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A popular model for metals considers the binding energy E~ to consist of a structure-dependent

part E,„and a volume-dependent part E„,l. An analysis of each part's contributions to the pres-

sure, the bulk modulus x, and the shear moduli p and p,
' reveals combinations of elastic moduli that

are evidently fundamental as is evidenced by their systematic variation in the Periodic Table. If x„,l
and P„~ are the contributions of E„,l to x and P, respectively, at arbitrary applied pressure P,
~„,l —2P„,l ——x —2P —p' —Tp, . If nearest-neighbor interactions provide the dominant contributions

to the structure-dependent parts of a, p, and p', for fcc crystals K„,l=K —3(9p' —10@) and

P„,l ——2p —IJ,'+P. For aluminum, ~„,l/a™I (i.e., p/p'=0. 9); this is considered to be more basic
(and is more accurate) than the "usual*' expression of aluminum's high isotropy (i.e., p/p, '=1).
Similar elastic behavior is predicted for the fcc metals calcium and strontium. For the metals

copper, silver, nickel, and lead, x„,l/a is small; i.e., ~= 3 (9LM,
' —10@). Theoretical and empirical con-

siderations suggest the utihty of a specific analytical form for Et„~ for the noble metals copper,
silver, and gold; the form has four model-adjusting constants, the values of which are determined

from experimental values of the zero pressure atomic volume and elastic moduli x, p, and p'. The
resultant expressions for Eb;~ are used to compute P„,l, sr„,l, theoretical pressure-versus-volume re-

lations, and the first and second pressure derivatives of x, p, and p, '. The results compare favorably
with experiment and with other (more complex) theoretical computations.

INTRODUCTION

Models for atomic binding of crystals are used in
theoretical studies of many solid-state phenomena, includ-
ing elasticity, general deformation, theoretical strength,
lattice vibrations, and phase stability and transformations.
Since computations of such phenomena based upon first
principles are extremely complicated, models that are sim-
ple and accurate are of particular value; i.e., they allow
computations to be performed and provide physical in-

sight. A model popularly used in studies' of the lattice

dynamics of metals considers the binding energy per atom
E~ to consist of a structure-dependent part E„,and a
volume-dependent part E„,i,

Ebind Estr+Evol ~

where E„,is taken as a summation over pairwise energies

P depending only upon interatomic separation r and E„,i
is attributed to the energy associated with the electron gas;
E,„is generally taken to include only nearest-neighbor or
nearest- and next-nearest-neighbor interactions, although
longer-range interactions can be included, in principle.
The present paper concerns several aspects of this model.

First, despite the basic simphcity of the model, a fair
amount of controversy can be found in the technical
literature' ' regarding (i) the conditions for crystal
equilibrium and (ii) the relationships between the elastic
moduli of the crystal and P„,i and tt„,i (the contributions
of the volume-dependent part of the binding energy to the
total pressure and bulk modulus, respectively, of the crys-

tal). Here we show that the formalism developed by Mil-
stein and Hill" ' to treat the elastic moduli of cubic
crystals at arbitrary pressure is able to provide a clear per-
spective. Second, a general expression is derived for
tt„,i —2P„oi in te -ms of the elastic moduli of the crystal;
the expression is general in that it applies at arbitrary
pressure P and for arbitrary mathematical forms for E„,i
and E,„(without need of truncating the lattice summa-
tion comprising E,„after some arbitrarily small number
of terms). Next, for fcc crystals, in which, to a reasonable
approximation, the E„,lattice summation can be truncat-
ed after just nearest-neighbor interactions, separate (gen-
eral) expressions are derived for tt„,&

and P„~i in terms of
the elastic moduli [specifically, /c„oi=K —

3 (9p —10@)and
P„,i 2Is p'+P, wh——ere tt—, p„and p' are the bulk and two
shear moduli and P is the external pressure]; these expres-
sions are also applicable at arbitrary pressure and for arbi-
trary mathematical forms of E„,i and E„,. Experimental
values of elastic moduli are then used to compute theoreti-
cal values of tt„,i and P„,i for a number of fcc metals, and
the results are discussed in terms of the nature of metallic
binding and the positions of the metals in the Periodic
Table. Although based upon a simplified model, the com-
binations of elastic moduli that comprise tt„,

