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Low-amplitude breather and envelope solitons in quasi-one-dimensional physical models
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In the lo~-amplitude limit ere examine the breather- and envelope-soliton solutions of the general-

ized nonlinear Klein-Gordon system as nonlinear Schrodinger solitons. The existence of breather

and envelope solutions is determined in the continuum and quasidiscrete limit; in this case the oscil-

lations of the carrier in the envelope are treated exactly. The results are applied to the perturbed

sine-Gordon and P systems; in both cases the asymmetry of the breathers is controlled by the am-

plitude of the external force. The study is generalized to the calculations of low-amplitude breather

modes in a ferromagnetic chain arit a small out-of-plane angle.

I. INTRODUCTION

In quasi-one-dimensional (1D) physical systems, soli-
tons occur in mainly' three forms: kinks, pulses, and en-
velopes. The first two are clearly defined and character-
ized by the solutions of standard equations: the kink solu-
tions by the sine-Gordon (SG) and related Klein-Gordon
(KG) equations, and the pulse solutions by the
Korteweg —de Vries or Toda lattice equation. The (topo-
logical) kink interpolates between two unconnected degen-
erate ground states, whereas the pulse does not. Kinks are
familiar as dislocations in a metal, domain walls in a fer-
romagnet or a ferroelectric, or discommensurations; ex-
amples of pulses are water waves, electrical pulses in
transmission lines, or optical pulses in optical fibers. En-
velope solitons, often called breathers, doublets, or bions,
appear as solutions to the SG equation or modified
Kortweg —de Vries equation. ' They are sometimes found
to be a more difficult concept, and yet in many ways they
represent the most important and widespread class of non-
linear excitations. Here an internal carrier wave is modu-
lated by the envelope which constitutes the localized soli-
ton structure. When the wavelength of periodic oscilla-
tions of the carrier wave is comparable to the envelope
width, the latter looks like it is breathing. Unlike the
kinks, the breathers require practically no activation ener-

gy; they are important excitations because they can inter-
polate between extremely nonlinear modes (kinks) and
linear modes (phonons or magnons). Furthermore, the
internal degrees of freedom of the breathers increase their
physical potential: for example, the breather can corre-
spond to an oscillating electric dipole in a 10 condensate.

Although among the generalized KG family the SG
system is the only system for which the exact breather-
soliton solution can be calculated using the inverse
scattering method, it is now well known that in the low-
arnplitude limit the SG breather is equivalent to a non-
linear SchrMinger envelope soliton. This result can be
used to determine the low-amplitude breather solutions of
other systems for which it is impossible to directly calcu-
late the breather solutions. We have recently extended
this approach to determine the necessary conditions of ex-
istence of breathers in a generalized KG family. Even for

the large-amplitude breathers created by kink-antikink
collisions, 7 our numerical experiments remarkably con-

firmed these results. These results are limited in their ap-
plicability to nonperturbed KG systems in the continuum
limit.

There are two basic purposes of this paper. First, we

present a general methodology for studying breather and

envelope solitons in quasi-1D systems, and we illustrate
this methodology by applications to familiar systems such
as perturbed SG and P systems. Included in this metho-

dology are some novel results in the semidiscrete limit,
where the carrier oscillations are very rapid compared to
the envelope. Physically, this allows us to take a partial
count of lattice effects that will occur in real condensed-
matter systems. Second, we present new results on the
quasi-1D ferromagnets where small out-of-plane motion
is allowed. Although the distinction between a breather
and an envelope mode is not sharp, the terminology is use-
ful in the appropriate wavelength limit. In the following,
we will use the term breather in the continuum (or small
wave-vector) limit and the term envelope in the quasi-
discrete limit.

The outline of this paper is as follows. In Sec. II we
consider a generalized KG lattice model. The existence of
breather solutions is studied in the continuum and low-

amplitude limits. The results are applied to the perturbed
SG and P4 systems. Section III is devoted to the deter-
mination of the envelope-mode solutions in the quasi-
discrete limit. In Sec. IV the calculations of Sec. II are
generalized and applied to the determination of breather
modes in a ferromagnetic chain model. Section V gives a
brief summary and discussion.

