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Convergent scheme for light scattering from an arbitrary deep metallic grating
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The justification for continuing the Rayleigh expansion to the grating s surface (the Rayleigh hy-

pothesis) and its convergence properties are considered. A class of gratings for which the Rayleigh

hypothesis is exact is identified, a prime example of which is the sinusoidal grating. Based on the

exposure of the origin for the Rayleigh expansion limited convergence, a modified expansion is in-

troduced, dubbed the dressed Rayleigh expansion. This new expansion has presumably excellent

convergence properties as explicitly demonstrated for the sinusoidal grating. The dimensionality E
of the matrix which must be inverted for a sinusoidal grating of arbitrary depth g and periodicity d

is found to be N-Smg/d.

I. INTRODUCTION

Light scattering from a grating is hardly a new

phenomenon, and consequently the literature on the sub-

ject is enormous. ' However, it is important to realize
that, huTing a few recent exceptions, the majority of the
literature deals with very shallow gratings, i.e., when the
ratio between the height g and periodicity d is g/d «1.
Shallow gratings are reahzed in many important physical
situations, such as optical-refraction gratings, holograms,
gratings induced by surface phonons, i and a large class of
volume gratings.

Studies of light scattering from deep gratings, i.e., when

g/d =1 or larger, are relatively recent. s " The motiva-
tion to consider this regime stems in part from the advent
of new fabrication capabilities. By using holographic
techniques, 'z or laser-induced deposition from a volatile
organometalhc gas, ' it is possible to form gratings with

g/d & 1. Another reason for the interest in deep gratings
is the expected new qggghbtative features. When p«1,
where hereafter we use P=2srg/d as the natural parame-
ter, the surface can exchange only to a limited degree
surface-parallel momentum q~~ta kg ——2ir/d with the
incidsnt light. Ctosattosntty, for shallow gratings it is
sufficient to consider a few Bragg reflections in addition
to the dominating specularly reflected and transmitted
waves. For deep gratings (p»1}, the situation is quite
different. Here the grating can efficiently exchange a
large nutnber of quanta kG with the incident light.
Therefore, the reflected wave, for example, is made up of
many Bragg reflections, strongly interfering with each
other and with the specularly reflected wave. Thus, un-
like the p«1 regime, when p»1 the identity of the
specular components and the individu~& Bragg reflections
is blurred and the reflected light acquires a new qugglita-

tive character.
The qualitative distinction between the p«1 and

p»1 regimes is reminiscent of the situation with regard
to band, stTUctllre in condcIlsed-matter phpsics. Um-

klapp scatterings play the role of Bragg reflections, and
the regimes of weak and strong periodic ionic potentials
are the counterparts of the shallow- and deep-grating re-

gimes, respectively. In keeping with this analogy, the
qgg~Jitative difference between light scattering from a grat-
ing and from a rough surface corresponds to the qughJita-

tive difference between electronic states in an ordered and
disorderd system. At the origin of this distinction is the

underlying symmetry: a discrete translational symmetry
in gratings {crystals) and none at all in rough surfaces
(disordered systems). Consequently the character of the
ensuing interference among the many reflected com-
ponents is fundamentally different.

Attempts to study theoretically the deep-grating regime
have encountered numerical convergence problems"
when g/d&0. 1. The associated literature'i'6' often
makes reference to two related issues which are at the
focus of this work: the validity of the Rayleigh hy-
pothesis and the convergence of the Rayleigh expansion.
The Rayleigh expansion' of the electromagnetic fields
above the selvedge domain [region a in Fig. 1(a)] embodies
the underlying symmetry of the grating as expressed by
the Floquet-Bloch theorem' and the boundary conditions
for z~oc [in the notation of Fig. 1(a)]. Thus the Ray-
leigh expansion results from a general principle. The first
issue is whether, or when, it can be continued into the sel-
vedge domain all the way to the grating's surface [domain
b in Fig. 1{a)]. The assuggiption that this is possible is re-
ferred to as the Rayleigh hypothesis. The second issue is
what are the convergence properties of the Rayleigh ex-
pansion, in light of the numerical difficulties encountered
in applying it for deep gratings.

