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Theory of the exciton molecule bound to an isoelectronic impurity in Gap
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We present a theoretical calculation of the fine structure of an exciton molecule bound to a nitro-

gen center in GaP. The conduction-band structure is properly taken into account (except for the
camel s back effect) by using a combination of %'annier states and effective-mass states for the
center electron. The valence-band warping is included by using s-like and d-like effective-mass
states for the holes. Solving the one-exciton problem, we obtain a splitting of 0.78 meV of the J=2
and 1 levels due to the electron-hole exchange Coulomb interaction. Including the electron-hole ex-

change Coulomb interaction and the j-j coupling between holes in the exciton molecule gives a split-

ting of 0.20 meV for the lowest-lying states with total angular momenta J=0 and J=2. The re-

sults are in good agreement with experiment.

I. INTRODUCTION

It is well known that an isoelectronic impurity in a
semiconductor may bind an exciton. ' The mechanism for
such binding is commonly described as follows: An elec-
tron is trapped in the short-range isoelectronic potential of
the impurity and then binds a hole in the Coulomb field
resulting from the electron. ~ e Although such a descrip-
tion is useful for visualizing the problem it leads one to
suppose that an exciton will remain unbound unless the
electron itself may first be trapped. Actually, as has been
previously pointed out, 3 the picture is probably much
more complex and in some systems the electron by itself
may not even bind.

Often studied as an example of the isoelectronic impuri-
ty problem is GaP:N. Because of the complexity of the
binding mechanism, accurate first-principles calculations
of the electron and exciton binding energies are not avail-
able. Semiempirical calculations of the electron binding
energies in Ga-As-P alloys have proven successfuls and
are consistent with the picture that the electron by itself is
bound in GaP. Lacking a detailed calculation of the bind-

ing energy of the whole system, the electron binding ener-

gy is frequently taken to be the difference between the
bound-exciton energy and the free-exciton energy. Thus
in GaP, the electron binding energy is taken to be -8
meV (Refs. 5 and 6) given a total binding energy -28
meV (Ref. 9) and a free-exciton binding energy -20
meV. "

Recently, Masselink and Chang" have performed
theoretical calculations for the electronic structure of an
exciton bound to a nitrogen trap in GaP, taking into ac-
count for the first time the band structures for both parti-
cles and their mutoa& Coulomb interaction. They found
that the bare electron is bound by only 0.6 meV instead of
8 meV as usually quotai. Furthermore, their calculation
predicts the A-B splitting of the bound-exciton lumines-
cence in good agreement with the experimental data. '

It vvas shown via photoluminescence studies' that an
exciton molecule can brome bound to the nitrogen trap

in GaP. To our knowledge, no theoretical calculations on
the electronic structure of excitonic molecules bound to
isoelectronic traps in semiconductors have been reported.

In this paper, we report the first such theoretical calcu-
lation. We find that since the inner electron of the system
is very localized near the isoelectronic trap, the single ex-
citon bound to the trap behaves like a neutral acceptor
system. Hence, the exciton molecule bound to the trap
can be viewed as an acceptor —bound-exciton system
(A X) commonly observed in semiconductors. ' ' It is
well known that the j-j coupling of the two spin- —', holes

in AoX leads to a fine structure described by two states
with total angular momenta Jhh equal to 2 and 0.' The
Jhh

——2 states are further split into two states labeled by
I'3 and I s due to the crystal field. ' 's Such a j-j cou-
pling scheme also applies to the exciton molecule bound
to isoelectronic traps. Our present calculation is able to
predict the magnitude of the Jhh ——2 and Jhh ——0 splitting
and the value obtained is 0.20 meV, in fairly good agree-
ment with the experimental data (=0.17 meV). '

This paper is organized as follows: In Sec. II, we report
the details of the calculation on a single exciton bound to
the nitrogen trap in GaP, previously reported by two of us
(W.T.M. and Y.C.C.). In Sec. III we report the calcula-
tion on an excitonic molecule bound to the nitrogen trap
in GaP. In Sec. IV we set down our concluding remarks.

II. SINGI.E EXCITON BOUND TO AN
ISOELECTRONIC IMPURITY

In this section, we study the electronic structure of a
single exciton trapped to an isoelectronic impurity in
GaP. Part of the results obtained here has been summa-
rized previously in a letter. "

The Hamiltonian for a single exciton bound to an
isoelectronic trap is given by

Hp(1)+ V(1)+Ho(2)+u(1,2),
where Ho( 1) and Ho(2) are the individual Hamiltonians
for the electron and hole in the absence of each other and
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the nitrogen impurity, V(1) is a short-range potential at-
tractive to electrons, i and U(1,2) is the Coulomb interac-
tion between electron and hole. The interaction of the
hole with the isoelectronic impurity is probably repulsive
and is neglected in the present calculation. There also ex-

ists an exchange interaction between the electron and hole,
which vri11 be included 1ater.

+(rl r2} 0 {rl)eh (r2)X (2)

where g, and Pg' are the single-particle wave functions
for the electron and hole, respectively. X, denotes the
electron spinor and p, is the column index for the fourfold
hole state. In the spherical model, the hole is described by
a spin- —, particle, and p, = ——', , ——,', —,', and —,. Because
of the complicated nature of the valence band, the hole
state cannot be written as a simple product of a spatial
function and a spinor.

The electron wave function g, is described in terms of
linear combinations of Bloch states belonging to the first
conduction band, viz. ,

P,(r)= QF, (k)g,g(r),
k

(3)

where P,z(r) denotes the Bloch function of the conduction
band of GaP and the summation over k is restricted in
the first Brillouin zone. The possible mixing with the
valence bands and higher conduction bands is neglected.
It was found in a previous calculation that more than
90%o of the electron charge density is derived from the
conduction band. The expression (3} can be transformed
into the Wannier representation as

P, (r) = g F,(R)WR(r), (4)

where

8'R(r) = g e'" P,q(r),
k

R denotes lattice vectors, and F,(R) is just the Fourier
transform of F,(k).

