS3 (left) and in NbSe3 (right) at various temperatures.

III. RESULTS

ImIr( co )
(2)

is shorn in Fig. 6. The saturation at low frequencies,
suggested by the simple harmonic-oscillation description,
was not observed. Instead, e(oI) continues to increase as
~~0, and in this limit E(DI)-co . It is also evident
from Fig. 6 that the development of this low-frequency

The low-frequency conductivities, Ror(DI) and Imcr(DI),
measured by the low-frequency bridge configuration for
NbSe3 (below the second phase transition), for o-TaS&, and
for (TaSe4)2I are displayed in Fig. 4. In all cases a
power-law behavior is observed, and both Reo(co) and
Imo(co) are proportional to co, with a ~1, over an ex-
tended frequency range.

Fits to Eq. (1) are also displayed in the figure with
a =0.96 for NbSei at 46.5 K, a =0.95+0.02 for o-TaSi at
81 K, and a=0.94+0.02 for (TaSe4)zl at 180 K. The
frequency-dependent conductivity of o-TaSs and NbSei,
measured in a frequency range of 4—500 MHz, is present-
ed in Fig. 5. For these two materials the crossover from
low to high conductivity (with a peak in Imo), charac-
teristic to overd wiped response, is apparent. %e did not
find such crossover in (TaSe4)zI, and recent experiments
indicate that for this compound the crossover frequency
falls in the (10—100)-GHz range.

The frequency dependence of the dielectric constant,
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FIG. 6. The frequency dependence of the dielectric constant
measured in NbSe3, o-TaS3, O-TaS3, and (TaSe~)2I at tempera-
tures indicated on the figure.

"cusp" is gradual as the frequency is decreased. We do
not observe two separate relaxation processes which would
separately characterize the low- and the high-frequency
behavior of the frequency-dependent response; in this
respect our results differ from those in Ko iMoOi. "

Further measurements of Reo and Imo were made in
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FIG. 7. Frequency-dependent conductivity observed in TaS3
for several different temperatures.

o-TaS& at many other temperatures; the results at four
temperatures are shown in Fig. 7. Both Imcr(co) and
Reo(co) continue to decrease approximately at the same
rate (see below) with decreasing frequency and do not
show a flattening off in the co~0 limit. Power-law
behavior was observed at all temperatures investigated,
down to T =42 K. Power-law frequency dependence of
conductivity was also reported by Zhilinskii et al. ' ' at
T =4.3 K with exponent a =0.83. Similar overall
behavior has been observed in o-TaSi by Kalem et al.
below 100 K, but at high temperatures they report a level-

ing off of e(oi) below about 1 MHz. It is obvious from
Fig. 7 that we do not find such saturation, and e continues
to increase with decreasing co down to 100 Hz at all tem-
peratures. A possible reason for this disagreetnent is dis-
cussed in Sec. V.

While the dc conductivity of o-TaS& varies strongly
with temperature, the frequency-dependent contribution
has a relatively weak temperature dependence between 100
and 200 K. This feature of the data is more apparent
when the parameters characterizing o(co) are plotted for
several temperatures. Figure 8 shows the temperature
dependence of the complex conductivity measured at 10
kHz, the exponent a, and the characteristic frequency oi~
at which Ima(co) has the maximum. These parameters
vary but no more than a factor of 4 between 100 and 190
K, while the dc conduction changes by a factor of approx-
imately 100. In this range ~& shows two dips, which
correlate with two mild peaks in ocDw (10 KHz). These

two peaks have previously been noticed in the 1-MHz
dielectric constant in o-TaS& and have been proven to cor-
respond to two dips in the temperature dependence of the
threshold field for nonlinear conduction. ~s Also, a similar
temperature dependence occurs in the microwave
response. Despite the frequent observation of this
characteristic temperature dependence, its microscopic
origin remains a mystery.

Figure 8 shows that below =100 K both co& and ocDw
change rapidly with temperatures. Also below 100 K, the
microwave response shifts towards higher co, 7' and the
threshold field increases strongly. ' It has been suggested
that the threshold behavior below 100 K is due to lock-in
of the CDW wave vector to a value commensurate with
the underlying lattice. It is expected that due to differ-
ences in pinning the dynamical response of a commensu-
rate CDW is different from that of an incommensurate
CDW. Local soliton excitations of the collective mode
may play an important role in a situation where commen-
surability pinning is strong and shifts the oscillator
response of the whole CDW mode to higher frequencies.
Local excitations are also expected to lead to a strongly-
temperature-dependent ac response.