II. BREATHER EXCITATIONS IN
THE CONTINUUM LIMIT

We consider a KG lattice model where a system of ions
of mass m harmonically coupled interact with a nonlinear
substrate potential V(y). The Hamiltonian is given by
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where y„ is the scalar dimensionless displacement of the
nth ion. The constants Co and cop are the c&aracteristic
velocity and frequency of the system. The coiistant
h=ma sets the energy scale of the system. The corre-
sponding equation of motion of the nth ion is

idVV'»)
3'n =K(3's+ i+EN —i

—23'a )—too (22)

where K=Cola .
We look for small nonlinear collective oscillations in

the bottom of the potential wells. For this purpose we as-
sume

p =Fi (X,T)e'a+c.c.

+e[Fo(X,T)+F2(X,T)e e+c.c.], (2.8)

co =(top) +Cpk (2 9)

obtained from Eq. (2.4). Inserting (2.8) into (2.7) and
equating dc, first-, and second-harmonic terms we get

which contains a first-harmonic tenn and also a dc and
seAmd-harmonic terra. ' ' Here 8=kx to—t and the fre-
quency to and wave vector k are related by the dispersion
relation

e4. +4o
where e«1 and Pp is the ground state or potential
minimum amund which the oscillations will occur. For
Po ——0 the potential wells are symmetric (SG system} for
$~0 they are asymmetric (double SG or P~ systems).
Expanding in teauis of P in Eq. (2.2) one gets

e(top) (Fp+2aFiEi )+O(e )=0,
[ to +—(pip) +Cpk ]Ei+2e a(top) (EiFp+FiEi)

+3e P(a)p) (FiFi ) Cpa —Fixx 2ei pi—Fir
—2etkCpFix+e'Eirr+O(e') =0

[4Cpk —4pi~+(top) ]E2+a(top)iFi ——0 .

(2.10a)

(2.10b)

(2.10c)

~ ~

0.=«0.+i+4. i
—V.}-

pip[fP—„+eH„+ehg„+O(e )], (2.3)

(too) =tppf, a=glf, P=hlf . (2Ab)

We now use a simplified version of the multiple-scale
method or derivative expansion methods and extend the
indePendent variables xp x i, . ~ ~, aild to ti, . . . , where

where the coefficients f(Po), g(Pp), and h(gp) are deter-
mined by the shape of the potential and depend on Po
when the potential wells are asymmetric. Note that g=0
[odd tax~ in V(P)] if they are symmetric. 6

We first consider the continuum limit: We restrict our-
selves to those excitations which consist of a slowly vary-
ing envelope modulating a carrier wave whose dispersion
relation is that of a linear wave to order e. In this hmit
P„(t)~$(x,t) and Eq. (2.3) is approximated by

y» —Co'((L~+(pro)'(0+ y«'+e'PP') =0, (2Aa)

where

Eo= —2a IFi I

' (2.11b)

Fz=
3

IEi I'

We now introduce new scales

Z=X—VsT, s=eT

(2.11c)

(2.12)

dto kV= =—Co
dk to

(2.13)

Finally from Eq. (2.lla) we get the cubic nonlinear
Schrodinger (NLS) equation

Using (2.9},Eqs. (2.10) give

2cxe'(too)' —4a'+ +38 I Fi I
'Fi —epe Fixx

3

+gF i rr —2ei toF i r 2eikC pF—ix ——0 (2.11a)

with

xw=e x, (2.5) iF„+FF»,+Q IE, I'E, =0 (2.14}

Accordingly, the displacement field $(x,t} in (2A} is re-
garded as P(xo,xi, . . . , to, ti, . . .} and the derivative
operators alax and alat are expanded as

a a a a a a+6' + 0 ~ 0 ~~ +f + 1 ~ ~

ax axo ax i at ato af i

C'o —Vg
2 2

p 8 (2.15a)

(2.6)

To simplify the terminology hereafter, we write x for xo,
X for xi, t for to, and T for ti. Consequently, from (2.4)
me get

0» —co% +(~o)'(4+«0'+H')
+err Co&xx+2ekr —2«—oem =0 .

We now look for modulated wave solutions of the form

(mo)' 10 2

3
2CO l 3

(2.15b)

The coefficients P and Q depend on the wave vector k
and the potential parameters (cop)2, a, and P. The solu-
tions of (2.14) depend on the sign9'p of the dispersive
coefficient P and on the nonlinear coefficient Q. If
P{?&0, Eq. (2.14}has an envelope-soliton solution which
has a vanishing amplitude at

I
Z

I
~ oo, and which corre-

sponds to a small-amplitude breather. If PQ &0, a typical
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solution of (2.14) is a dark (or envelope hole) soliton when

the depression of an envelope propagates as a soliton with
a finite amplitude at ( Z ~

~ ao. In this e4Le the solution
of (2.14) is a dark (or hole} sohton which does not corre-
spond to the small-amplitude limit of breather modes.