To take full advantage of the short-ranged nature of the
isoelectronic potential and the small binding energy of the
isoelectronic trap, we rewrite it, (r) in a mixed representa-
tion as

y, (r)= +G,(R}e{g, ~R ~ )ZyR{r}
R

+ g C„+P„(k)y„(r), (5)

where in the first term the summation over R is truncated
at a short distance, R„and in the second term the en-
velope functions p„{k)are symmetric sums of three wave
packets localized at the three equivalent X minima (ignor-

A. Hartree-Pock approximatiom

We shall first study the two-particle wave function in
the self-consistent Hartree-Fock approximation (HFA)
and then examine the effect of correlation. Within the
HFA, the two-particle wave function of the system is
vvritten as

P„(k)= g P'„(k)
3 j=xyx

With

p„(k)=expj —[(k +ky)+(kg —ko) lp„]/4a J, (7b)

where ko is the distance in k space between I' and X, p„
are the anisotropy factors, and a„are Gaussian exponents
which determine the spread of the wave packet in k s ace.
For v=1, . . . , 5, we choose p„=l and a„=3( 8" s).
For v=6, . . . , 10 and v=11, . . . , 15, a„are repeated but
p, „are chosen to be ~8 and 8, respectively. We have used
the normalized units in which distance is measured in ef-
fective bohrs,

ao —— (0.529A) 23 A .
me

Note that the maximum spread in k s ace of the wave
packet used in our calculation is 24 along the [001]
direction and ~3 along the perpendicular directions.
Within these restricted regions surrounding the three X
minimum the band structure is approximately parabolic
and the effective-mass approximation can be used in the
evaluation of the kinetic energy. Thus, the basis wave
functions

P„(r)—= g P„(k)g,q(r)

shall be referred to as the effective-mass orbitals. In
terms of the shell Waimier orbitals and the effective-mass
orbitals, the electron wave function takes the final simple
form:

9 15

f,(r}= g G, (R, )W, (r)+ g C„p„(r) . (8)

Here, the coefficients G, (R, ) and C„are variational pa-
rameters to be determined by solving the self-consistent
Schrodinger equation for the electron.

The interactions between the shell Wannier orbitals,
~

W, }due to Ho(1) are given by

( ~3
~
~0(1) ) ~, }= yE, (k)+; (k) ~;(k),

where $V,(k)=(P,~~ W, ) and E,(k) is the dispersion
function for the conduction band. We find that 8;(k)
can be written in a closed form as

ing the camel's back in the conduction-band structure of
GaP). m is the number of trial basic functions (p„) used
in the calculation. By symmetry G, (R) only depends on

~

R
~

. Hence, the first term in (5) reduces to

g; &G,(R, )W, {r), where s denotes the shell number

(s =0 indicating the impurity site), s, is the cutoff for s
(s, =9 in the present calculation), R, is the shell radius,
and W, (r) is the "shell" Wannier orbital, defined as

W, (r }—= g 5a a WR(r) .
R

The envelope functions in the second term of the expan-
sion in (5) are chosen to be of the following form:
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W, {k)= [cos(l,k„a)cos(ni, ksa)cos(n, k,a)+5 terms],
6

(10)

TABLE I. Interaction parameters for fitting the conduction-
band dispersion of GaP. All values of V(R, ) are in eV.

Shell no.

where N, is the number of atoms belonging to the sth
shell, and l„ni„n, are the three principal indices for lat-
tice vectors R in the sth shell. For the first ten shells,
they are given by (l„m„n,) =(0,0,0), (0,1,1), (0,0,2),
(1,1,2), (0,2,2,), (0,1,3), (2,2,2), (1,2,3), (0,0,4), (1,1,4), and
(0,3,3}. The remaining five tei~s in {10)are obtained by
permutation of (k„k„,k, ) in the first tea~i.

The conduction-band dispersion E,(k) is given by

E,(k)= g V(R)e+'R,
R

where R runs over the lattice vectors and V(R) are ad-
justable parameters which only depend on the distance R.
If we truncate the summation in (11) at the s, th shell,
t en

0
1

3

5
6
7
8
9

10

orbitals is given by

1.5377
0.01048

—0.04404
0.023 99

—0.099 67
0.00494
0.00997
0.01367
0.00022

—0.00636
—0.0707

E,(k)= g V(Z, )W, (k). (12)
& P„ I

H (1)
I w, & =~3 y E,(k)P'„(k)w, (k), (14)

The parameters V(R) are determined by fitting (12) to
the dispersion curve obtained by an emperical pseudopo-
tential method. ' However, the transverse effective mass
at the X point of the band structure is fit to the experi-
mental value. 's The q~mt'ty of the fit is demonstrated in
Fig. 1, and the parameters V(R, ) which give the best fit
are listed in Table I. Using the expression (12), the matrix
elements in (9) can be rewritten as

W IHQ(1) I
W & X y V( IR R I )Sj( a (13)

where R is any lattice vector belonging to the sth shell.
To calculate the matrix elements of Hp(l} between the

effective mass orbitals, we take E,(k) =A /2ni, '[k
+m,'/nii'(k, —kp } ] for the z valley where mi', the long-
itudinal effective mass, is taken to be Sm,'.'9 (This ig-
nores the existence of the camel's back structure, but gives
the correct overall curvature of the conduction band near
the Xpoints. )

The interaction between the effective-mass and Wannier

which can alsa be performed analytically given (7) and
(12). Thus, for the electran, the conduction-band struc-
ture (except for the camel's back) has been included for
the Wannier orbitals exactly and for the effective-mass or-
bitals to the extent that the band is parabolic at its
HllmmQBl.