&
and P„,i evi-

dently represent fundamental quaatitics; i.e., they exhibit
a systematic variation in the Periodic Table that is not
present among the individual moduli tt, p, and p' (or
among the moduli CJ ). The expression for tt„,i allows us
to obtain insight into the high degree of isotropy of alumi-
num; i.e., for Al, x„,l/~=1 so p/p'=0. 9. We consider
this to be a more fundamental and technically correct
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statement of the elastic behavior of aluminum than is the
"usual" expression }Li/p'=1.0 (the experimental value is
0.83 at 0 K). The positions of calcium and strontium in
the Periodic Table lead us to predict similar behavior for
these fcc structures. For other fcc metals (specifically
copper, silver, lead, and nickel), K„,&/K is small, so to a
good approximation K= T(9p,

' —10); Milstein and Ra-
sky' recently proposed this as a theoretical relation for
fcc crystals and they showed that it agrees with experi-
mental data better than the Cauchy relation K=@'+2@/3
(or Ci2 ——C~} for fcc metals and inert-gas solids. The
present development shows that the expression of Milstein
and Rasky" becomes "exact" (i.e., for the simplified
model under consideration) if K„,~ is zero and E„,consists
of nearest-neighbor interactions only.

Finally, for the purpose of illustration and of obtaining
some useful forms of Eb;„z, pseudopotential theory is used
to suggest a form for E„,~, and specific expressions for
Eb;„z are determined for the noble metals Au, Ag, and Cu
based upon experimental values of the zero-pressure atom-
ic volume and elastic moduli K, p, and p'. These expres-
sions are then used to compute P„,~, K„,~, the pressure
derivatives of the elastic moduli K, p, and p', and the
pressure-volume relations. The theoretical computations
are compared with experimental results and with compu-
tations made using the full pseudopotential model; good
agreement with both is obtained.

CONTRIBUTIONS TO THE ELASTIC MODULI

Milstein and Hill adopted the view that the bulk
modulus ~ and "the shear moduli p and p,

' provide a more
direct, physically meaningful measure of the elastic
response of cubic crystals at nonzero pressure"' than oth-
er moduli that have been discussed in the literature, where
"K is the ordinary bulk modulus, (A, /3)dP/dA—,, while p
and p' are the usual shear moduli in the relations between
the cubic-axes components of the Cauchy stress increment
5o;J and the rotationless strain increment 5e,z (reckoned
conventionally, relative to the current configuration);"'
the term "current" refers to the cubic crystal at any given
atomic volume Q, under equilibrium pressure P; thus, P
represents the external pressure required to hold the crys-
tal at atomic volume Q; at P =0, Q=QO,' the stretch
A, =(Q/Qo)'~. Milstein and Hill' ' derived the follow-
ing expressions for the structure-dependent contributions
to K, p, and }M,

' (to our knowledge, the prior literature does
not contain explicitly the lattice summations for p and
p'):

P =Ps~+P.oi (7)

which follows from Eq. (1) and the relations
P = dEb;„g/d—Q,

dE„, dE.oi
Ps«= — and Pvot =—

(P„,& is thus seen to be the contribution to the total pres-
sure resulting from the volume-dependent part of the en-

ergy; it is usually attributed to the pressure resulting from
the conduction electrons, although the development in the
present section of this paper does not require a mechanis-
tic model or particular mathematical form for E„,~ apart
from its explicit dependence upon Q.}

(3) The bulk modulus K of the crystal at volume Q and
pressure P is given by

&=&str+&vo1 s

from which

I 2
+str 2Pstr =I str+ TPstr ~

where a is the current lattice parameter; n is the number
of atoms in a conventional cubic cell; the rn; are integers
appropriate to the particular cubic lattice (the quantity
m &+mz+m& must be even for each lattice site in an fcc
crystal and the m; are all even or all odd at each bcc site};
the summations are over the allowed values of the indices
m;; P'(r } and P"(r ) are, respectively, the first and
second derivatives of P with respect to r . Equations
(2)—(6) are applicable to the crystal at any given atomic
volume Q. For the "special case" in which E„„z——E„,
(i.e., if E„,& is not included in the expression for the bind-
ing energy), Eq. (5) gives the total, externally applied pres-
sure P (required for equilibrium) and Eqs. (2}—(4) give 3K,

p, and p, ', respectively, for the crystal under pressure P.
In that case, Eq. (6) relates the pressure and crystal modu-
li, and furthermore, if P =0, K=@'+—', p, is equivalent to
the Cauchy condition C~2 ——C~.