Notwithstanding the many attempts to settle these is-
sues for a general grating, ' ' "' ' there is no clear
answer yet. This state of affairs is particularly puzzling
in view of the generality of the Rayleigh expansion (which
is actgggatly a Fourier series over a unit cell of length d} In
an effort to understand these issues, we focus on the
analysis of light scattering from a class of simple gratings,
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with the sinusoidal grating (SG) serving as a prototype
The two results of this work are as follows.

(i) We identify a class of gratings for which the Ray-
leigh hypothesis is exact .Gratings in this class, such as
the SG, have the property that the domain above the sel-

vedge and the adjacent domain in the selvedge [e.g.,
domains a and b in Fig. 1(a)], share the whole x axis ex-

cept for a set of isolated nonsingular points.
(ii) With regard to the convergence properties of the

Rayleigh-expansion, we identify the cause for divergence
when P~~ 1. This analysis, in turn, leads naturally to a
simple altenmtive expansion —the dressed Rayleigh ex-

pansion of Eqs. (3.5) and (3.6)—which has presmnably ex-

cellent convergence properties. This proposition is expli-

citly checked for the SG. We find in this case that the
dressed expansion converges for an arbitrary p, and the
estimated order of the matrix needed to be inverted is 4p.
Hence, for example, for a SG with gld =1, inverting a
matrix of order & 50 should be adequate.

The paper is organized as follows. In Sec. II we intro-
duce the Rayleigh expansion and discuss the class of grat-
ings for which the Rayleigh hypothesis is exact. Section
III is devoted to examining the convergence properties of
the Rayleigh expansion and the introduction of the
dressed expansion. In Sec. IV the latter is analyzed for
the SG. Discussion and concluding remarks are given in
Sec. V.

II. RAYLEIGH EXPANSION AND HYPOTHESIS

To introduce the Rayleigh expansion, we start by con-
sidering the symmetry of the system: Since the grating is

invariant under translations of the type x ~x+Ld, where
1. is an integer and d is the periodicity [all notations are
defined in Fig. 1(a)], so are the solutions of Maxwell's
equations. Consequently, according to the Floquet-Bloch
theorem s's' '7 the electric or magnetic fields %(x,z)
satisfy

'P(x+d z)=e ~ %'(x,z), (2.1)

where k~~ is a surface-parallel (in the x direction) momen-
tum label. For a scattering wave mode, k~~ is the x com-
ponent of the incident wave. For a surface wave mode
(surface plasmons in the case of metallic gratings), k~~ is a
continuous label restricted to the first Brillouin zone
—ko/2 &

k~~
& ko/2. To simplify the subsequent

analysis, we consider only the configuration of a p-
polarized plane wave incident perpendicular to the direc-
tion of the grating's grooves (the y axis). In this case con-
sidering the xz plane is sufficient.

The symmetry property (2.1) dete. ~ines the functional
form of the fields up to constants, to be determined by
matching the proper boundary conditions. Assuaging an

e time dependence of the electromagnetic fields,
where coo is the field frequency, we can always expand the
solutions of Maxwell's equations (at least when they are
not singular} in tertns of the following complete set of
functions in the 0 &x &d interval:s'6's

aIld

E (x z)= g (C (l)p (l)expIi [kix —W~(l)z] j+A (l)p +(l)exp[i [kIx+ W~(l)z]j)
l=-oo

B (x,z)= s g (C (l)expIi[kix —W (l)z] j+A, (l)expji[kix+ W (l)z] j ),k(a)
k

(2.2a)