Since the impurity potential is very localized in real
space we take V(1}=Vp

I
Wp&& Wp I+ V)

I
Wi && Wi I.

In our calculation we have Vi ——0 and adjust Vp to bind
the exciton by the observed energy. Allowing Vi to be as
large as Vp/4 does not alter the results except for slightly
shifting some of the electronic wave function from

I Wp &

to
I Wi &. (Faulkner predicted that when included prop-

erly, Vi -0.01Vp.)
Because the effective-mass orbitals are not orthogonal

to the Wampler orbitals, the overlap between them also
needs to be evaluated. We abtain

&P„I w, &=~3/P'„(k. )w, (k) . (15)

Furthermore, far the impurity potential sandwiched be-
tween two effective-mass orbitals, we have

&P. I v(1) IP.&=&P. I w. & V.& w. IP&&

+&p. I w, &v, &w, I p, &.

For the interaction between the effective mass and Wan-
nier orbitals, we have

I

0
UJ

-2-
L

Wannier
——Pseudopotent ial

X K

&P„I V(1)
I W, & =

& P„ I W() & Vp5p, + &P„ I Wi & Yi 5(, .

The hole envelope ~ave function is described in the
effective-mass approximation as a hnear combination of
eight s-like and eight d-like Gaussian orbitals. The d-like
orbitals are included here to take into account the vrarping
of the valence band. We write

8
y(ga)(r) g [g(s)g(y)(r)+C(d)D(P)(r)]

FIG. 1. GaP band structure as obtained in the Waimier rep-
resentation and by a pseudopotential method.
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S'„"'(r)=e ttt'„"o'(r) & (fl),

D'„"'(r)=r'e v' g«p m»i~«)4'o
(1 b)

Here, IIt'„~c'(r) is the zone-center valence-band Bloch state
with spin component p. Fi (0) is the second-order
spherical harmonic function, and C(p;rn) is the couphng
coefficient defined in Table IH of Ref. 20. The eight ex-

ponents used in the calculation are 3(v 8)" s, v=1—8.
The matrix elements of Ho(2) between the hole basis

states are calculated following the method of Baldereschi
and I lpRA.

The Coulomb interaction is given by

lq'PIP

~&2«}2

where the dielectric screening function takes the form 1

4

e(r)
1 y@

—IT/

E -20
LU

CQ
0- -30
la&

LLJ

b

4 $o

4.

-4o

-e,. I I I I I I

—I.I2 —I.I 4 —l.l6 -I.I8
ISOELECTRONIC POTENTIAl Vo {eV)

6
-I.20

FIG. 2. Ground-state energies of an electron bound to an
isoelectronic trap in GaP with and without the presence of a
hole plotted as functions of potential Vo. Also plotted as a
function of Vo is the hole wave-function squared at r=O,

I
FII(0)

I
(dashed). The vertical dashed line indicates the posi-

tion of the observed photoluminescence data for GaP:N.

Because the dielectric constant ec used here (11.02) (Ref.
23} is different from that in Ref. 22, we have readjusted
the values of o„ such that e(q) agrees with the result of
Ref. 24. For ease in computation, we also fit the
above expression by a four-term Gaussian func-

2

tion Q„,C„e with C„=(1,5.512,5.508,—1) and a„
= (0,20.66,13.02,20.41) A ~. The Coulomb interaction
between effective mass orbitals can then be carried out
analytically. The evaluation of the Coulomb interaction
involving Wannier orbitals must be performed with some
approximation. For simplicity, we treat the electron in a
Wannier orbital centered at R as a point charge there.
This is a good approximation, considering the localized
character of a Wannier state compared with the charge
distribution in the hole.

To find the self-consistent electron and hole wave func-
tions itr, and fs, we solve the secular equation

(18)

iteratively using the Rayleigh-Ritz variational method in
aur basis. ' Using this technique, we calculate both the
electron and exciton binding energies as functians of Vtt.
The results along with the localization of the hole are
shown in Fig. 2. When Vc ———1.147 eV, the calculated
system energy coincides mth the experimental binding en-

ergy of 28.0 meV. This same trap potential binds an elec-
tron by 0.6 meV. This is much shallower than the value
of 8 meV, quoted in previous calculations, but also
much more reasonable. Our calculations also show that
for some values af Vc which do not bind the electron, the
exciton is still bound deeper than the 20 meV of a free ex-
citon. Conceivably there are physical systems (perhaps
GSAS) 111 which this sltuatloll is realized.

Figure 3 depicts the electron's envelope wave function
in k space [denoted F,(k)], with and without the hole
along the [100] direction. Also included is the result
without the hole obtained by using the Green's-function
method, vvhich can be sho~n to be proportional to
1/E, (k) —E. Good agreement is found between our

I.5

I.O

0

)ti -0.5
O

-I.O

-I.5

-2.0

-2.5
0 0.2 0.4 0.6 0.&

wave vector, k(loal( rr }

I.O

FICx. 3. Electron envelope wave function along the [100]
direction in k space of GaP:N with and without the hole.

method and the Green's-function method. The Green's-
function method, however, does not apply to the case with
hole, due to the presence of the long-range interaction.
For all cases, we find that the electron is fairly localized
near X. The X-valley peaks contain approximately 80%
and 95% of the total electronic charge for the cases af
with and withaut a hole. The effect of including the hole
in the calculation, then, is to further locahze the electron
in real space snd thereby delocalize it in k space.
Transforming the wave function into real space shows
that with a hole present, about 16% of the electronic
charge lies within the first shell surrounding the impurity
site. Without the hole, about 4% lies within the first
shell.