For PQ & 0 the envelope-soliton solution is given by" 'i

' 1/2
Q~,S

Fi(Z,s}=A sech A Z-
2P 0.045

0.12 25

Qg Q~S
Xexp i Z— {2.16) FIG. 1. SG potential perturbed by an external constant force:

F/a)0 ——0.3.

where A is the amplitude,
1/22

~e —2ate~c
(2.17) Cog—~+toosi~+F =0 . (2.21)

and the corresponding perturbed SG equation of motion

where u, —2u, u, &0, and u, and u, are the velocities of
the envelope and carrier waves. We also note from Eq.
(2.15a) that the coefficient P is always positive (small k}
and in the following, only the sign of Q will be signifi-
cant. From Eqs. (2.16), (2.12), (2.11), and {2.8) we then
obtain the asymmetric breather solution,

For F=0 the potential wells are symmetric (Pp ——0) with
minima at /=0 (mod2n); for F+0 they are asymmetric
with minima (Fig. 1) given by

av(y)
8$

1.e.,

P=eA sech e
x —V, t

cos(Kx —Qt ) Pp ———sin '(F/coo) (mod2n. ) . {2.22)

—2am A sech e
L,

We assume P~eP+Pp in Eq. (2.20) which is expanded in

terms of P, and identified in Eq. (2.4) to give

(2.23)

+e —A2sechi e
e

cos[2(Kx —Qt )]

(2.18)

Inserting these values in (2.15b) gives

2

Q= c~o( 3 tan go+1) (2.24)

with

V, = Vs+@(u,/P),
K =k+@(u,/2P),

Q =(eu, /2P)( Vs+au, /P)+eo,

and where the quantity

L, =2P/(u, —2u, u, )'i

(2.19a)

(2.19b)

(2.19c}

(2.19d)

In this case the coefficient Q (which is an increasing func-
tion of Po) is always positive and the solution of (2.14) is
an envelope soliton. The corresponding low-amplitude
breather is simply obtained from Eq. (2.18), where P and

Q are expressed in towns of the coefficients (too)i, a, and

p given by Eq. (2.23). We notice that when F=0, we
have Pp ——0, a=0, and Q=coo/4o, and we recover the
small-amplitude breather solution of the nonperturbed
SG system.

is the width of the envelope.
From Eq. (2.18) we note that the parameter a in Eq.

(2.4), which is related to the asymmetry of the potential
wells, controls the weight of the dc and second-harmonic
terms.

Let us now illustrate these results by considering two
specific examples: The perturbed SG and P systems
which are universaHy used to model a variety of physical
phenomenon.

A. Perturbed SG system

In this case (see Fig. 1) we have

B. Perturbed P4 system

The equation of motion corresponding to the potential

(2.2S)

represented in Fig. 2, reads

fir &'4 +~o(—4" 0)+F=O .— (2.26}

For F&0 the potential wells are asymmetric with minima
given by the solutions of

(2.20)
F

4o—0o=
QPO

(2.27)
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—1.5

F/ ~,'=0./

0.75

placing in Eq. {2.18) the coefficients (rpp), a, and P. For
(F/top&0. 385) we have Q ~0, and in this

csee we have a breather low-amplitude excitation. In fact
we must remark, as represented in Fig. 2 where
E/pip 0——.4, that in this case the potential well no longer
exists Note that in this ctise the»» solutions of the P
equation are unstable. The stable small-amplitude oscilla-
tions are only possible around the ground state
pp2 ———1.17.

FIG. 2. P potential perturbed by an external constant force:
E/a)0 ——0.4.

For E=O they are asymmetric with Po——+1. Using the
same technique as in the previous case we get

2

{too) ——rpo(30o —1), a= z, P= z . (2.28)
34o

30o—1 34o—1

Consequently, Eq. (2.15b) gives

Q= ~ 3~i iko-1 (2.29'

For Pp& —,
'

we have Q &0 and the two breather solutions
corresponding to the two possible minima of the potential
wells (see Fig. 2), i.e., two values of Pp, are obtained by re-

III. ENVELOPE SOLUTIONS
IN THE DISCRETE CARRIER LIMIT

i8~ 2i8„
Jr„(t)=Fi„(t)e "+c.c.+e[Fp„(t)+Fs„e "+cc ]..

with 8„=ttka rot R—epla. cing (3.1) in (2.2) gives

(3.1)

In the preceding section we exafnined the breather
modes, i.e., the slowly oscillating solutions, and used the
continuum approximation for both the envelope and car-
rier wave, but if in FAI. (2.3) the atomic displacements
vary greatly, we must treat the phase 8=kx pit ex—actly,
and only use the continuuin approximation for the en-
velope function E. Thus in the equation of motion (2.3},
first we consider 8 and E as functions of the discrete vari-
able'i'~ ti and after takmg differences we go to the con-
tinuum limit for F.