(2.2b)

wherezo

k(a)=(eg)'~ k, k =mo/c, ko 2n/d, ——
8' (l)=[k (a)—ki ]', ki ——k~~+lkG, (2.2c)

p +(1)= [kP+$V~(1)R], a=ax'k.
k(a}

In (2.2) we choose always Im[W~(l)] or Re[W (1)] as
positive, 2, 0, and s are unit vectors in the x, z, and y
directions [Fig. 1(a}],and a denotes a domain in the xz
plane with a constant dielectric function e . (e~ can de-
pend on roc in the following analysis since F00 is kept fixed
throughout. ) Once a convenient partition of the xz plane
into totally filling domains has been chosen, the coeffi-
cients C (l),AN(l) are dete ~ined by matching the
boundary conditions across the boun~ries of the
dOIDalIlS,

To demonstrate the choice of domains a, consider in
particular a SG-type example [Fig. 1(a}]. It is obvious
that in this case there are four relevant domains and hence
four expansions of the type (2.2) to determine. In these

C,(l}e " A, (l)e+"—=Cb(l)e "—Ab(l)e+",

C,(l)e "+A, (l)e+"=Cb(!)e "+A b(l)e+",
(2.3)

8 = i W,(l)g =i $V&('1}g . (2.4)

Equations (2.3) yield C,(l) =Cb(l) and A, (1)=Ab(1), and
hence the Rayleigh hypothesis is exact. In establishing
(2.3) we used the fact that domains a and b share the en-
tire x axis (or unit cell). Thus it is possible to equate coef-

terms, the issue of whether the Rayleigh expansion can, or
carmot, be continued to the grating's surface is tan-
tamount to whether the expansions in domains a and b
(and similarly c and d) are identical. This issue must be
decided by matching the boundary conditions between
domains a and b along the separating plane z =g.

Consider for example the tangential components of E
and B along 2 and s [Eq. (2.2}]. By comparing coeffi-
cients of the complete set I

e' "j we obtain
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(b)

ficients of each member of the complete set Ie ' j. It has
been tacitly assumed at this junction that the set of isolat-
ed nonsingular points (x =nd, z =g), jointly shared by
domains a, b, and c, do not break the orthogonality of the

fkIz
set [e '

j over a unit cell. The above argument remains
valid for any grating such that the selvedge domain and
the domain above it [e.g., domains a and b in Fig. 1(a)]
share the entire x axis except for a set of isolated non-
singular points. Figure 1(b) depicts a slightly more com-
plicated example where the Rayleigh expansions in
domains a and b are identical.

An example for which the above argument fails is the
square-well grating, Fig. 1(c). Here again we start by di-
viding the xz plane into four domains and try to match
domains a and b. It is obvious that since the boundary be-
tween domains a and b is not the entire x axis, Eq. (2.3) is
not valid; hence the Rayleigh hypothesis is not exact. For
a shallow square-well grating, however, the Rayleigh hy-
pothesis may provide a good approximation.

The foregoing discussion is in keeping with the accept-
ed point of view that in general the Rayleigh expansion
above the grating cannot be continued to the grating's sur-
face. We have demonstrated, nevertheless, that for a cer-
tain class of gratings, and the SG in particular, the Ray-
leigh hypothesis is exact. Note also that we restricted our-
selves to nonsingular fields (and first derivatives) only.
When singularities are present, the implication is of sur-
face charges, an infinite amount of charge at particular
points, surface currents, etc. Consequently, the above
conclusions, which are based on the boundary conditions
of no surface charges or currents and the very existence of
expansion (2.2), are expected to be modified.

III. DRESSED RAYLEIGH EXPANSION

FIG. 1. (a) Schematic display of a grating for which there are
four obvious domains with constant dielectric constant. The
dome&ns are denoted by a, 1, c, and d. The hatched and plain
areas indicate the dielectric and "air," respectively. The max-
imum

~
z

~

exuuiiiion and periodicity of the grating are denoted

by g and d, respectively. (b) A more complex grating for which
the Rayleigh hypothesis is exact, i.e., field expansions in
domains a and b are identical (see Sec. 11). (c) The square-well

grating for which the Rayleigh expansion is not exact.