The Hamiltonian used in calculating the binding energy
of the exciton [Eq. (1)] does not account for the presence
of two hnes in the recombination radiation of bound exci-
tons. This splitting is apparently caused by an electron-
hole exchange term which depends upon the total angular
momentum J of the exciton. Since the angular momen-

tum of the hole is —,
'

and that of the electron is —,', the ex-

citon may have either J=2 or J= 1. Because of the rela-
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tively small size of the splitting (0.8 meV) (Ref. 12) com-
pared to the binding energy (28 meV), the exchange in-
teriiction energy may be calcutated using first~rder per-
tuxtmtion theory.

Let A& be the A-8 splitting due to the exchange in-
teraction energy difference between the J=1 and J=2
bound exciton states. We find (see Appendix A for
derivation)

dE= , J —i Ei, (0) i

where

(19a)

(19b)

and Eq(0) is the hole envelope function evaluated at r=0.
( p,q) denotes the Ixtnduction-band Bloch state with wave

vector k and ( tI),a) the valence-band Bloch state at k =0.
Both ( p, t, ) and

~
tA),e) are expanded in 137 plane waves

using the empirical pseudopotential method. s To perform
the integration over k we use the ten-special-point tech-
nique. From our bound-exciton calculation, we find

( Fq(0)
~

=3.0X10 A . Using the pseudopotential of
Cohen and Bergstresser, we find that J =1.95XIOs
meV A . (In the previous report" we used a different ap-
proximation for the k integration and obtained 1.8X 104

meVA. ) Thus &&=0.78 meV. This is in excellent
agreement with the measured value of 0.8 meV. For caen-
parison, in a free exciton we find +&=0.2 meV.

B. Correlation effect

Next, we examine the correlation effect. For simplicity,
we use a spherical effective-mass approximation (EMA)
with constant dielectric screening. We further model the
isoelectric potential by a short-range potential of the form

2

V(rt )=—Uoe

where Uo is an empirical constant adjusted such that the
resulting total energy matches the experimental value. a
controls the range of the potential, and is related to the
core ~&us (r, ) by a= 1/r .

The EMA Hamiltonian for the system is (in norma ized
units)

—VI —oV2+ V(ri }—2 2

I
I

0 . I~t~

2- . &r~
X o~

Q~~~~ eRp~ ~~ I

It ~ ~-04-
~ ~ ~ ~

~ -0.6-
T~-08-

LU t0
O

MOS

Core
O

correct limiting form for the total wave function when the
electron potential becomes very shallow. The variational
principle ensures that the results obtained from combining
the two sets will be at least as good as from either set indi-
vidually. The parameters, b„, are taken to be 5" ' where
n =1, . . . , 9, to cover a large physical range. A conver-
gence test by including more basis states indicates that the
present basis set is sufficient.

The bound-exciton binding energy is calculated not only
in the combined basis as described, but also in the smaller
set-1 and set-2 bases separately as functions of Uo. It
should be noted that using set 1 alone will yield a total en-
ergy essentiaHy equivalent to (but slightly lower than) that
obtained in a Hartree-Fock calculation.

Using the same values of Uo and a, the related problem
of an electron bound to the impurity is also solved. For
this problem, H =—VI+ V(r I) in normalized units using
the same V(rt) .as before. We take g, =Q„ IC„p„(rt)
with p„(rt) as defined for the exciton problem. The
ground-state eigenvalues of all four calculations are
graphed as functions of Uo (see Fig. 4).

For application to Gap:N, we take o =1.0 (Refs. 25
and 26) and a such that the potential core radius (r, )=2
A. The free-exciton binding energy (=1 Ry'/1+ o}has
been measured to be 20.5 meV (Ref. 10) which implies 1

Ry =41 meV. Further-more, since eo-11.02, we obtain
ao =15 A. Thus since r, = 1/a, we take a =50.

As expect~ we see that the combined basis predicts a
lower energy and is thus superio to either of the separate
bases. Furthel~ore, we note that the set-2 basis predicts
that the bound-exciton binding energy is the sum of the

where cr=rrt, /mq is the electron to hole effective-mass
ratio; —Vi and —o V2 describe the kinetic energies for the
electron and hole.

The two-particle wave function of the system, @rt,r2),
is expiisised in ter~s of two sets of basis functions. The
first set contains single-particle product functions of the
GRQss18n fQrBl

P„(rt)P (r2) ~e

The second set contains the product of an electron wave
function and an exciton wave function of the form

The inclusion of this set is essnitial since if, gives the

0— I~GoP:N
I

I
I
I

t I Il I t I I

f22 IR) l38 f46 f54
Depth of Isoelectronic Potential U {Ry~)

FIG. 4. Ground-state energies of an electron {dashed-dotted}
and exciton bound to an isoelectronic trap calculated with set- l
basis {dotted}, set-2 basis (dashed}, and combined basis (solid},
plotted as functions of the depth of the isoelectronic potential
( Up) for mass ratio o'= 1 and core radius {r,)=1/V 50.
The vertical dashed lines indicate the positions where the ob-
served photol~~i~esnmce datum for Gap:N is fitted. The da-
tum is taken from Ref. 7.
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electron binding energy and the free-exciton binding ener-

gy [E =(1+o) ']. This, in fact can be proved rigorous-
ly when only s-like electron and exciton product functions
are used.

