
PHYSICAL REVIEW 8 VOLUME 33, NUMBER 1 1 JANUARY 1986

RenoL=iiialization-group analysis of heat-capacity critical amplitudes
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Critical amplitudes A+ associated with the temperature (t) variation of the heat capacity
(C-A+

~

t
~

) are analyzed by means of renormalization-group techniques in both position aud

momentum spaces. %'e describe a mechanism according to which the amplitudes A+ diverge as the
critical exponent a approaches a nonpositive integer. In between two consecutive divergences at
least one amplitude vanishes at least once. The coefficient P in the expansion

A+ /A = 1 —Pa+0 (a~) is computed by means of e expansion and Migdal-Kadanoff
renormalization-group technique. Systems for which the critical exponent a is negative but larger
than —1 exhibit either a cusped heat capacity if A+/A &0 or a smooth maximum in the heat
capacity at a temperature other than the critical one (T&T, ) and an infinite slope at T, if
A+ /A &0. Implications of this observation for the interpretation of experiments on random-bond

systems such as Fel „Zn, F2 are discussed.

I. INTRODUCTION

Critical amplitudes are as important as critical ex-
ponents for the identification of the universality class of a
given physical system and for the interpretation of experi-
mental data. Unlike exponents, however, amplitudes have
been studied almost entirely by means of the renormaliza-
tion group in the momentum space. Only recently have
studies of amplitudes by means of renormalization-group
techniques in the position space been published. ' This
study continues and generalizes the work of Ref. 1 by
considering systems with a nonsymmetric specific heat.

By continuously changing appropriate parameters such
as the dimension of the order parameter or the number of
states in the q-state Potts model, the critical exponent a
and the critical amplitudes A+ (the free energy
f-A~

~

t
~

) can be continuously varied. In Sec. II it
is shown that, quite generally, the amplitudes A+ (+ and
—refer to above, t &0, and below, t &0, the critical tem-
perature) diverge whenever —a approaches an integer,
and that they diverge with the same sign if the integer is
even and with opposite signs if the integer is odd. Hence,
on the interval determined by two consecutive integers,
one of the amplitudes expressed as a function of tz will
have opposite signs at the ends of this interval. Therefore,
there will be (at least) one value in this interval where (at
least) one amplitude is zero. The occurrence of zeros is
therefore intimately linked to the occurrence of diver-
gences of A+. The universal ratio A+/A approaches
( —1)" linearly in a+ n as u approaches —n,
n =0, 1,2, . . . We find the coefficient P-4.6 on the ex-
pansion

A+/A =1 Pot+0(a )—
for systems with a small, by considering the X-vector
model in 4—e dimensions and varying the critical param-
eters by changing N at fixed e. This coefficient is also
determined in Sec. III, P-5, by applying the Migdal-
Kadanoff renormalization-group technique to the three-

dimensional q-state Potts mode1.
In Sec. III we also explain a numerical procedure for

computing amplitudes after pointing out that the analyti
cal "linear" approximation violates the convexity of the
free energy, and thus it is inadequate. The amplitudes
A+ computed with the Migdal-Kadanoff renormalization
group are plotted against the exponent a which is changed
by continuously varying the number of states q at fixed
dimension d. We note that the divergences and zeros of
A+(a) are produced by the mechanism described in Sec.
II and explain the singularity off in these cases.

Section IV contains computations of the heat-capacity
dependence on temperature for systems with a&0, i.e.,
divergent heat capacity, and —1&a&0. In the latter
case we distinguish two generic situations: if
A+/A &0, a cusped heat capacity which achieves its
maximum value at the critical temperature; (ii) if
A+/A &0, a smooth maximuin in the heat capacity C
occurring at a temperature other than the critical one and
an infinite slope dC/dT at the critical temperature. We
also note that random exchange systems such as iron
fiuoride with impurities of zinc probably fall into this
latter class. Difficulties with the interpretation of heat-
capacity data which were pointed out in Ref. 6 could con-
ceivably originate in the erroneous identification of the
critical temperature as the temperature ~here the max-
imum in C occurs.

II. GENERAL MECHANISM
FOR PRODUCING DIVERGENCES

AND ZEROS OF CRITICAL AMPLITUDES

When, by varying an appropriate parameter such as the
spatial dimension or the dimension of the order parame-
ter, the exponent a approaches a nonpositive integer —n,
n =0, 1,2, . . . , the amplitudes A+ diverge inversely pro-
portional to a+n. When n is even the two amplitudes
have the same sign, while when n is odd they have oppo-
site signs. As —a varies between two consecutive integers
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there will be at least one special value where at least one
amplitude is zero.