If Eb;~ is given by Eq. (1), however, the following
statements are valid for the crystal (at any given volume
Q).

(1) Equations (2)—(6) give the structural contributions
(i.e., resulting from the pairwise interactions) to the total
pressure P and crystal moduli K, p„and p' for the crystal
at atomic volume Q.

(2) The total externally applied pressure P necessary for
equilibrium of the crystal is given by

3K„,= g [(rni+2rnimz)P"(r )]+P„,,
23

p„,= g [(m', —maim,'}y"(r'}]—P„, ,s 1'
24

ps«= g[mimp4 "(r )]—P„, ,
23

(3)

(4)

which follows from K= QdP/dQ, K,«= —QdP, «ldQ, —
K„o)=—QdP„O) IdQ, aild Eq. (7};K„()) is thus the contribu-
tion to the bulk modulus K resulting from the volume-
dependent part of the binding energy.

(4) At any given atomic volume, the term E„,i does not
contribute to the shear moduli p and p' of the crystal
(p„,i——p„',i ——0); thus

with
g I

p=pstr and p =pstr ~ (9)

P„,= — g m fP'(r ) f 2
vol 2Pvo] =& 2P p Tp (10}

We can now substitute (7), (8), and (9) into (6) to obtain



VOLUMETRIC AND STRUCTURAL CONTRIBUTIONS TO THE. . .

p, '=AC44 P. —
For the stretch moduli

1 2P 1 P
{Cll+ C12)+ I P' {C11 C12)

3A, 3' 2A, 2
'

(12)

For the Milstein moduli,

1 2P 1 P(Cii+2C12)+, P= (Cii —Ci2) ——,
(13)

p'= —P .
A,

3

[Elastic moduli CJ are defined according to

1 ~) Ebind
2

Qo BqtBqj

where the q; are any suitable set of geometric parameters.
In Eq. {11)the q& are the elements of the Green strain ten-
sor; in Eq. (12) the q; are the elements of the stretch ten-
sor; in Eq. (13) the q; are the edges of the conventional
cubic cell and their included angles. The C,J depend upon
the level of strain in the crystal and upon the choice of q&.

It is emphasized that Eqs. (11), (12), and (13) are model
independent Also, ana. logous sets of equations could be
derived for other appropriate choices of q;.] If we consid-
er the case where the applied pressure P is zero {A,=1),
substitution of Eqs. (11),(12), or (13}into Eq. (10) yields

+vol 2Pvol C12 C44 (14)

Equation (14) was derived earlier by Thomas, ' but for the
special case of fcc and bcc crystals in which E„,consists
of nearest-neighbor interactions only and E„,i is given by
terms of the form CQ" where C and n are constants. The
present development shows that Eq. (14) is valid even
with E„, containing arbitrarily long-range interactions
and for arbitrary forms for E„,i. Furthermore, Eq. (10),
which does not seem to have appeared in the prior htera-
ture, is a preferred form, since it is applicable at arbitrary
pressure. (In order to relate ~„,1—2P„,1 to the C,J under
nonzero P, separate equations should be needed, in general,
for each choice of geometric parssTTseters q;; thus, for the
Green, stretch, and Milstein moduli, three distinct equa-
tions are needed. ) Thomas correctly pointed out the error

which gives the relation between the elastic moduli of the
crystal (K, |Il, arid i4'), thc equlllbrluTTT prcssure P app11cd
to the crystal, and the contributions, a„,i and P„„,of the
volume-dependent part of the binding energy to the bulk
modulus ~ and pressure P, respectively. Equation (10) is
vahd at arbitrary applied pressure P (and, of course, at
P =0).