In the discussion which follows, we focus on the
frequency-dependent response of o-TaSi above approxi-
mately 100 K, where the response is due to an incom-
mensurate charge-density wave, and commensurability ef-
fects are not expected to play an important role.

IV. ANALYSIS

In this section we consider the relevance of our results
to several theoretical expressions. First we examine two
common, phenomenological models for CDW conductivi-
ty, the "classical single-particle model" and the Zener tun-
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neling theory. Next we consider improvements to the
classical model by allowing distributions of parameters
which characterize the frequency-dependent response.
This is eJ»ed in spirit to popular approaches to glasses
and localization, and the tunneling theory could be treated
analogously. Finally, we take note of the recent "relaxa-
tional dynamics" CD%' calculations using the
Fukuyama-l. ee-Rice Hamiltonian.

A. Comparison mth the phenomenoloaical models

8b p
b

CLP

Ql 4

I l I

~ TaSq T=12
Classical m

—- -Tunnel ing

0

yO

~ 0

0

log (QJ~QJ T I

0

i scale)

The simplest classical treatment of charge-density-wave
dynamics treats the collective mode as a rigid charged
massive object whose dynamics is completely described by
a single center-of-mass coordinate x. Then, in the absence
of a dc field, the equation of motion for small amplitude
ac fields is z

)09 (~~~, , )

0

1 . 2 eEe'"'
&+ X+COpX +

Pk

8
b
b pE

Reer(co) =
rn' co +(co„)

(4)

Imcr(co) =
co +(co~)

Here n is the number of carriers in the collective mode
and co« coos is th——e crossover frequency. In Fig. 1 we
showed both Reer(co) and Imcr(co) measured in NbSe3
below the second phase transition Ti. The solid hnes in
that figure correspond to Eqs. (4) and (5) with parameters
given in the figure caption. (Similar fits were obtained for
the co-dependent response of o-TaSi and also in earlier
studies of the frequency-dependent response. ) While a
good overall agreement between the experimental results
and this single harmonic-oscillator description is evident,
a closer inspection reveals deviations from Eqs. (4) and
(5). In general, the observed co dependence is less sharp,
suggesting a distribution of pinning frequencies and/or re-
laxation times.

The deviations are more serious at low frequency where
Eqs. (4) and (5) predict Reer=co and Imcr=co, but the
data is better represented by co~, cz=—0.9, for both the in-
phase and quadrature parts. Thus, at low frequency the
experimental results exca4 the predictions; for Reer the
discrepancy is by several orders of magnitude at the
lowest frequency measured. This is illustrated in Fig. 9
for o-TaS3 in a log-log representation vvhich emphasizes
the low-frequency response. The sohd lines represent Eqs.
(4) and (5) with parameters cr„=ne r/m ' =2100
Q ' cm ' and m~=co(p'=240&2m MHz.

Another approach is to interpret the strong dielectric

where 1/r is a phenomenological damping constant and
rn ' is the effective mass of the condensate. Early studies
indicated an overdamped response, ' coos ~p 1, and conse-
quently the frequency-dependent conductivity is given to
a first approximation by 0

log (u) /u) )

FIG. 9. Frequency-dependent Reo(e) and Imo(e) for o-

TaS3 at T=120 K, compared with the predictions of the
phenomenological models. The solid lines are fits to the classi-
cal particle model with parameters o„=2100 (Qcm) ' and
co =2m)(240 MHz. The dashed line is a fit to the tunneling
model [Eq. (6)j with parameter A =2100 (0cm)
a)p ——2m')& 26 MHz.

response in terms of the tunneling model, i where the fre-
quency dependence is due to collective excitations of the
CDW condensate across a pinning gap b,z ——Rcoz. A
model developed by Tucker i to treat the ac response of
superconductor-insulator-superconductor tunnel junctions
in the quantum limit is adopted to describe the
frequency-dependent conductivity of CDW's. This for-
malism leads to a scaling relation between the frequency
and the dc electric-field-dependent response. If one as-
sumes that only electric fields above Er are effective, "
the scaling relation is