Close to a critical point the free energy f expressed as a
function of a temperaturelike scaling field t is the sum of
a regular part which is a Taylor expansion in powers of t
and a singular part proportional to

~
t

~

with the ex-
ponent a, in general, equal to a noninteger:

f= g f t +A+ t('
rn =D

A+ is the critical amplitude, and the subscripts + and-
refer to above (t &0) and below (t ~0) the critical tem-
perature, respectively. As a approaches —n, the right-
hand side of Eq. (1) can be approximated by

f= g f~t +t'+"[fg+.+A+{sgnt)"
m=0

m/2+n

At fixed e the exponent a, Eq. {6),vanishes at

X =4(1—e)+O{e ) .

The coefficient P is then given by

1 —A+/AP=
a N =4(1—~)

6 1 ln2
1 — —+ e+0(e')

S 6

III. COMPUTATION OF AMPLITUDES
IN THE POSITION-SPACE

RENORMALIZATION GROUP

By setting e=1, i.e., d =3, in Eq. (9) we find P=4.6,
which is in the range of experimental and other theoreti-
cal estimates of P.

—(a+n)A+(sgnt)"ln
~

t
~ ], (2)

f= g f t +at'+"ln(t (+c,t'+".
m=0

m+2+ n

(4)

Equation (3) also provides information on the universal
ratio A+/A

A+ 2= ( —1)"[1 P(a+ n) +—0 (a+n) ],

where P=(c+ —c )/a. Hence, for n even A+/A ~1,
meaning that both amplitudes have the same sign as they
diverge, while for n odd A+/A ~—1, meaning that
one amplitude diverges to + 00 while the other diverges to
—oo. It follows that as a varies between two consecutive
integers at least one of the amplitudes will cross the zero
line (at least once} as it varies between —oo and + oo.

Equation (5) is particularly useful for estimating ampli-
tude ratio since many realistic systems exhibit a small ex-
ponent a [i.e., n =0 in Eq. (3)]. We computed the coeffi-
cient I' for the S-vector model in 4—e dimensions by us-

mg '

4—N (%+2) (%+28) g O 3)
2(&+g) 4(X+S)'

A+
4

=2 —(1+e)+O(e') .

where sgnt =1 if t &0 and —1 if t &0. To preempt the
vanishing of the amplitude of t +"ln

~
t

~

and the diver-
gence of the amplitude of t +" as a+n approaches zero,
A ~(sgnt)" and f2+„have to diverge as

a
A+(sgnt) = — +c+ —co,a+n

(3)
a

f2+.= +coa+5
where a, c~, and co are finite.

Then, for a= —n,

Unlike critical exponents, there is no trustworthy
analytica1 scheme to calculate critical amplitudes in the
position-space renormalization group. Indeed, the linear
approximation ' in which the nonlinear recursion equa-
tion for the coupling is replaced by a linear approximation
(valid only close to the critical point) violates the convexi-
ty of the free energy as a function of linear couplings on
the Hamiltonian by producing a negative heat capacity. "
As a consequence of this unphysical feature, the sign of
the critical amplitude (within the linear approximation of
Ref. 3} is incorrect. Since the linear approximation does
not give reliable estimates of amplitudes, we are using a
computational scheme, which is exact (within the numeri-
cal accuracy).

The free energy per degree of freedom f= +lnZ/N, as
a function of a linear coupling J appearing in the Hamil-
tonian, is given, within a position-space renormalization
group (PSRG), by an infinite sum:

f=freg +fsing ~ (12)

f„g——g f„(J—J, )",
n=0

f„„g=A+
f
J—J, /.

(13)

(14)

where + holds for J,—J & 0 and —for J, —J & 0, and

2 —a=d lnb/ln
dR
dJ

The coefficients f„ in Eq. (13) are determined by compar-
ing the two sides of

f(J)=g(J)+b f(Ji)= g b ~g(J„),
n=0

where the coupling J renormalizes according to

J„+i——R(J„), n =0, 1,2, . . .

where g and R are analytical functions, d is the spatial di-
mension, and b is the linear change in scale. Close to the
critical coupling J„+i——J„—:J„ the free energy f is the
sum of a regular part f„,g, i.e., a Taylor expansion in
powers of J—J„and a singular part f„„g:
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f s(J)=g(J)+b f„s[&(J)],
after expanding f„s, g, and 8 in powers of J J,—. We
compute numerically f and f„s at small values of J—J,
and then find the amplitudes A+ from

A+ =[f(»—fres(J)] I
J—J. I

(15)

H,J I—ksT =2J5(a;,o;) .

We consider a change in scale b =2, and in this case the
functions g and R are

g(J) = —,
' ln(2e +q —2),

e~' +q
28 +g —2

As first noted by Berker and Ostlund, ' this scheme pro-
vides the exact solution of the Potts model on a hierarchi-
cal lattice' ' constructed by repeatedly replacing one
bond by a cluster as shown in Fig. 1.