Even when the Rayleigh hypothesis is exact, the useful-
ness of the Rayleigh expansion must be substantiated by
good convergence properties. As difficulties in applying
the expansion to deep gratings indicate, ' this is probably
not the case. It is for this reason that altcunative schemes
have been suggested' ' s' with presumably a wider
range of convergence. Our strategy, on the other hand, is
first to expose the deficiency of the Rayleigh expansion
rather than to ahuidon it. Once this is achieved, we are
naturally led to a modified expansion which we believe
(and demonstrate for the SG in the next section) to have
excellent convergence properties for deep gratings.

When the Rayleigh hypothesis is exact, it is sufficient
to consider only two domains in the xz plane (see Fig. 2).
Consequently there are on1y two expansions to deal with
[Eq. (2.2)], indexed as 0 and 1. The electric field expan-
sions are therefore

Ep(x z) = g (Cp(l)pp (l)exp ti [kix —Wp(i)z] j +A p(l)pp +(l)expIi [kix+ IYp(l)z] j ),

Ei(x,z)= g Ci(l)pi (1)exp[i [kix —Wi(l)z] j,
(3.1a)
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and the magnetic field expansions are

Bo(xz)= s g (Co(l)expIi [kix —Wo(l)z] j+Ao(l)expIi [kix+ Wo(1)z]j ),k(0)

Bi(x,z) = s g Ci (l)expI i [kix —Wi(1}z)I .(1)
k I =—oo

(3.1b)

In Eq. (3.1)

Cp(l) =5(0
——Eo {3.2)

where Epz is the arbitrary amplitude of the incident @-
polarized light. Equation (3.2) embodies the boundary
condition of the downward-propagating incident wave in
region 0 (Fig. 2), and (3.1) incorporates the outgoing-wave
bound ~ conditions at (

z
~

~m.
The deficiency of (3.1) becomes apparent by consider-

ing, for example, the Ac(l) term in (3.1b). For
~

i
~

~ iyo,

the x-independent factor tends to

(3.3)
l
I l ~~

where (2.2c) was used. For the z & 0 portion of domain 0,
the zMepmdent factor in (3.3} converges exponentially
with

~
i (. However, (3.1} is valid throughout region 0.

In particular, at the bottom of the troughs where
—g &z&0, the z-dependent factor in (3.3) diverges ex-
ponenrislly with

~
l

~
. Conserinrmrly, in order ro keep the

total field Bc(x,z) finite for z &0, it follows that the exact
Ao(l) must converge for ) i

~

~ ac at least exponentially.
(This arguinent fails for gratings which give rise to singu-
larities in the fields or in their derivatives. } Therefore, for
z &0 the Rayleigh expayhsion of Eo and Bo is a sum of
many terms, most of which (large

~
I

~
) are products of

exponentially large numbers (the z-diyendent factors)
times exponentially syph~&& numbeni [the Ac(l)]. However,
there are always esriors in the calculated Ao(l). These, in
turn, will ldhihyj to large variations in the total fields, since
the Ao(l) are multiplied in (3.1) by very large exponents.
This type of nhhmerical instaMity, demonstrated here for
the z &0 portion of the 0 domyhIn, has an adverse effect on
other portions of the xz plyhyye by virtue of the extinction
theorem. ' '~ ' Therefore, for casis when many Bragg

A

reflections ( ( l
~

) contribute to (3.1), i.e., for deep grat-
ings, the Rayleigh expayhsion is intrinsically unsuitable.
For sha}&ow gratings, where only a few Bragg reflections
contribute, the instability just described does not arise.