When the potential is shallow, the combined basis solu-
tion converges to the free-exciton (or set-2) solution, but
as the exciton homes more spatially localized, the differ-
ence between the combined basis and set-2 basis solutions
becomes greater. We shall refer to this energy difference
as the exciton localization energy. The difference between
the combined basis and set-1 basis solutions is attributed
to the correlation effect. It can be seen from this figure
that as long as the electron alone is bound, the correlation
effect contributes to less than 6% of the total energy. A
similar consideration of the electron-hole correlation ef-
fect has recently been published.

III. EXCITONIC MOLECULE SOUND
TO AN ISOELECTRONIC IMPURITY

In this section, we study the electronic structure of an
excitonic molecule bound to an isoelectronic impurity in
GaP. The Hamiltonian of the system is given by

2 4
H= g Ho«'}+ g V(i)+ g o(i,j), (21)

p(ri, r2, r3, r4) =1(«(ri, r2)gaa(r3, r4),

where g» is the two-electron wave function and P» is the
two-hole wave function. In the present calculation, we
neglect the electron-hole correlation effect on the total
wave function.

The total Hamiltonian of the four-particle system can
be rewritten as

where Ho(i} is the individual Hamiltonian for the ith par-
ticle in the absence of the three other particles and the ni-
trogen impurity, V(i) is the short-range potential attrac-
tive to electrons, and u (i,j) is the Coulomb interaction be-
tween the ith and jth particles. Here, the center electron
is labeled by 1, the outer electron by 2, and the two holes
by 3 and 4. The calculation is done in an "unrestricted"
Hartree-Fock approximation (UHFA). 2s

The four-particle wave function of the system is written
as

which can be rewritten as

&|tao
litany&&it

IH If &+&itaa IHaa I@a&&4« lit &

+&@,~» IH: I @.@»&=«O. I @,&&@» I Vaa &

(24}

The outer-electron wave function is chosen to be of the
form

lt2(r) = g F2(k)f,q(r),
k

where t/r, a(r) is the conduction-band Bloch state at k, and
F2(k) (the envelope function) is given by

(25b)
3 J

where j labels the three equivalent minima and E](k) has
the Fourier transform in real space:

b3~2 a r
Ff(r) = e 'e (25c)

where
I k~ I

=ko. b is a variational parameter obtained
by minimizing the total energy of the system.

The spatial part of the two-electron wave function is
written as

1- g& [ro(riW'2(r2)+it2(rl)r (r2)]&2

where r denotes the basis states for the inner electron,
which consist of the shell Warmier orbitals W, (r) and the
effective-mass orbitals p„(r}. The spin part of the two-
electron state is given by

1
[a(1)P(2)-a(2)P(1)]

(a spin singlet), where a and P are up and down spinors.
We shall omit writing the spinors explicitly in the rest of
the paper. The coefficients D in (26) are variational pa-
rameters to be determined by solving (24) self-consistently
for the four-particle system.

Using the definition of H» we can write

+=+ee ++hh +Heh
where

(22a) I
Ho(1)+ V(1)

I f..&

+&@ IU(12}I@ & (27)

and

2 2

H« ——g Ho(i)+u(1, 2)+ g V(i),
i=1 i=1

4

Haa = g Ho(i)+U(3, 4),
i=3

(22b)

(22c)

H,a ——U (1,3)+U(1,4}+u(2, 3)+u(2, 4), (22d}

Ho, U, and V being defined earlier in Sec. I. The total en-
ergy E is given by

&@IH I
it&=&it Vaa IH I 4,4»&=E&V-Aa

I 4 @aa&

(23)

where the symmetry of exchanging two electrons in P„
has been used. Using the expansion (26), we see that the
first tean in (27) contains matrix elements like
&r I Ho(1)+ v(1}

I r &, &42 I Ho(1)+ v(i)
I r.&,

& $2 I Ho(1)+ V(1 } I $2 &. All these matrix elements can be
evaluated in the same manner as discussed in Sec. I, if we
also use a ten-Gaussian expansion for the exponential
function in $2, i.e.,

-br 10 p 22—P'„b r
e ne

where the parameters C„and P„can be found in Ref. 29.
The mutual Coulomb interaction &P» I u(1,2)

I f
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can be written as the s~ of direct and exchange terms.
For the direct term, we have

&0» lv(1,»IW»&d;, —f XD y {r}'~, (r)d'r

(28)
a(here

~.(ri}=—f d'ri
I |t)3(ri) I'2

ri —ri

In all Coulomb-interaction matrix elements, we neglect
the vay small contributions due to intervalley scatterings.
In fact, we found that the correction arising by including
intervalley contributions to these matrix elements is much
less than 1%.

The two-hole wave function is given by

ggf(r3 I4) [1/leap (r3)gf'(r4)+g f '(r3)gg'(r4)],
2

2- -2br t
—2Ipr)= — (1—e ) 2b—e

rI
(29)

which is an effective potential for particle 1 due to the
outer electron. The expression is exact, if the intervalley
scattering terms are ignored (this is a very good approxi-
mation, since the envelope function of the outer electron
is sharply peaked at the three equivalent minima).