The amplitudes' dependence on a is shown for a few
different dimensions, d =1.5,2,2.5,3, in Fig. 2. The case
of two dimensions studied first in Ref. 1 is special due to
the duality symmetry which forces the equality of ampli-

(17)

We apply this scheme to the Migdal-Kadanoff
renormalization-group solution of the d-dimensional q-

state Potts model. At each site i of a d-dimensional lat-
tice there is a spin o;=1,2, . . .q, and we associate with
each edge (ij ) an energy

FIG. 1. Hierarchical lattice associated with the Migdal-
Kadanoff scheme, b =2.

tudes A+ ——A . It also follows that when —a is equal
to an odd integer, a =0 [see Eqs. (3) and (4)], and thus
there are no divergences of A+ as —a approaches
1,3,5,. . . in two dimensions.

For d&2 the amplitudes diverge as —a approaches any
integer. Due to the positivity of the heat capacity the am-
plitudes A+ are positive for a & 0. For a slightly negative
both amplitudes are negative, while for a~ —1 they
diverge with opposite signs [cf. Eq. (3)]. Hence, at least a
zero for either amplitude is expected in the interval
—1&a&0. Indeed, for d =3, A =Oat a=- —0.2.

For any dimension d both amplitudes A+ vanish for
the case q =1. Indeed, the 1-state Potts free energy (per
bond) is f=2J, and therefore no singularity is exhibited
(A+ ——0).' The free energy f of the Potts model with

{a)

10- 10- d =2,0

A, A+-
A, =A

-10—

-1.6 0.0 -0.8 0,0

{c)

10 10

A,

0 &

-10—

-1.6 -1.2 -0.8
0 0.0 -1.2 O.O

FIG. 2. Critical amplitudes' A+, dependence on exponent a for spatial dimensions d =1.5,2,2.5,3 obtained by using the Migdal-
Kadanoff scheme.
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q~ 1 is related' to the bond-percolation mean number of
clusters 6:

6= a

q q=~

A

A

Gs.s= (A+ Ir I'
0

and since A (q =1)=0 it follows that

Gsing = dA+
2 —Q

dq q

dA+

dq da

it follows that the A+ have opposite signs, which is in
agreement with the e-expansion prediction' that
A+/A &0. In fact, the agreement is more detailed as
we predict A+ &0 and A &0 (assuming da/dq&0),
and this can also be deduced from Eqs. (2.14), (3.23),
(3.24},and (B4) of Ref. 16.

(ii) There is a value of q in the interval [1,2], where
A =0 while A+ g0.

Another interesting quantity, useful for the interpreta-
tion of experiments, is the universal ratio of the critical
amplitudes A+ and A . Since for d =3 A vanishes at

i.e., the bond-percolation exponent a is the exponent of
the 1-state Potts model, while the bond-percolation ampli-

tudes A+ are dA+/dq
~ v &. e expansion' for bond per-

colation suggest that the exponent a is negative but larger
than —1 and, of course, in this case, q =1, A+ ——0. On
the other hand, the 3d Ising model, q =2, has a divergent
heat capacity, a=—0.11,A+ &0. As a approaches 0 and
—1, by varying q at d =3, the amplitudes diverge with
the same sign and with opposite sign, respectively [cf. Sec.
II]. The simplest qualitative dependence A+(a), d =3,
and a is varied by changing q, which incorporates these
pieces of information is shown in Fig. 3. Two conse-
quences of Fig. 3 are the following:

(i) Since the bond-percolation amplitudes

certain values of a, it is more convenient to plot A /A+,
rather than the more familiar A+ /A, against a, Fig. 4.
For a close to zero we note that A /A+ increases linear-

ly with a:
A /A+ -=1+Pa+0(a },

and P =5 is to be compared with P =4.6 derived in Sec.
II for the N-vector model in 4—e dimensions.

IV. HEAT-CAPACITY COMPUTATION

Numerical computations of the temperature dependence
of the heat capacity are presented in this section. We em-

phasize that systems exhibiting a critical exponent a nega-
tive but larger than —1 do not necessarily show a cusp in
the heat capacity. The other possibility is a heat capacity
with a smooth maximum occurring at a temperature other
than the critical temperature, and an infinite slope at the
critical temperature. 4'e also suggest that three-
dimensional random-bond systems such as Fe~ „Zn„F2
exhibit this behavior.

Equation (10) and two other equations obtained by dif-
ferentiating once and twice, respectively, both sides of Eq.
(10) can be written in the following matricial form

f(J)=g(J)+R(J)f(J)),
where

(18)

2 I I I I I I

-).6 -1.2 -0.8 -0.4 0.0 0.4

FIG. 4. Ratio of amplitudes, A+/A, dependence on ex-
ponent a for d =3 obtained by using the Migdal-Kadanoff
scheme.