=dc

where the electric-field-dependent part of the dc conduc-
tion is described by

ud, ——A l — exp
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Here Ez is the threshold field at which nonlinear conduc-
tion occurs, A and Ep are parameters, determined experi-
mentally. This expression takes into account the observa-
tion that there is no threshold frequency for the onset of
co-dependent response. Equation (6) works well at high
frequencies, but once again at low frequencies serious de-
viations from the predicted co dependence develop. A fit
to Eq. (6) demonstrating this point is shown as the dotted
line in Fig. 9. The fit was produced by applying the scal-
ing rule, Eq. (6), to the form of the dc current-voltage re-
lationship given as Eq. (12) of Ref. 44.

Thus the description of o(co) over a broad range of fre-
quencies, both in terms of the classical single-particle
model and in terms of the tunneling description of CDW
dynamics, leads to an appropriate fit in various materials
only at frequencies exceeding approximately 10
MHz. ' '" However, these models fail to account for
both Rea(co) and Imo(co) at low frequencies, where the
measured conductivities exceed the calculated values.
There appears to be an excess contribution to the ac
response in the co~0 limit.

The most likely explanation for the breakdown of the
above descriptions in the low-frequency limit is that the
details of the pinning, caused by random impurities, are
not explicitly considered. Consequently, the co-dependent
response is characterized by a single energy scale in both
models, by coT in terms of the tunneling model and by co(i~
for the description in terms of a purely classical response.
Apparently the experimental results call for a more com-
plete treatment of CDW pinning. Because of the aspect
of randomness, proper treatment of the pinning and the
resulting frequency-dependent conductivity is quite diffi-
cult. In the rest of this section we present various approx-
imations to an improved interpretation of the conductivi-
ty.

8. Distributions of parameters
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to account for our experimental findings in o-TaS3. Al-
though we make no attempt to justify this expression mi-
croscopically, it is also suggestive of a distribution of re-
laxation times. In contrast to Eqs. (7) and (8), Eq. (9)
leads to a power law, Eq. (1},for co~0, and also leads to
Reer(co~ ~ )=o in the large frequency limit. At high
frequencies, however, Eq. (9) deviates dramatically from
the measured frequency-dependent response. Figure 10
shows o(co) for TaS3 at 120 K represented in the complex
conductivity plane. The solid line (which is a segment of
a tilted circle) is the best fit to Eq. (9). The value of
a( =0.87) can be deduced from the tilt angle, as shown in
the figure. At low frequencies Eq. (9) reduces to Eq. (1).
Thus the fit is quite reasonable, but (as already remarked}
it seems to be devoid of physical content.

Interestingly, there exists a very simple distribution of
Debye responses which represents the data quite well
without requiring a as a parameter. Suppose that
co =co„, the characteristic frequency of the Debye

The response represented by Eq. (1) is commonly ob-
served in disordered systems, and in particular in glasses,
where a =0.8. 9 The observed cr(co) may be regarded as a
broad superposition of Debye responses, Eqs. (4) and (5);
however, the distribution functions which determine the
weights of the various Debye curves have usually been
treated phenomenologically or on the basis of conveni-
ence. One complicated distribution function gives the po-
pular Cole-Cole expression for the dielectric constant:

IO'-
TOS5,

~ Re

e
T, (Tl

6'p

e(co) =
1+(ico~o) ' (7)

A more complicated, three-parameter distribution func-
tion" leads to

60
&(co)=

[1+(icosa)' ]~

10 '[
tQ' 'Q'

&frequency (Hzi

I

)QS

As the underlying distributions contain no physical signi-
ficance, we will not describe them here. The form of Eq.
(8} (with free parameters eo, ro, a, and P) has be(m applied
to describe the frequency-dependent dielectric constant in
Ko $MOO3 (Ref. 15) and o-TaSi (Ref. 39) with some suc-
cess. In the same spirit, we previously used the form'