The above deficiency of {3.1) can be easily remedied in
the following manner. Consider again, for example, the
Ao(l} terra in (3.1b). It can be rewritten as

Ao(l)exp[iWO(l)z] =ao(l)exp[i WO(l)(z +g)] (3.4)

ao(1)=Ao(l)exp[ —i Wo(l)g],

y, (l) =Ci(l)exp[ i Wi(1}—g] .
(3.6)

The central assertion of this work is that the dressed
Rayleigh ex@uhsion, defined by (3.5} and (3.6) bee excel-
lent convergence properties for a wide range of values of P
and is a suitable franiework for deep-grating calculations.
This proposition is explicitly demonstrated for the SG in
the next section. Furthermore, the procixiure used in Sec.~ foi the SG can be generalized to other gratings (see
Sec. V}, indicating the wide applicability of the dressed
Rayleigh expansion.

IV. SINUSOIDAL GRATING {SG)

where g is the (positive) minimum of the grating in region
0 (see Fig. 2) and ao(l)=AD(l)exp[ i WO—(l)g] Sin.ce by
construction z+g &0 throughout region 0, the exponen-
tial factor on the right-hand side of (3.4) never diverges; in
fact, it always converges exponentially (and is unity at the
grating's profile). Furthermore, since (3.1} is valid
throughout region 0, including at the gnating surface, the
exact ~(l}converge with very high i to render a finite to-
tal field. Consequently, the releuant exact ao(l) are notn~y esponrmrisUy smell, snd hoses smell errors in
the calculated ac(l) will not lead to instabilities in the to-
tal field. These considerations suggest that we transcribe
the Rayleigh expansion (3.1} into a "dressed Rayleigh ex-
pansion" by writing

Ao(l)exp[i Wo(l)z] =ao(l)exp[i Wc( l)(z +g)],
(3.5)

C, (l)exp[ —i Wi(l)z] =yi(l)exp[ —iW, (l)(z —g)],
where the dressed-expansion coefficients are given by

FIG. 2. Sinusoidal grating (SG), defi»ng the notation used in
the text.

The proposition stated as a conjecture in Sec. III with
regard to the dressed Rayleigh expansion, (3.5) and (3.6),
is now explicitly checked for the SG. Our starting point
is the exact infinite set of coupled linear equations' satis-
fied by the expansion coefficients of (3.1) (see Appendix A
for the derivation),
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M~ IAp(l)=p (m),
I =—to

N IC, (l)=v (m),
(4.1)

no natural point at which to truncate (in
~
l

) ) the matrix
and to control the corrections in an actual calculation.

The situation is dramatically changed once (4.1) are
tracecrihrd to equatious for the dressed cotd5cisats of Eq.
{3.6). These are

where the superscript it is e rem .ioder that (d. tt pcrtaius
to the expansion coefficients of (3.1). These coefficients
are hereafter referred to as bare, in distinction from the
dressed expansion coefficients defined in (3.6). The en-
tries to (4.1) are explicitly given by (see Appendix):

IVp(l) WI (m)+ kik~

IVo(l) —IVI{m)

Xi IJ i(g[$Vp(l) —lVI(m)]),

M~iap(l) =p, (m),

N, Iyi(l)=v (m),

where the I-dressed matrices Mn and gn are

M I M——iexp[i Wp(l)g],

N I M i—e—xp[I'WI(l)g] .

(4 5)

(4.6)

Wi(l) Wp(m)+kik~
Wi(l }—IVp(m )

Xi IJ i(g[ —Wi(l)+ IVo(m)) )

—IVp(0) Wi(m)+kpk
p {m}=

Wp(0}+ Wi{m}

(4.2}

By the supine procedure which led to (4.3) and (4.4), we ob-
tain

lim M~I- lim JI(ip( l
(

)e PI(
t& I ~~ '

II I ~~
m fixed

(4.7)

where

Xi~J~( —g[ Wp(0)+ IVI(m)])Egq, (()(p)=ri(p) —p . (4.8)