Equation (10) can be rewritten in terms of sets of elastic
moduli Ctj using the following relations, derived by Hill
and Milstein. '9 For the Green moduli

P A,x=—(Cii+2C12)+ —,P, =—(Cii —C12)—P,
3 3' 2

in the work of deLaunay; ' evidently he and his fol-
lovrers had set C&2 —C~ equal to x„,] alone; this error was
also pointed out in papers by Cousins and Bhatia. The
error results, in effect, from the unwarranted assumptio~
that the contributions of E„,i to —,

'
(Cii —C12) and to C44

are zero. If these contributions are designated as
—,'(C» —C12, ) and C44, , the nature of the error is

made explicit by allowing Eqs. (11) to represent the
volume-dependent parts and setting p &

——p,
'

~
——0 ~ e

g (Cii, —C12,, ) =P,,i/&, C44, P„,i——/A, . (15)

1 v01 3
Y(C11„O1 C12«1 )=

2 I C44„1 ~ Pvol ~

This illustrates that the quantities —,'(C» —C12 ) and

C44 are not only nonzero, but their specific dependen-
vol

cies upon P„,i are not independent of the choice of vari-
able qt used in specifying strain. The above development
further illustrates the physical and conceptual advantages
of working with the set of moduli a, p, , and p,

' versus any
of the sets C;J, since it is specifically the shear moduli p
and l4' that are unaffected by E„,i, irrespective of its par-
ticular mathematical form. [Note that while E„,i does
not contribute to 114 and iu,

' for a cubic crystal at a giuen
uolttnie, the addition of an E„,i contribution to a crystal
(previously described by an E,„contribution only) will
Chasige the equilibrium VOlume (and equilibrium preSSure),
in general, and that will of course affect the values of the
shear moduli of the crystal. ]

Our expressions for a.„,i and P„,i (which are often re-
ferred to as the bulk modulus and pressure of the electron
gas} can be sharpened further if we consider that only
nearest-neighbor interactions contribute to the P"(r2)
summations in Eqs. (2)—(4); Eq. (5) may still retain an ar-
bitrarily large number of terms, or may be truncated after
any given number of terms are included. For an fcc crys-
tal, Eqs. (2)—(4) then become

3&,T,
=8v 2r 1p "(r

1 ) +Ps«,

p„,=V 2r, g"(r, ) P„, , —

p, ,'„=2@2r, y"(r', }-P„,,
(18}

where r 1 is the current nearest-neighbor distance. Equa-
tions (6)—(10) are also valid in this "nearest-neighbor" ap-
proximation for x,~, p„„and p,,'„, in addition, eliminating
P„,and r isI) "(r

1 ) from Eqs. (18) gives

StE 9I StE I StE

Combining Eq. (19) with Eqs. (8) and (9), we have

v„oi——x ——,(9P' —10P,),

(19)

(20)

at any pressure P. Substitution of Eq. (20) into (10) then
yields

Note that Eq. (15) applies specifically to the Green modu-
li; for the stretch moduli, from Eqs. (12),

1 ~.O1 liPvoi

vol vol 2 vol

and for the Milstein moduli, from (13},
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Pyo) =2p —p +P, (21)

which is also valid at any pressure P. If we now consider
the "special case," in which the (externally applied) equili-
brium pressure P is zero, and substitute Eqs. (11), (12), or
(13) into (20) and (21), we obtain

+vol 2C11 C12 3C44 (22}

Pvol C11 C12 C44 ~ (23)

Equations (20) [or (22)] and (21) [or (23)] thus provide
theoretical expressions relating the elastic moduli of fcc
crystals to the volume-dependent contributions to x and P
[Eqs. (20) and (21) are to be preferred since they apply at
arbitrary pressure P]. Furthermore, the relations can be
used to compute theoretical values of ~„,i and P„,i from
experimental values of the elastic moduli; some values are
listed in Table I.

Table I reveals several interesting features that are
understandable in terms of relatively simple, well-known
concepts of atomic binding. Consider first the noble met-
als Cu, Ag, and Au. To a good approximation, the elastic
properties and existence of close-packed crystal structures
in these metals can be understood in terms of an essential-

ly "hard-sphere" model, wherein E„,i contains the
volumetric part of the electrostatic attraction between the
ionic cores and the valence electrons, which is assumed to
"force the atoms together, " and E„,consists primarily of
short-range, repulsive, d-band interactions between the
relatively large, closed-shell, ionic cores of neighboring
atoms. Thus, P„,i for these metals is negative. [Since