FIG. 10. (a) Recr{u) and Imo{co} for TaS3 at 120 K plotted
on the complex conductivity plane, a Cole-Cole —like plot. The
solid tilted semicircle is a fit to Eq. (9) with parameters a,o„
determined by the tilt angle and by the intersection with the
Reo (co) axis, respectively, as shown in the figure. (b} A
equivalent representation of the above data and the fits to Eq.
(9). m =2m X25 MHz, a and o „are the same as before.
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response is distributed uniformly from zero to an upper
cutoff o) . Then

densate by u, =(rn/m')'~ vz. The dimensionless param-
eter

o(a)) =o„f . p(to, )dec„
le

N +ICO
Vopo

(13}

0~ max EN d ci)~
~&+~~

tan-'
2

+i ,
'

ln—1+
max

(10)

Figure 11 shows the fit to the data. For t0« t0,„, Eq.
(10) becomes

o(t0) =—o „2 6)max
+l &co

max

We do not claim any unique significance for these results,
but they provide a clue to the underlying physics. Both
the notion that something is distributed all the way to
zero and the specific form of the imaginary part (a power
law with logarithmic correction) reminds us of hopping
conductivity in localized systems.

dP 1 dP
dx u, dt

C. "Hopping" conductivity

The main features of impurity pinning can be described
by the phase Hamiltonian, ~ which in one dimension is

N~y
P(coo)= t exp

coo

where

av

Q)o
(14)

where n; is the number of impurities per unit length,
separates regions where the effect of pinning is qualita-
tively different. When rt ~~1 (i.e., the pinning is strong
relative to the deformability of the CDW phase) the phase
is completely adjusted at every impurity site to obtain a
maximum potential-energy gain. The phase-phase corre-
lation length is of order 1=1/n;, the average spacing be-
tween impurities. For g gal the phase is adjusted over a
length scale Lo large compared to I. Scaling arguments,
which neglect short-range perturbation around the impur-
ities, lead to

I o=(m dv~/n;povo)'"

in one dimension.
For strong impurity pinning, the frequency-dependent

response can easily be calculated in one dimension in the
low-frequency limit. In this case the ac response is that of
the sum of the individual, interrupted chain segments.
Each segment may be regarded as a charged oscillator.
As shown by Fukuyama and Lee, the distribution of im-
purity spacings implies the following probability distribu-
tion of oscillator frequencies:

+ Vopo+ cos[2kFxi+4'(x )] (12)

~p'- Ta8~

i 02

QK

)0-

a
C)

)0'

where uF and k~ are the Fermi velocity and wave vector,
po and P are the amplitude and phase of the CDW, and
the summation is over random impurity sites i Vo is t.he
short-range impurity potential and u, is the phason velo-
city, which is related to the effective mass m ' of the con-

co,„=2mun;

is the average oscillator frequency. If the individual oscil-
lators are assumed to be underdamped, the low-frequency
conductivity becomes46

Retr(to) = 2tt u Lo clay

2 exp
UF

Where u is the phason velocity, uz is the Fermi velocity,
and Lo-I/n; is the Fukuyama-Lee length. The argu-
ments may be generalized including a phenomenological
damping which describes the overdamped nature of the
oscillators. The integral over the probability distribution
[Eq. (14}]and the overdamped oscillator response [Eq. (4)]
cannot be expressed in a simple analytical form; however,
the low-frequency limit can be evaluated, and Reo-co is
obtained for co «co,„.

In the weak pinning case e« 1, examination of the en-
ergy dependence of the density of states of Eq. (12} gives
the result"

)0 o-2

to'
10'

I

10 ~010

'2

Reo(to)=, , ln
UFCO CO CO

frequency (Hz)

FIG. 11. The low-frequency Reer(co) and Imo(co) for TaS3 at
T= 190 K, compared with Eq. (10).

which corresponds to the Mott-Berezhinskii result for
one-dimensional localization. The characteristic fre-
quency ~ is related to the pinning energy Vo and is given
in one dimension by
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'2/3

co' =(2n u /uF )(n, uF Vc/2m)
u 2ir A

Lo Po
(18)

't

Retr(co) —kT ln
CO 2 CO

N N
(19)

where I.c is the Fukuyama-Lee length defined above.
Equation (17) is appropriate if co i ~ co ~ to' with
ro&

—V—cu/UF. Below this frequency the conductivity re-
verts to the form of Eq. (16). We have argued in Ref. 16
that the range of validity of Eq. (17}is very limited.

In Fig. 12 the experimental behavior is compared to the
predictions based on Eq. (16) and (17). The Mott-
Berezhinskii law predicts that tii '[ Rar(co)]'~ versus lnc0

is linear, while if Eq. (16) is appropriate, ln[Rar(co}] is a
linear function of co '. lt is obvious from the figure that
neither of these behaviors is observed.