26gE)
IVo(m)Sm, oEo

~& —~0

where the symbol J denotes the Bessel function of order
m, and all other symbols have b~ defined in (2.2). The
Bessel function factor in Ms and gs dete ~ines the mix-
ing between the Bragg reflections of order m and l, and
henCe inVO1VeS the g parIIIneter. Thua, fOr inStanCe, When

g =0 (flat surface)„ it follows that m =l, i.e., no mixing.
The role of the other factors in (4.2) is elaborated else-
where 22

The exact equations (4.1) and (4.2) expose frIIIn yet
another vantage point the deficiency of the Rayleigh ex-
pansion (3.1). Consider for exeInple +s and the corre-
sponding equations in (4.1). When m is Axed and

~
l

~

~ oo, the fastest changing factor in (4.2) is the Bessel
function. For

~
l (

~ ao it follows that Wi(m}« Wp(l) iko
~
l (,-and therefore, up to uninteresting

factors (phases and powers of ( l ( }, the matrix elements
of M behave as

The central point of this section is to recognize that p(p)
is negative for all values of p {see Fig. 3}. Moreover, since

p(p)-
I+btR for P« 1

1
for P»1,

(4.9)

we have an estimate for the dimension N of the effective
M matrix (comprised of the significant matrix elements
in Mn). For P»1, Eq. (4.9}yields

N =2(2p) =8Irgld, (4.10)

where the extra factor of 2 in (4.10) is added to account
for positive as well as negative l values. The estimated N
in (4.10) is roudphly the number of significant terms in the

lim M I — lim Ji(iP~ l ( ) el ls'~'-,
II I ~ '

l&I
ns fixed

where again P=keg and

q(P) =(1+P')'~+a [P/[I+(I+P')'~) I .

(4.3)

(4.4}

Hence, for p»1 the matrix elements of Ms diverge ex-
ptinentially with ) l

~
. On the other hand, for fixed m the

right-bend side of {4.1) is a constant. Co uently the
exclcr Ap{l} Inllst converge at least as e l l+

s which ls
in keeping with the enniysis of Sec. III. Furthe ~ore,
since Ms diverges with ( l

( as indicated in (4.3), there is
FIG. 3. ExyosMntidhi convergence function p(p), Hq. (4.8),

pertetining to the QQ.
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dressed Rayleigh expansion, and provides the natural
truncation point of M in an actual calculation. Thus,
for instance, when g/d =1 the inversion of a 50X 50 ma-
trix should be quite adequate.

To complete the analysis, we now consider the conver-
gence of (4.5) for the case

~

rn
~

~00 and 1 is fixed. Obvi-
ously, the m-convergence factor to be used is arbitrary. A
convenient choice, symmetric to (4.6), is

M~ ( e——xp[i [W((m)+ Wp(l)]gIM~ (,
p(m) =exp[iW((m)g](u (m),

(4.11)

N (=exPIi [Wo(m)+ Wi(1)]gINa (

v(m) =exp[iWo(m)g]v (m),

and the fully dressed equations are

M~ (ap(l) =p(m),
I =- oo

N (yi(l}=v(m) .
I=—co

(4.12)

The set (4.12) is exponentially convergent to both the m
and 1 "directions" for an arbitrary P. It is therefore a per-
fectly stable framework for calculations of deep SG. The
size of the matrix noded to be inverted is of the order
given by (4.10), which is well within the limits of a
reasonable effort. The dressed coefficients ap(1) and yi(l)
are then to be used in the dressed Rayleigh expansion (3.5)
to obtain the total fields.

V. DISCUSSION AND SUMMARY

The dressed Rayleigh expansion, i.e., (3.1) with the substitution (3.5), takes the form (e.g., for the electrical field with
the notation of Fig. 2)

Ep(x z)= g (yo(l)pp (l)expI'[k(x —Wo(l)(z —g)] I+ap(l)pp+(l)expIi [k(x+ Wo(l)(z+g)]I ),
I = —oo

E&(x,z) = g y i(l)p& (l)exp I i [k(x —W((l)(z —g) ]I,
I =—co

(5.1)

where

'Yo(l) =5( pexp[ i Wp(l)g]—Ep(,
and the coefficients ap(l) and yi(l) satisfy (4.12). The
convergence properties of (5.1) can be analyzed for a gen-
eral grating shape along the lines applied for the SG in
Sec. IV. All that is necessary are the exact expression of
the corresponding M ( and an examination of its asymp-
totic behavior. The explicit expression for M ( pertain-
ing to a grating of a general shape is knawn' (see also the
appendix).