P„,i is the contribution to the externally applied pressure
P, a negative value of P„,i (at P =0) implies that the E„,i
contribution "forces the atoms together" while the E„,
part "pushes them apart;" negative values for P„,~ in
Table I thus imply repulsive interactions between the
nearest-neighbor atoms. ] Among the noble metals, the
quantities x'„,], P„,~, and a'„,~/~ all increase with increasing
atomic number; this behavior can be incorporated in the
"core correction" to the electrostatic attraction between
the ionic cores and the valence electrons, as is discussed in
the following section. Likewise, the quantities ~„,&, P„,i,
and x„,i' also increase with increasing atomic number
among Ni, Pd, and Pt, which respectively, are the 31, 4d,
and 5d transition metals constituting the column of the
Periodic Table adjacent to that of the noble metals. The
fact that such monotonic behavior is not observed among
the elastic moduli themselves (in both columns of the
Period Table} lends support to the contention that the
quantities a„,l and P„,i, as specified by Eqs. (20) and (21)
[or (22) and (23)], represent fundamental elastic properties
of the metals. (Note, e.g., that C» decreases from Cu to
Ag but increases from Ag to Au or that p decreases from
Ni to Pd but increases from Pd to Pt.) Interpretation of
the P„,~ values for Ni, Pd, and Pt is more complicated
owing to additional attractive interactions between what
are evidently nearly filled d shells. However, it may be
presumed that, for each of these metals, these interactions
cause increased attraction between ion cores (relative to
the respective noble metal, in the same row of the Periodic
Table}. Thus, one would expect P„, (which is positive
algebraically and therefore repulsive for the noble metals)
to be less for Ni than for Cu, less for Pd than for Ag, and

TABLE I. Elastic moduli and properties calculated from Eqs. (10), {20),and {21)at atmospheric pressure {i.e., I' =0) for fcc met-
als. The moduli are from Refs. 31 and 32 and are in units of 10' dyn/cm .

Temperature
{K)

0
300

1.762
1.684

1.249
1.214

0.818
0.754

0.2565
0.235

1.420
1.371

&vol 2~vol

0.431
0.460

—0.179
—0.108

—0.305
—0.284

—0.126
—0.079

Ag 0
300

1.315
1.240

0.973
0.937

0.511
0.461

0.171
0.1515

1.087
1.038

0.462
0.476

0.124
0.160

—0.169
—0.158

0.114
0.154

0
300

2.016
1.923

1.697
1.631

0.454
0.420

0.1595
0.146

1.803
1.728

1.243
1.211

0.973
0.955

—0.135
—0.128

0.540
0.553

300
2.612
2.508

1.508
1.500

1.317
1.235

0.552
0.504

1.876
1.836

0.191
0.265

—0.235
—0.189

—0.213
—0.227

—0.125
—0.103

Pd
300

2.341
2.271

1.761
1.760

0.712
0.717

0.290
0.2555

1.954
1.930

1.049
1.043

0.785
0.631

—0.132
—0.206

0.402
0.327

Pt 0
300

3.580
3.467

2.536
2.507

0.774
0.765

0.522
0.480

2.884
2.827

1.762
1.742

2.302
2.132

0.270
0.195

0.798
0.754

0
300

1.143
1.068

0.619
0.607

0.316
0.282

0.262
0.2305

0.794
0.761

0.303
0.325

0.719
0.683

0.208
0.179

0.906
0.898

0
300

0.555
0.495

0.454
0.423

0.194
0.149

0.0505
0.036

0.488
0.447

0.260
0.274

0.074
0.120

—0.093
—0.077

0.152
0.268
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less for Pt than for Au; the converse would be true for
P„,i, since P„,i —— —P„, at zero external pressure. For the
0-K data, this is indeed the case, as is seen in Table I (i.e.,
P„„is greater for Ni than for Cu, etc.).

The element Al presents a particularly interesting case,
Al is known to be highly isotropic, i.e., pjp'=1. 0. How-
ever, in view of Table I, perhaps a more fundamental
statement of aluminum's elastic properties is that K„,i=K,
or [from Eq. (20)] pjp'=0. 9. {For Al at 0 and 300 K,
respectively, pjp'=0. 83 and 0.82.) The large contribu-
tion of K„,i to K and the positive value of P„,i in Al can be
understood qualitatively from aluminum's relatively high
valence and small, closed-shell ionic core (i.e., that of the
Ne configuration), which evidently result in a zero-
pressure equilibrium volume in which the nearest-
neighbor ionic cores are well separated. Thus, the bulk
modulus of Al is mainly determined, not by the repulsive
interactions between neighboring ion cores, but by the dis-
tribution of the valence electrons which are scattered by
the lattice of ion cores in the crystal. This evidently
causes the elastic behavior of Al to be anomalous {when
compared with most other fcc crystals); for example, most
fcc crystals exhibit a negative Poisson ratio in [110]uni-
axial loading, whereas Al does not; and most fcc crystals
exhibit upward concavity of the initial stress-strain curve
in [100] uniaxial loading, but Al does not. 2 In view of
the above considerations, presumably the fcc metals Ca
and Sr would behave elastically similarly to Al. (Elastic
constant data for Sr and Ca could not be found in any of
our "usual" handbooks. ) It is also interesting to note in
Table I that the behavior of P„,i and K„,~/K for the noble
metals tends toward that of Al as the atomic number of
the metals increases; this behavior occurs even more
markedly in the group Ni, Pd, and Pt. This tendency {to-
ward the elastic behavior of Al) evidently is also reflected
in other elastic properties; e.g., consider the aforemen-
tioned Poisson ratio, which is given by