The expressions Eqs. (17} and (18} are relevant for a
collection of oscillator states e; with potential-energy bar-
riers U;J between them. The dielectric absorption at ~
[and the consequent contribution to cr(co)] comes from
direct, electric-dipole transitions between e; and ej,
ej —e; =%co. The absorption will have an additional con-
tribution from relaxational processes in which phonons
(or phasons) try to maintain equilibrium between oscilla-
tor states while the applied low-frequency electric field
modulates the energy levels. For the case of electron lo-

calization in three dimensions, the expression for tr(co) is
reduced by one power of to and becomes temperature
dependent (because of the role of thermal phonons}. s

Carrying over the localization results to the present, one-
dimensional situation, we expect

Furthermore, because direct photon transitions are no
longer involved, we do not expect this formula to have the
limited range of validity of Eq. (17).

Motivated by our experimental findings Gor'kov has re-
cently proposed that the results obtained for localization
in random systems in the presence of Coulomb interac-
tions s may be applicable to CDW materials. The pres-
ence of Coulomb forces modifies the low-frequency limit
of the Mott-Berezhinskii law to become

Reo(co) -co in'cu . (19')

As shown in Fig. 13, this form fits the data. However,
like Eq. (17}, it is expected to break down in the co~0
limit. Also, if Coulomb effects are important, a different
behavior might be expected for 0-TaSs and (TaSe4)21,
which become semiconductors below their Peierls transi-
tions, and for NbSes, where only a fraction of the elec-
trons are condensed into the CDW mode. Figures 4 and 5
demonstrate that no such difference was observed.

1 dg(r) 5H neE
I' dt Q(r) 2kF

(20)

D. Relaxational dynamics approach

Finally, we consider approaches in which the Hamil-
tonian, Eq. (12), is used in a completely classical and dissi-
pative equation of motion:

CV

AJ 3
b

20

1x10 6

~ g~ ~ y ~

~ ~

2m
2x10 6 3x10 ~ (i)

I I

(QI

where I is the damping constant and E is the applied
electric field. This approach leads to metastable states:
For a fixed electric field, there exist several states which
are close in energy, but separated in configuration space
by potential barriers. ' The corresponding static phase
configurations, gati;(x), tend to differ from one another by
containing of 2m phase slips. The distribution of barrier

0
0 0.3x&0 ~ 0.6x10 ~ 0.9x10 ~ 2w

~ 1

1.6 x10-4-

0.8 x 10

-4x10 '

-2x10 6

b
b
CV

Ct:
C)

CP

0
~~

12

in
(
—

)

0

'E6 20

FIG. 12. Lo~-frequency Rem(~) for TaS3 at T =120 K,
compared with Eqs. (16) aud (17). Equation (17) predicts that
co '[Reo(co)j'~ versus luego is linear, while if Eq. (16) is ap-
propriate, In[coi Reo(co) j is a linear function of co '. Neither of
these behaviors is observed.

FIG. 13. Low-frequency Reo(e) for 0-TaS3 at 120 K, com-
pared with the prediction of the modified Mott-Berezhinskii
1am, considering strong Cou1omb interactions, Eq. (19').
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heights between the various p; extends ta zero, and there-

fore large local responses to the applied low-frequency
electric Geld are likely. The models predict a cusp in the
dielectric constant, and

e(co) =e(co=0)—
i

co
i

(21)

In a one-dimensional mode-coupling calculation,
a'= 2,

i' while a three-dimensional treatment of the de-

pinnin~ as a dynamical critical phenomenon gives
a'= 1. 5 The experimental data (Fig. 6) may be consistent
with a finite cusp with a'& I; however, even below 100
Hz the measured e(to} is continuing to diverge with de
creas1ng co.

Metastable states and relaxation effects due to transi-
tions are also considered in the single-domain dynamics
approach. While the high-frequency response obtained
is similar to models which take the internal deformations
into account, the low-frequency behavior has not been
considered. The existence of metastable states, within the
framework of the model, suggests a cusplike behavior of
e(to~0). The zero-frequency cusp, predicted by these
calculations, was observed by Cava et al. in Ko 3MoO&.