The expression (28) contains the following matrix ele-
ments:

(i) (W, lv, III;)

2b, s=s'=0

(ii) (p„(V, )
p&)= f d rp„'(r)p&(r)V, (r),

(iii) &l4I I'.
I
~s&=v.(&.)&lkl ~~&

(30)

The exchange Coulomb interactions are more compli-
cated since we cannot use the effective potential, but still
we can handle them properly by using the ten-Gaussian
expansion for e ~ and by using the well-known formu-
18"

1 2 2exp —r
r vs. 1 —v 2

du

(1 u3)3/3
(31)

we obtain the following matrix elements:

(a} &~Rit'3I v(1,2) l(M)'3~R &

a R~R,

2b I (itlz I WR ) I

3 if R=R
L

(b) & P„*g
I u(1,2}

I
gy„')

f d rid rz[PPrl)l'[it)3«3)1'v(ri, rz)

XP~(r3)gz(r, )

(c) & W'Wz I v(»» I WK&= & ~* I W~& f d rP„(r)[gz(r}]'

2

lr —R, l

(3,4)
I

(9(' (33)

The first term on the right-hand side of (33} contains
single-particle matrix elements for the hole, which are
evaluated in the same way as discussed in Sec. II. The
Coulomb-interaction term (fsl I

u(3, 4)
I Pss ) contains

the following matrix elements, (ss I v
I
ss ), (dd

I
v

I
dd ),

(sd lu lsd), and (ss lv ldd). Here, s and d represent
the s-like and d-like effective-mass basis orbitals S„'"' and
D'„"', respectively, as defined in (16b). Explicit expres-
sions of these matrix elements are given in Appendix C.

The remaining part of the total Hamiltonian H is the
electron-hole Coulomb interaction H,s, namely

H,s =u (1,3)+u(1,4)+u(2, 3)+u(2, 4) .

The first two parts u(1,3) and v(1,4) are dealt with just as
in the case of the one-exciton problem in Sec. II. For the
last two parts u(2, 3) and u(2,4} we use the effective poten-
tial defined earlier in this section. The dielectric con-
stant has been taken to be q independent, since including
this effect only augments the accuracy of the calculation
by a few percent.

The self-consistent procedure for determining the ex-
paiision coefficients D~ in (26) and C„"(C „'"), i =s,d, in
(32) is briefly described below. First, the two-electron
state it'» is solved in the absence of the two holes with a
trial value b for describing the outer electron. Then the
two-hole state tarsi~ is obtained by solving

(34)

H= (P

IHIP'(

) —.
To solve (34) for ~„we first "freeze" the single-particle
wave fun«ion fg (r3) in (32). This input wave function is

where g'" and fg ' are single-particle hole wave func-
tions as defined in (16), with new coefficients C„"' (C'„")
and C'„+ (C'„') to be determined by solving (24) for the
four-particle system self-consistently. In the absence of
j-j coupling between the two holes, all 16 possible two-

hole wave functions given by (32) will yield the same
ground-state energy. The j-j coupling which we shall in-
clude later will give rise to a fine structure splitting be-

tween the energies of two-hole wave functions having de-

finite total spin angular momentum, Jss ——0 and 2.
The expectation value of the two-hole Hamiltonian is

given by

&4sa IHas I Ass &=&@as IHo(3)+Ho(4)1@ca &
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(35)

0 tain yb
'

ed b solving the three-particle (two electrons and
h 1 ) Schrodinger equation self-consistent y.one oe c r" i

inco orated viah ffect of the second electron can be incorptee ec o
the effective potential as given in (29), e -p

bl
'

more complicated than the single-exciton
problem dealt with in Sec. II. Given tins inpu

g"'( ) ~. (34) can be cast into a generalizedfunction gg" (r3, ~~.
beineigenvalue pro eml blem with the eigenvectors ing

4

Qnce ~ ~& '(r4) is found, the previous pro-
cedure is iterated by exchanging the role of fg an

T e trial value b foruni se-t 1 lf-consistency is reached. T e t
'

'
n is thendescribing e'b' th second electron wave functio

varied to minimize eth total energy of the whole four-
particle system.

The total energy E as a function of the variationa pa-
rameter b is plott in ig.1 ed

'
Fig. 5. We find that the optimized

f b
'

0 49 bohr ' and the minimized total energyvalue o is
4 ~

twois E=—44.6 meV. The radial charge densities of the w
holes and the outer electron are shown in Fig. 6.

I h t tal Hamiltonian H written at the beginning onte 0
this section wo et o terms have been omitted, nam y,
terms accounting for the j-j coupling of the two spin- —',

1 d the electron-hale exchange term. The electron-

all low-lying states with zero two-electron tota spin. A
derivation is ven in ppederivat'

' ' '
A pendix B. The contribution of

method similar to thethe j-j coupling is calculated with a me o
one used by an. eb P W write the single-hole wave func-
tions Pg'(r) in (32) as

pg'(r) =f(r)p'„~0'(r) &00(&)

+g(r) g C(p, m)Fi~(Q)P„'~0 '(r),

0.6

0.5

Pp Q4
Cl

- Like Orbitals Contributions
r 2nd Electron and the Holes

1st Hole

* - ~ ~ * 2nd Electron
———2nd Hole

0. 1

0'
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16

Q. (0

0.08
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(b)

14 16

FIG. 6. Radial charge densities of the two holes and the
outer electron.

where

2

f(r)= gC„"e ( ) Th following Pan's calculation, we obtain the pj
t e J=O andsplitting (the energy separation between the J=

(d) ~vg(r)=r QC„e
r (5E =— f f(r )g(r3) f(r )g(r )jj zs 0 0 r

'(r) in (32) is similarly written in terms os ofJ' r) and )& r&r4dr&dr4 + . (36)

-56—
tD

E -Sa-

0) -40—
C:

IJJ

0 0.1 0.2 0.5 0.4 Q.5 0.6 0.
b(inverse effective bohrs)

FIG. 5. Ground-state energy of the excitoiton molecule bound
G P as a function of the inverse radiuto a nitrogen impunty m a as a

of the second electron.

where. represents the exchange term, r) ——max r3, r4,
and r& ——min r3, r&.