v, go
——(R —2C44)l(R +2C~) „

where

R = Ci i +Ci2( 1 —2Ci2/Ci i )

(v, —,o is the negative of the ratio of strain in the [110]
direction to the strain in the [110] direction under [110]
uniaxial load); for Cu, Ag, and Au at 0 K, v, —,o= —0.138,
—0.093, and —0.029, respectively; for Ni, Pd, and Pt at 0
K, v, To

———0.051, 0.010, and 0.240, respectively

(v& io ———0.048 for Pd at 300 K}; for Al at 0 K,
V~TO

—Oo 267'
Finally, it is noted that the behavior of Pb is most like

that of Cu, Ag, and Ni {and to a lesser extent Au and Pd)
in that I',

~ is negative and x„~/x is relatively small. For
these metals, neglect of K„,i in Eq. (20) gives
K= —,'(9p' —10@) or from Eq. (21), C44 ———,'(2Cii —Ci2);
this condition is more accurately fulfilled for fcc crystals,
in general, than is the well-known Cauchy relation
C44 C12'

18

For bcc crystals, computations' ' with a variety of
potential functions P have shown that next-nearest neigh-
bors make relatively large contributions to the moduli

(especially to p); thus, for bcc, it is necessary to include at
least second-nearest neighbors to determine ~„,~ and P„,~.

The leading terms in the expansions for the structure-
dependent part of the bcc crystal's moduli are' '

3K„,=4@3r, [p"(r, )+—', p "(—', r, )]+P„, , (24)

p. ,= - [W'«i )+0"(—r i )]—P"str (25)

p,,'„= [4}"( i)+04}"(—, i)]—P„Sf (26)

However, here we are unable to eliminate P„, and the p"
terms without assuming a particular form for P (e.g.,
Born-Meyer, Morse, Lennard-Jones, etc.), and thus, for
the bcc crystals, we do not attempt to formulate separate
equations for K„,i and P„,i, independent of the form of p,
as was done for the fcc crystals [Eqs. (20)—(23)].

Ebi d EFE+Ees+EBs+Eol (27)

where the four terms on the right-hand side of Eq. (27)
are, respectively, the free-electron energy, the electrostatic
energy, the band-structure energy, and the overlap energy.
Thomas2 employed such a model in his computations of
the third-order elastic moduli of copper and silver; he
used five model adjusting constants to fit experimental
values of the binding energy, lattice parameter, and the
three second-order elastic constants C& of these metals.
(An attempt to apply the five-parameter fitting procedure
to gold was unsuccessful; in view of the preceding section
of the present paper, this difficulty seems to be connected
with the relatively large value of K Oi/K for Au. ) Thomas
found good agreement between computed and experimen-
tal third-order elastic constants. He also found that the
E,i term (which he approximated as a nearest-neighbor
summation of Born-Mayer repulsive interactions) made
the dominant contributions to the elastic moduli; this is
consonant with our findings in Table I that P„,i is nega-
tive and K„,i /K is small for these metals. Similarly, Hiki
and Granato, ~ in their explanation of their higher-order
elastic constant experimental data, suggested that the
closed-shell repulsive interaction between nearest-neighbor
atoms makes the dominant contribution to the higher-
order constants in the noble metals (particularly in Cu).
Thomas's pseudopotential calculations and the discussion
of Hiki and Granato of the fitting of elastic constant data
to interatomic potentials led Johnson to model the elas-
tic properties of Cu using Born-Mayer repulsion between
atoms plus a single volume-dependent energy term of the
form CQ", where C and n are constants; using a value of
n = —,', he was able to obtain reasonably good fits to ex-

perimental values of the second-order elastic constants C;J
and to three combinations of third-order elastic constants