"
The models therefore explain, at least qualitatively, our

experimental findings, and make a clear cannection be-

tween the enhanced low-frequency ac response and the ex-
istence of metastable states. In contrast to the nonuniver-
sal behaviors observed experimentally, they, however,
predict well-defined exponents which also depend on the
dimensionality of the system.

V. CONCLUSIONS

The principal experimental result uncovered in this in-
vestigation is the power-law frequency dependence of the
small-amplitude, low-frequency complex conductivity.
This behavior has been abserved in NbSei, orthorhombic
TaS3, and (TaSe4)21 and over a broad range of frequency
and at several widely differing temperatures. The power-
law behavior disagrees conspicuously with both the classi-
cal single-particle model and with the tunneling theory.

These results are similar to the dielectric behavior of
glasses and other random systems, and they demonstrate
that disorder plays an essential role in the low-frequency
dynamics of the pinned CDW mode. Disorder effects are
a natural consequence of pinning by random impurities.
Random impurity distribution, combined with the funda-
mental periodicity of the collective mode (which allows
phase adjustments and 2' phase slips}, leads to metastable
states and to a broad distributian of local pinning ener-
gies.

In order to calculate cr(to) beginning with the notion of
metastable states, the distribution of the states must be
known or guessed. Two general types of calculations have
been made. One type considers tunneling through poten-
tial barriers U~kT separating spatially distant levels.
The approach and results are similar to the localization
problem and give reasonable approximations to power-law
conductivity, a-~, a=0.9, in agreement with the data.
The other type considers excitation over short barriers,
U & kT, separating spatially adjacent configurations. The
resulting dielectric constant has a cusp at ~=0, in quali-

P(t} 1n(tie) . - (22)

Logarithmic time decays are also often observed in spin
glasses and other random systems and follow logically
from a distribution of barriers extending to zero. We an-
ticipate that the investigation of the dielectric relaxation
in the time domain, complementary to the frequency-
dependent response reported here, will be a fruitful area
for further studies.

tative agreement with measurements. In both cases, we
can form a picture of localized +2m phase slips (as
described by Littlewood ' and Matsukawa and Takaya-
ma ) shifting back and forth in response to the applied,
low-frequency electric field.

The qualitative agreement of our experimental results
with these model calculations indicates that electric-field-
induced shifts of the phase slips are essential in the overall
frequency-dependent response. Consequently, the ac con-
ductivity is also expected to be strongly dependent on the
amplitude of an ac driving field: Retr(to) and Imtr(to)
should increase for increasing U„. Investigation of the
response to pulsed electric fields indeed shows orders of
magnitude higher dielectric constant for fields close to
Ez.36's' The experimental results presented here are ob-
tained in the small ac signal limit, and these results were
found to be independent of U~ within experimental error.
Yet due to the broad distribution of local barrier heights,
extending down to zero, a true small signal limit does not
in principle exist.

We are aware of the disagreement between our experi-
mental findings and those made by others on the same or
on related systems. Specifically, Cava et al. ' and Ong
et al csee . a saturation in e(to) and a flattening off in
Rer(co) at low frequencies, but in the same frequency re-
gime where we still observe a diverging dielectric response
as shown in Fig. 6. The reason for this disagreement is
not clear at present. One source of disagreement lies in
the intrinsic nonlinearity of the response, and the observed
frequency-dependent conductivity depends on the ampli-
tude of the ac signal down (in principle} to very low am-
plitudes. The other possible source is the difference in the
measurement configuration employed: while in our stud-
ies the dc response was first subtracted, and the resulting
signal was analyzed, in studies conducted by others the
full response was analyzed, and the dc part was subtracted
subsequently. If the signal processing electronics per-
forms an accurate Fourier analysis on the measured (non-
linear) response, then the two methods give identical re-
sults. However, widely different results may be obtained
by lock-in amplifiers, impedance bridges, and network
analyzers; depending on the particular method, these de-
vices handle the nonlinear signal. The detailed investiga-
tion af the nonlinear response may lead to a deeper under-

standing of the microscopic processes behind the giant
dielectric response of these materials.

Our results also have an intimate relation to the long-
time relaxation phenomena which occur following a
thermal quench or electric field pulse. ' Such relaxa-
tion effects in 0-TaSi are described by a time-dependent
polarization of the approximate form
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