We look for oscillating solutions of the form

~ ~ ~

2 gg 0 ~ 1 ~ ~ 2i8„(Ei,g »tpEi—,w ro Ei,g—)e "+eEp,,+e(Ei,„4itpEg, w
—4N Fg,g—)e

=K{Fi„+ie' +Fi „ ie ' —2Fi „}e "+eK{Fs„+ie +Fi, ie 2Fi„)e-i8„2i8„ 2i8„+EK(Fp +i +Fp i 2Fo, ) sop [Fl e "+eEp +eEi e "+ea(Ei e +2Fi Fi )
e

+2e'«Ei, NEo, s+Ei,sE2,N }e "+3e'N'i, .Ei,ae "] . (3.2)

Since the envelope function varies slowly, we now follow the same procedure as in Sec. II. We use the continuum ap-
proximation for F, introduce the slow variable X and T, equate dc, first-, and second-harmonic tu~s, and get

T T

K (ka) . 2aKa (ka)
(3.3a)

Fo ———2aiFi ii, (3.3b)

3+[16E/(top)i]sin

{3.3c)

r

4a-(tpp)'

2'
3+[16K/(mp) ]sin

, —3

(3.4)

In the above calculations we have used the dispersion rela-
tion for the cairier wave, Vs = = sin(ka),s dN EC

dk tp
(3.6)

a) =(a)p) +4Esin (ka/2), (3.5) we finally obtain the NLS equation

obtained by hnearizing Eq. (2.3).
Then, using the new scales Z and s defined by Eq.

(2.12), but now with

iF„+a'E',zz+Q' ( F,
~

'Fi ——0, (3.7)
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2Ka
cos(ka) — sins{ ka)

N
(3.8}

plane) and q„(in plane},

S„'=Scos@„cossp„, S~=Scos@„sing„, S„=Ssin@„,

As in the previous case the dispersion coefficient P' and
the nonlinear coefficient Q' depend on the wave vector k
and the potential parameters (pip), a, and p. We note
that for small k (continuum limit), P'~P, Q'~Q, and
Eq. (3.7) reduces to Eq. (2.14).

Considering the perturbed SG and P cases, we see from
Eq. (3.4) that for any k we have Q'&0. From Eqs. (3.8)
and {3.5) and with K=Cp/as we get

C2
P'= [(R+2)cosk —cos k —1],

267
(3.9)

y„(t)= eA 'sechX cos(K'na 0't ) —2ae ( A—')ssechsg

e a sech2X

3+[16C/(pip )1]sin~(ka /2)
cos[2(K'na —0't )]

where we have assumed a =1 and with R=(Pip) /Cp.
The sign of P' depends on k and R. For example, we find
that for R =1, P'&0 for k&kt ——1.2, and for R=10,
P & 0 for k & ki ——1.5. These results show us that we only
have envelope modes (P'&0) for 0&k & kt, ki being the
limit wave vector of the carrier wave. For k & ki we have
dark soliton modes. Using the solution of (3.7) which is
given by Eq. (2.16), and using Eqs. (3.31), and (3.3c), and
Eq. (3.1},we get the asymmetric envelope solution,

(4.3)

then the equations of motion become'

PN cosign =sin@I [cosmos+ icos(f's+ i ts }

+cos@„ icos(y„&—p„)]
—cos@„(sin@„+1+sin@„1)

cos@„sin@„
2A

J
gga+ sin@„coop„, (4.4a)

0=cos@„+isin(y„+1 —p„)

g'Pa
+COSSET 1S1n(gq 1

—Pq ) — SIniP~ . (4.41)

8,=Ja 1(yzzcos@—28zgz sin@ ) —b sing&,
T

2 Ja 2

/~os@= —Ja 8zz+2A sin@cos8 1 — yz
2A

(4.5a)

In the continuum limit (where the length-scale ratio
J/8 »1), Eqs. (4.4) become

arith

(3.10) +b sin@' cosp (4.51)

P=e(na —V,'t)/L, ' . (3.11)

Here P' and Q' replace P and Q in Eqs. (2.17) and (2.19),
defining the quantities A', V,', K', 0', and L,'. For a
given set of coefficients pip, a, and p which characterize a
specific potential, as, for example, the perturbed SG or P
system, one easily obtains, from (3.10), the respective
envelope-mode solutions.