The comparison between the convergence properties of
the dressed and bare Rayleigh expansion can be explicitly
discussed in the context of the SG. These are determined
by the asymptotic behavior of M ( and M (, respective-
ly. With regard to the bare Rayleigh expansion (3.1), the
asymptotic behavior is given by (4.3) and (4.4). Since g(P)
is monotonically increasing and negative for P«1 (see

Fig 3), it follows that the maximum value of P for which
M ( is 1 convergent (exponentially) satisfies

r((p) =(1+p')'/'+lnI p/[1+(1+ p')'~']
I =0, (5.2)

8+1 8+1 8 1

28 ' ~ 28
(5.3)

The solution to (5.2) or (5.3} is P=0.66 (8=1.86), or
g/d =0.1. This value is in agreement with the reported'

or equivalently, using the notation of Petit and
Cadilhac, 24

maximum g/d ratio for which the bare Rayleigh expan-
sion is found applicable. By contrast, the asymptotic
behavior of M (, Eqs. (4.7), yields convergence for all P
Note also that alternative schemes for solving the light-
grating scattering problem' ' involve the bare coeffi-
cients Ao(l) and Ci(l). By dressing the coefficients, as ar-
ticulated in (3.6}, the convergence properties of these
schemes are expected to improve. In this regard, the
dressed Rayleigh expansion provides the simplest possible
convergent scheme.

The value 8= 1.86 deduced fram (5.2) for a SG is same-
what larger than 8=1.54, ' which is the rigorously
proven threshold for a perfect metallic reflection SG
(ei ———Oo ). This difference highlights the distinction be-
tween singular and nonsingular grating (i.e., smooth pro-
file, finite ei). We can expect on physical grounds that
when there is an infinite amount of charge at the surface
(with a 5-function distribution}, the point (x =d, z =g)
separating the two adjacent selvedge domains 0&x &d
and d &x &2d is singular (Fig. 2). Therefore, two such
adjacent selvedge domains become "disconnected, " the
Rayleigh hypothesis is no longer exact and the conver-
gence criterion is modified. The same conclusion follows
also mathematically: when e&

———00, the analysis leading
to (4.3) and (4.4) is totally changed.

%e comment now on a related convergence criterion '
for the bare Rayleigh expansion, which is presumably
valid for any dielectric constant ei. This criterion is based
on the application of the steepest descent methodz~ to an
exact expression of Ap(1) or C, (1). When applied to a
SG, the maximum value of P for which there is conver-
gence satisfies
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8+1 s
—1

=e (5.4)

where 8 is defined in (5.3). We understood the difference
between our result (5.3) and (5.4) in terms of the limited
applicability of the stalest-descent method ~ for the SG
ca~sa. Phrased differently, the corrections to the steepest-
descent result for the SG case are not negligible, and
hence it is not clear how stringent condition (S.4) really is.
[The solution to (SA) is 8=1.54. Numerically, ' however,
convergent results are obtained for higher values af 8 up
to about our result of 8=1.86.] This statement can be
simply verified by examining the statiomiry-phase func-
tion g(x) derivatives around the stationary points of zg a

We find that although g"(z, }~0, the fourth derivative is
positive and has a contribution larger than g"(z, }.