FIG. 3. The likely dependence of critical amplitudes A+ on
exponent a for three-dimensional systems.

f= df/dJ
d g/dJ

g
g= dg/dJ

d g/dJ
1 0 0

RS-' 0 dZ/dJ 0

0 d R/dJ (dR/dJ)

and J, =R(J).
Our computation of the heat capacity Cl'kz

=J (d f/dJ ) is based on a repeated iteration of Eq.
(18):
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f(J)=g(J)+R(J)g(Ji)+R(J)R(&$)g(J2)+ (19) 8.0

In Fig. 5 we show two heat-capacity curves correspond-
ing to a~0, i.e., divergent heat capacity: The curve in
Fig. 5(a) belongs to a two-dimensional system, and thus it
is symmetric about the critical temperature A+ ——A; the
curve in Fig. 5(b) corresponds to a three-dimensional sys-
tem and it is not symmetric, A+ &A

In Fig. 6 we show the two generic types of heat-
capacity curves for systems with —1 &a &0. In Fig. 6(a),
A+/A is positive, and the heat capacity has a cusp
(maximum) at the critical temperature T, . In Fig. 6(b),
A+/A &0 and the maximuin in the heat capacity
occurs at a temperature other than the critical one, ' while
at T, the heat capacity shows an abrupt change with tem-
perature (infinite slope).

Random-bond systems are predicted' ' to exhibit
a = —0.09 and A + /A = —0.5, and thus the heat-
capacity dependence on temperature should be of the type
illustrated in Fig. 6(b): the maximum in C occurs at
T&T, . A particular experimental realization of this
model is iron fluoride, which is an Ising antiferromagnet,
with nonmagnetic impurities of zinc. Heat-capacity data
from this system have been, however, analyzed on the as-
sumption that the maximum in the heat capacity occurs
at T, . It is conceivable that some of the difficulties point-
ed out in Ref. 6, such as an overly large correction-to-
scaling term on the heat-capacity fitting form, compared
to no correction-to-scaling in the fitting of the susceptibil-
ity data, are rooted in this erroneous identification of the
critical temperature. An alternative explanation of the
data invokes the Ginzburg criterion: ' close to the critical

C
k

0,/0 &0

(g) 40—

C
k

(b)

0.0

1.0

-0.2 0
T-Tc

0.2

0,5—

0.0-
-0.4 0

Tc
0.4

FIG, 6. Heat-capacity dependence on temperature for sys-
tems with —1&a&0: (a) cusp if A+/A &0; (b) smooth max-
imum at T&T, and abrupt variation (infinite slope) at T, if
A+/A &0. We used the Migdal-Kadanoff scheme for (a)
d =3, q = 15 and (b) d =3, q =5.

point, but not in its immediate vicinity, mean-field
criticality, i.e., discontinuous heat capacity, could be ob-
served. We finally note that it could be quite difficult, in
an experiment, to distinguish between a discontinuous
(mean-field) heat capacity and a heat capacity of the type
illustrated in Fig. 6(b) ( —1&a&0,A+/2 &0), which
exhibits an abrupt but continuous variation at the critical
temperature.

V. DISCUSSION

20—

-0.0) 0
T- Tc

(b)
)0—

-0.004 0
T- Tc

0.004

FIG. 5. Heat-capacity dependence on temperature for sys-
tems with a &0: (a) symmetric case A+ ——A, d =2; (b) asyrn-
metric case A+&A, d&2. We used the Migdal-Kadanoff
scheme for (a} d =2, q =21 and (b) d =3, q =30.

Critical amplitudes associated with the temperature
dependence of the heat capacity were analyzed by means
of renormalization-group techniques. In particular, we
predict that the three-dimensional q-state Potts model will
exhibit a vanishing amplitude A =0, while A+&0, for
some q between 1 (bond percolation) and 2 (Ising model).
The occurrence of zeros of A ~ as a function of a is linked
to the divergence of amplitudes as —a approaches in-
tegers. We also estimated the coefficient P on the expan-
sion A+ /A -=1 Pa+0 (a ) —by means of both
momentum-space and position-space renormalization-
group techniques and found P to be close to 5. When
—I & a & 0, the heat capacity exhibits a cusp if
A+ /A & 0 or a smooth maximum at a temperature oth-
er than the critical temperature ( T, ) and an abrupt varia-
tion at T, if A+ /A & 0. %c suggest that the latter situ-
ation occurs in random-exchange systems such as
Fe„zn& „F2.

Thc only avallablc QPTQlptfcQI procedure to compute am-
plitudes within the position-space renormalization-group
formalism is inadequate, e.g., produces a negative heat
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capacity. It will be interesting to see whether this scheme
can be improved upon systematically to eliminate such an
unphysical feature.
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