IV. SREATHERS IN A FERROlWk. GNETIC CHAIN

Let us consider a 1D ferromagnetic chain described'
by the following Hamiltonian:

H = —Jg S„S„+1+A g (S„}—gps B g S„, (4 1)

AS„=S„X[J(S„1+S„+1)+gpsB—2AS„Z] . (4.2)

If the spins with fixed length S have their orientations
parametrized by the spherical polar angles 8„(out of

where the first term represents the ferromagnetic (J&0)
Heisenberg exchange interaction between neighboring
spins denoted by the vectors S„and S„+,. The second
term represents the easy-plane (xy) anisotropy energy
(A & 0) and the last tenn represents the Zeeman energy of
the spins in a magnetic field (8 =8) perpendicular to the
chain axis (Z). g and ps are, respectively, the Lande fac-
tor and the Bohr magneton. The dynamics of these classi-
cal spin vectors is described by the undamped Bloch equa-
t;ion

where r=(SIR)t and b=gps/S. In the limit 8«1 and
b «2A, Eqs. (4.5} can be approximated by the SG equa-
tion

IP~ 2AJa IPzz+—2Ab sing=0

with

y, =2AS,

(4.6a)

(4.61)

which achnits breather solutions which are given by Eq.
(2.18) (assuming 2AJaI=Cp and 2Ab=pip) with a=O.
To go beyond the SG limit, from Eqs. (4.5) we now con-
sider small oscillations around the in-plane angle y,
y~eq, and around the out-of- lane angle Sp which is as-
sumed to be small 8~&'p+ 'S. Under these conditions
Eqs. (4.5) reduce to

3

eb, =Ja'Ipzz b ip e' + +—o—(e3), (4.7a)

Ja'mezz—+(2A+b )(op+ ee)+0(~) (4.7b)

From Eqs. (4.7}one finally obtains

—2Ja (A+b)pzz+(2A+b)b(y eqrsl6)—
= —Ja qrzzzz —Ja be (% /6)zz . (4.8)

We remark that the first term of (4.8) corresponds to the
small-amplitude expimsion of Eq. (4.6a) and that the addi-
tional term on the right-hand side is of the modified
Boussinesq type. When b «2A, Eq. (4.8) reduces to Eq.
(4.6a).
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We now follow the calculations described in Sec. II to
reduce (4.8) to a NLS equation. We first introduce the
slow variables T=sr and X=eZ, and from (4.8) we ob-
tain

0'~+~%'~r+e t C—of'zz C—oegzx C—oe %xx

+h[%»/z+4eqpzzzx+6e qpzzxx+0(~}]

+q[~(q')z, +0(e')]—~oq+dq'q '=0

and V,"=0) the expression for 0,
hatt

tt

e@= Ja e(A") „b—sech(XZ)sin(for)
N 2P"

t

A" be i+ —Ju eA „sech (XZ)sin(co~)
8 P"

(A") be+ sech (XZ)sin(3ror), (4.19)

2

h=J a, q=Ja b/6, coo ——(2A+b)b, q'=
6

(4.10)

where
' 1/2

eA" . (4.20)

The nonlinear force terms in Eq. (4.8) are odd (cubic), and
they should correspond to even terms in the correspond-
ing potential. Consequently, we look for symmetric
modulated wave solutions without constant and second-
harmonic terms,

Q=F(X, T)e' +c.c. (4.11)

with 5=kZ a)r. —
Inserting (4.11) in (4.9), keeping terms to order e, and

introducing the new scales

F=X Vs'T,—s=eT (4.12)

V = =—(hk +Cp)
dco k
dk o)

(4.13a)

cod =cop+ Cpk z+ hk

we get the NLS equation

iF +P"Fyr+Q" (F (
F=O ~

Here we have

P"=[Co+6hk —( Vs') ]/2ro,

Q"=3(qk +q'} .