In summary, we have analyzed the two questions per-
taining to the Rayleigh expansion: the possibility to con-
tinue it to the grating's surface (the Rayleigh hypothesis)
and its convergence properties. We identified a class of
gratings, the SG being one example, for which the Ray-
leigh hypothesis is exact. We have also exposed a cause
for the instability of the Rayleigh expansion when applied

to a deep grating calculation. To remedy this instability,
we propose a modified expansion, Eqs. (3.S), (3.6), and
(5.1), dubbed the dressed Rayleigh expansion. The dressed
expansion hths presumingly excellent convergence praper-
ties for deep gratings. For the ease of the SG, we explicit-
ly show that the dressed expansion converges for an arbi-
trarily large value of P (or g/d ratio), and the associated
matrix to be inverted is of the order 8mg/d [Eq. (4.10)].
Our analysis is valid for a frequency-dependent dielectric
function since the whole discussion pertains to a fixed
ineamighg-WaVe frequenCy (all Bragg Seatteringa are elaS-
tic). The dressed Rayleigh expansion is applied else-
where z to study the very deep (p~ co ) SG grating limit.
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APPENDIX: FDACT EQUATIONS FOR THE {REFIECTIVITY) 8p(l)
AND {TRANSIgli.i i IVxTY} C, (l) COEi i iCIENTS

The exact infinite set of coupled linear equations for the coefficients of expansion (3.1) has been derived by Toigo,
Marvin, Celli, and Hill for a grating of an arbitriiry shape. ' We recap here their derivation for the SG for the sake af
completeness and to unify notations.

We choose to match the tangential components of B and E. For this purpose we introduce the following triad of unit
vectars which are normal and tangential to the SG profile given by z =gcos(kax) (the notation of Fig. 2 is used
throughout):

n= —+3sin(kax) —2, t= —%+%Pain(kax), b=s,

where P=keg, and the carats denote the unit vectors. The normal vectar n and the tangential vector t need not be nor-
mehsed for our purposes. By projecting the field {3.1) aiong t and h at the grating surface, the following exact tquettons
are obtained:

IkP (1)
k (0)

e ' Ap(l)exp[iWp(1)gcos(kGx)] — Ci(l)exp[ iWi(l—)gcos(kGx)] =Qb, (A2a)

e ' A p(l)[ Wp(l)+Pki sin(kgx)]exp[iWp(l)g cos(kGx )]
I =—co

k(0)
k(1) Ci(1)[—Wi(l)+Pkisin(kGx)]exp[ —iWi(1)gcos(kax) =Q, , (A2b)

where

Qb ——— g Ci(l)exp(ikix)exp[ i Wp(1)g—cos(kGx)],
I =—co

Q, =— g C&(l)[ —Wp(l)+Pk&sin(kGx)]exp(ikix)exp[ —i Wp(l)g cos(kGx)] .
I =—co

(A3)

Equations (A2) can be cast into a set of coupled linear equations for Ap(l} and Ci(l) by expanding all terms in the
/kgb

complete set je I. It is remarkable that it is in fact possible to further eliminate exactly Ap(l} or Ci(l), thus breghking
(A2) into two (infinite) sets of equations. This is achieved by first multiplying (A2a) with

Mb ——[—Wp(m)+Pk sin(kGx)]exP[ ik x+i Wp(m)g —cos(kax)] (A4a)
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and multiplying (A2b} with

M, =exp[ —ik x+i8'c(m)g cos(kgx)], (A4b}

adding the two equations and integrating over the interval 0 x d. This manipulation yields the equations for C, (l).
By repeating the same procedure with

Ms —— [—W&(m) —Pk sin(kgx)]exp[ i—k x i—@'&(m)g cos(kgx}]k (0)
k (1)

(ASa)

M, = — exp[ ik—x i W—t(m)g cos(kgx)],(I)
k(0)

an equation for the Ae(l) is obtained. In these manipulations for arbitrary a, b, d, and q, we have used2s

I d b(kt —k~)
dx [a +b sin(kgx)]exp[i(kt —k )x +iq cos(kgx)] = a+ di J~ t(q),0 qkg

where J„denotes the Bessel function of order n

(ASb)
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