'
( r ). The exchange term in (36) is in the

form as the direct term except that g an g are
switched. Details of the evaluation of the integrals in (

are discussed in Appendix D.
Using the wave function Pi,s obtained by solving the

four-particle system self-consistent y,

the ground state of the exciton molecule bound to a nitro-' d t split into three states labeled I ~,

d I . The I state is associated with J=0. The 3
and I 5 states are associated with J=2. The sp

'
g

h I d I states is 0.19 meV, which is due to
the crystal field. In our calculation, the crystal-field e-
fect is not inc u . us,

'
eluded. Thus, our predicted value for AEJ J

ration betweens ou eoh ld be compared with the energy separation tween
the I ~ state and the center of gravity of the
states which is observed to be 0.17 meV. ' Hence, our7
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theoretical prediction of 0.20 meV is in reasonably good
agreetnent with the experimental data.

APPENDIX A: DERIVATION FOR THE A-8
SPLIT-j.ING

The exchange energy for the exciton with total angular
momentum J is given by

E,„,h(J)= &sPg(ri, r2) I V,„ I 4g(r2, ri)), (Al)
We have studied the electronic structure of an exciton

molecule bound to a nitrogen trap in GaP. We found that
this system has an electronic structure similar to that of
an acceptor —bound-exciton (A X), because the inner elec-
tron is very localized at the nitrogen center, forming a
negatively charged center analogous to an acceptor impur-
ity. The j-j coupling mechanism of A OX in GaP was not
well understood, because of the complexity caused by the
comparable magnitudes of the electron-hole exchange in-
teraction, the j-j splitting, and the crystal-field splitting.
It turns out that the j-j coupling of the exciton molecule
bound to the nitrogen center in GaP is less ambiguous, be-
cause of the pairing of the two electrons in the law-lying
states which leads to the same electron-hole exchange in-
teraction for both Jhh ——0 and Jhh ——2 states. Further-
more, because the hales are mare wenkly bound to the
charged nitrogen center than to an acceptor impurity as in
A X, the effective-mass approximation used to describe
the hole wave functions is better justified in the present
calculation than in previaus calculations for A X. It is
thus not surprising that we are able to obtain a j-j split-
ting based on the effective-mass approximation in reason-
able agreement with the experimental data.
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V = Vspin V (ri2 )

where V,(r)=e /e(r)r and

V.„.= I th~. &«ht. I+ I tht. &&~ht. I

—
I tht. &&baht, I

—
I tht. &&tht. I

.

(A2)

(A3)

The ket
I th t, ), for example, denotes a state with the

electron having m, =+—,
' and the hole having m, = ——,'.

The exciton is composed of a spin- —,
' hole and a spin--,'

electron. Coupling angular momenta, we see the total an-
gular momentum may be either J=2 or J=1. Consider
first the case of J= i,mq ——0. (The mq ——0 states are de-
generate with the mq ——0 state by symmetry. ) From the
Clebsch-Gordnn coefficient tables we see that

where the latter kets represent
I m~ far valence-band hole,

m, for electron). Again from the Clebsch-Gordan coeffi-
cient tables, we see that in order to couple the I.=1
valence band with the spin--,' hole to form a j=—', hole,

I 7 ~s&=V'I/3
I

1 th ts&+V'2/310. th 4&

I
--,', t, ) =v'2/3 IO, », t, &+v'1/3I -i,», t, & .

(A5)

In this notation the ket is defined by I mi for the valence
bimd, m, for the hole, m, for the electron).

Substituting Eqs. (A4) and (A5) into Eq. (Al), we ob-
tain

where smsq(ri, r2) is the total wave function for the exciton
with ri and r2 describing the positions of the electron and
hole, respectively. The exchange potential V,„ is given
by31

&'p~=i
I Vsx I

'PJ = i & = s & 1
I

~r I
1 & & 4 ~s I Vsp~ I th ts &+ s &o

I Vr I o& & th 4 I Vspin I th ~s &

—
3 &01 V. IO&&thts I Vspinl tht, &

——,'&oI V, IO&&&ht, I Vsp, nl ah@&

+T&OI Vr IO&«hts I Vspml thts&+7& —ll Vr I
—1&«hts I Vspinl th&. &

=-,'&Ol V, IO) . (A6)

Similarly for J=2 we have

c, ,= l2, 0) =v'1/2I l, ih, i, )+v'1/3 Io, th, i, )

+v'1/310 &h ts&+v'1/6l —»th ts&
(A7)

Substituting Eq. (A7) into Eq. (Al) yields

&@z=z I v.* I @&=2&=o .
Therefore, the exchange splitting &R is obtained by

~E=+exch(~ =1) Ecxch(J =2)
=-', &ol V„ IO) .

l

Here,

g + (ks ) I hack g+h(kh )
I 4.h„&

k k~

where
I p,h) and

I p„h) are the Bloch functions for the
conduction band and the mi ——0 valence band at k.
E,(k, ) and Ej,(kh) are the electron and hole envelope
functions in k space. Since the hole envelope function,
Eh{kh) is sharply peaked at kh ——0, we may approximate

I P,h„) in Eq. {A9)by I P„e). Therefore

10&=X+.«) Ik.hk. o& X~h(kh) .
k k~

Then,
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(0) );)0)=))a(o)I'(g ( &)Aak.o, g . "z()0() i,)
k1 k2

= IFs(0}I'g IF.(k}I'&4.)Ao i V. I &.o(t}.i &
(A10)

where Fs(0} is the hole envelope function in real space
evaluated at r=(}. We finally have AR=

$ ~
F/, (0)

~
J „,

where

J —= g IF,«) I'&4ci4.o I V.
I d.a4, i &

APPENDIX B: ELECTRON-HOLE EXCHANGE
INTERACTION IN THE EXCITON MOLECULE

In this appendix, we show that the electron-hole ex-

change interactions are the same for the low-lying exciton

molecule states in which the two-electron total spin (J„)
is zero. The two-hole total spin angular momenta (Jqq)
of these states are 0 and 2. The product states

~

J„=O)
~
Jsq, mq) are eigenstates of the four-particle to-

tal spin angular momentum J, =J«+ Jss ', thus, the
electron-hole exchange interaction will not mix these
states. Hence, we only have to evaluate the diagonal
terms for J~, ——0 and 2.