(4.13b)

(4.14)

(4.15)

(4.16}

{4.17)

where

V,"=Vs'+e(u, /P") . (4.18)

Here the breather excitation is no longer of the pure SG
type as in Eq. {4.6a). This is due to the external field
which increases the out-of-plane angle 8.

From Eqs. {4.7a) and (4.17) ane can calculate (for k =0

From Eqs. (4.15) and (4.16) we easily see that P"~0
and Q" ~ 0 for any k (k &&1), and Eq. (4.14) always has
the envelope-mode solution of the form (2.16), where P"
and Q" replace P and Q, and F replaces Z. Under these
conditions one obtains, from (4.11), the symmetric low-
amplitude breather solution. Therefore,

' 1/2

/=A "sech „eA"{Z—V;r} cos(kZ —co~),

V. SUMMARY AND DISCUSSION

We have examined the low-amplitude breather and en-
velope excitations in different models of quasi-one-
dimensional physical systems. Considering a generalized
Klein-Gordon lattice model we first used the continuum
approximation, effectively restricting ourselves ta those
excitations which consist of a slowly varying envelape
modulating a slowly varying carrier wave, whose, to order
e, dispersion relation is that of a linear wave. As pointed
out in the Introduction, in this small-wave-vector limit
the envelope mode looks like it is breathing, and hence we
call it a breather. Using the multiple-scale expansion
technique, we then reduce the equation of motion to a
nonlinear Schrodinger equation. The well-known soliton
solutians of the nanlinear Schrodinger equation corre-
spond to a breather in the original nonlinear Klein-
Gordon equation. Then our results can be immediately
applied to the calculation of breathers in the sine-Gordon
and P~ systems perturbed by an external constant force.
In both cases the asymmetry of the breather excitatians is
controlled by the amplitude of the external force. Both
these familiar examples were chosen to illustrate the above
expansion and method, which are not so well known in
detail by physicists.

We then generalized our study using the semidiscrete
limit in which the envelope of a soliton is determined in
the continuum limit, while the fast oscillations of the
qussiharmonic carrier inside the envelope are treated ex-
actly: Here their wave vector k is not limited to long
wavelengths and we call the excitation an envelope mode.
In the regime for both perturbed sine-Gordon and for P~

systems, we have asymmetric envelope solitons which can
exist for 0&k&ki (for k«1 they are the breather
modes calculated previously). An interesting related prob-
lem is that a nonlinear system which supports envelope
solitons is known to exhibit modulational or Benjaxnin-
Feir instability. Qualitatively, it is the tendency of an
amplitude-modulated carrier to break into isolated en-
velope solitons (nonlinear localization effect). Conse-
quently, this instability will exist for k &ki, but above
this limit it will disappeu. because the characteristic exci-
tations are of the dark (hole) saliton type, where the
depression of an envelope propagates as a soliton with a
finite amplitude (i.e., with infinite energy) at ( Z

~

-+ oo.
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Although these nodes are interesting in some other physi-
cal systems, in this context they carmot be attained by
finite-energy excitation from the ground state.

Our approach was generalized to the study of a 1D fer-
romagnetic chain where the spin orientations were
parametrized by the polar in-plane angle y and out-of-
plane angle 8. In the continuum and small-amplitude
limits we have obtained two equations of motion which
can be decoupled. Equation (4.3} for (p, which contains a
nonlinear sine-Gordon (small expansion) term, a disper-
sive term, and a nonlinear modified Boussinesq term, is
remarkable in the sense that it can be mapped to the equa-
tion of motion of a 1D chain of atoms nonlinearly cou-
pled and interacting with a $G substrate potential. Using
the same technique as in Sec. II, we have calculated the
symmetric breather (envelope) solitons solutions which are
no longer of the pure $G type, as is the case when the
out-of-plane angle is very small, i.e., for very low external
magnetic field. For any magnetic field the recent numeri-
cal simulations of Wysin et al. ' stress that the basic non-
linear excitations in quasi-1D ferromagnets such as
CsNiF& are breathers rather than isolated solitons. This

suggests it should be interesting to extend our study to the
calculations of breather or envelope structures at high
external magnetic field, in such materials, when the spins
do not remain close to the easy plane.

Finally, taken together with our earlier results on en-

velope solitons in nonlinearly coupled lattices, ' our
present results indicate that these nonlinear wave packets
called breather or envelope solitons, which can be easily
inverted in the low-amplitude limit, can be expected in
most quasi-1D nonlinear systems. We hope this work will
stimulate further investigations of these widespread, ex-
perimentally relevant excitations.
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