By symmetry, the states of different mj but the same

Jss should have the same electron-hole exchange interac-
tion. Therefore, we only have to consider the states

Jss ——O, mz ——0) and
I Jss =2,mj ——0). We write

6~=1J«=0& I
Jss'0&= (ti&i —»tz) g«Jss 0 m) —mj) I i.mj & I ~

—mJ & ~

1

Nlj
(81)

where mJ =——,', ——,', —,',—', and C(J~„O,mj, —mj) are Clebsch-Gordan coefficients for the coupling —,
' + —,

' =Jss. ti (li)
and tz (J,z) denote the electron spinors for particles 1 and 2. We now evaluate the expectation values of V„(1,3) in these

states. We have

(@q ( V,„(1,3) (4g )=—,
' g ((time ( V,„(time)+(firn) (

V
( time))5

1
PS), NI)

XC(J~„O;m~, —m&)C(Jss, O;m&, —mj )

= —,
' g ((timj

~
&,„~ tim~)+ (limj

~
V,„(Jim ) ), (82)

where (tim~
~

V,„~ tim~) is the electron-hole exchange
interaction in the product state

~
1i )

~

—,,mj ). In deriving

(82), we have used the fact that

[ C(J„„,O;m, , —mj )
(

'=
4

for all m~ and Jqq
——0,2.

Using the expansion

I 2,m, )= X «z, m, ;m, ms} I
l, mi & I 2,ms &

and the definition of V,„(1,3}in (A2) and (A3), we obtain

( mgmJ
/

V,„/ mgmj ) =G(mg, m))(0
/

V,
/
0), (83}

where m, = —,
' and ——,

' for t, and ti, (0~ V„~ 0) is de-

fined in the same manner as in (A10), and the coefficients

6 (m„m~} are given in Table II. In deriving (83), we have

TABLE II. Coefficients G(m„m&) for the electron-hole ex-
change interaction in low-lying exciton molecule states arith
J =0.

2
3

1

3

I

used the relation (1
J V,

(
1)=( —1

[ V„( —1)
= &o

I ~r I
0&. Substituting (83}into (82},we obtain

&@s„I V-(I»)
I

C'~ & =-,' &0

f«both Jjg =0 and 2. By symmetry, one can show that

(4J [ V,„(2,3)[CJ ) (@j (
V (24)(@g )

=&+, iv„(1,4}ie, &

=(4g„„/ V,„(1,3) f4J„„),

and the total electron-hole exchange interaction in the
low-lying states (with J =0}is 2(0

( V,
~

0).

APPENDIX C: COULOMB INTERACTION
BE+vfEEN r%'0 HOLES

The hole-hole interaction matrix elements for Slater-
type orbitals has previously been discussed in Ref. 20 (Ap-
pendix A}. It was shown that the dominating contribu-
tions come from the diagonal terms (pi ——p'i and (M2

——pz).
These terms include (ss (u )ss), (dd (u ~dd),
(sd

)
u

)
sd ) (or (ds

)
u

(
ds )}, and (ss

(
u [ dd ), where s

and d denote the s-like and d-like effective-mass basis or-
bitals S„'"' and D'„"', respectively. For the first three
terms (/, =1; and l2 —12) it can be shown that
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—(a)+a) )r i ~2 -~a2+a)r2 3(l]12 ~u ~l]lz)= r] e V(r] —r2)r2 e d r]d r2

q dq
42] (a]+a] 'q}~(q)421 (az+a2 q)

1 (2 )

where

P](a;q)= f r e "e'q'd r

(Cl)

' 3/2

1, E=O

l=23
-I —q'/4 X

15 q q 1 4
4 '4 +4

(C2}

and

u(q)=—g S„
v=1 I +0'v

Note that if the q dependence in the dielectric screening is ignored, the integral in (Cl) can be performed analytically.
For (ss

~
u ~dd}, we have

(ss
~

u ~dd) = —,
' f r]e ' ' 'V(r] —r2}rqe ' ' 'Yoo(Q])Yzo(Q]}Yoo(Qz)Y2o(Q2)d r]d rz

q dq2

2 CXIQ),'ig 2 CK2+A2'g V g
(2n )3

(C3)

where
' 3/2

Pz(a;q)=—(q /4a ) — ea

APPENDIX D: j-j COUPLING OF TWO SPIN- ~ HOLES

-(a„+a„)r
&

I(v]vzv]vz)= f d r]d r2r]e
~&2

-(a, +a, )r&

Xrze ' ' Fzo(Q])F2o(Qz) .
(D3}

The integral can be easily done if we use the transforma-
tion

From (36}and using the expansion
I

1 1
]+] Yim(Q]) Y]m(Q2)

]m + r)
we can write

bE/ 1
—

3 g C„"O','C„"'O'",'I(v]vzvIv2)+
5m

vi v v2 v

I I
V),V2

(Dl)

d q 41r ]q ~]2
~

~
3

(2n) q

r Yzo(Q)=&5/16m(3z r) . —

We arrive at the result

3n'~
1(v]vzv'] vz )= [aa'(a+a')] (D4)

( . . represents the exchange term), where

(D2) where a =a„+a„and a'=—a& +a, . The exchange term"Z v) v2'

in (D2) is similarly obtained.
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