Cijk for Cu. (Johnson did not mention whether or not he
had attempted to describe Ag and/or Au in this manner. }

INTERATOMIC POTENTIALS
FOR THE NOBLE METALS

Work by Harrison2' and Moriarty26 has allowed pseu-
dopotential theory to be applied to d-band metals. The
binding energy per atom Eb;„d is written as
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The above discussion suggests that simplified intera-
tomic potentials that have a basis in pseudopotential
theory can be developed for the noble metals. First, con-
sider the volumetric parts of the binding energy. The
electrostatic energy of interaction of a lattice of positive
ion cores (treated as point ions) with the valence electrons
(treated as a uniform negative background) is written as

2
Z

Ees (28)

where z is the valence and P is a constant that depends
upon the specific crystal structure. The effect of the
finite-ion core size on the electrostatic attraction between
the ion cores and valence electrons can be taken into ac-
count using a Heine-Abarenkov bare ion potential. 30 If
the ionic core is assumed to have a radius 8, outside of
the core a valence electron is attracted to the core through
Coulombic attraction, giving an interaction energy of
—2z/r. Inside the core, however, owing to the repulsion
from the core electrons, the magnitude of the interaction
energy between the valence electron and the ion core is re-
duced to a constant value —Ao. This reduction in elec-
trostatic energy can be accounted for by a core correction
tarn of the form

E.ot =Em+E' +Ecc (30)

where EFa (which includes the kinetic, exchange, and
correlation contributions to the energy of the free-electron
gas) is given by a standard form, i.e.,

Epa ——z[ 5.742(z/Q) —1.477(z/Q)'i

band-structure energy tended to cancel with the
structure-dependent contributions from the electrostatic
energy. This would suggest that the band-structure ener-

gy contribution might be neglected, if at the same time
the structure-dependent contributions to the electrostatic
energy are also neglected; that is, if E is treated as a
completely volume-dependent term, with the structure
coefficient p being considered an adjustable constant.
This procedure should thus eliminate the computational
complexities associated with calculating the band-
structure energy contribution and the structure-dependent
part of the electrostatic energy. (Of course, this is not to
say that the band-structure contributions are unimportant;
for example, owing to small differences between the ener-
gies of the fcc and hcp structures, band structure is no
doubt crucial to determining crystal structures. )

The volume-dependent part of the binding energy can
then be written as

AZ
Ecc= —0.031ln(z /Q)'~ —0. 130] . (31)

where a is a constant given by

a=(4n/3)R~(2u +3)
wltll u = —Joking. /2z.

In addition to correcting for the finite size of the ion
cores, it would appear, as mentioned in the prectxhng sec-
tion, to be important to correct the electrostatic energy to
account for valence-electron scattering by the ion core lat-
tice, which leads to the "piling up" of valence-electron
charge. The energy contribution resulting from this
scattering is typically called the band-structure energy,
and its computation generally requires summations in re-
ciprocal space, owing to the long-range nature of the in-
teraction. Such calculations involve analytic and compu-
tational complexities that we seek to avoid in the present
model. That this is a reasonable goal, at least for Cu and
Ag, is indicated by Thomas s computations, which includ-
ed the band-structure corrections and showed that the
dominant contributions to the elastic constants comes
from the overlap energy, while the contributions from the

1 -B(,r/r
&

—I )
E,„=Eoi———, g Ae (32)

where the r values are the distances between the origin
atom and its neighbors, A and B are adjustable parame-
ters, and r, is the nearest-neighbor distance. [Although
three constants A, B, and r, appear in the Born-Mayer in-
teraction (as it is normally written), there are of course
only two "real" adjustable parameters, A

' =—Ae and
B'=B/r i.) The total b—inding energy per atom is then

Ebind EFE+Ees+ECC+Eol &
(33)

where the asterisk on the electrostatic term indicates that
it is treated as completely volume dependent.

(The units are rydbergs and Bohr radii ao for energies and
lengths, respectively. )

Finally, the overlap energy, expressed (as usual) as a
summation over Born-Mayer repulsive interactions, is tak-
en to be synonymous with the structural part of the bind-

ing energy, i.e.,

TABLE II. Values of the model-adjusting constants for the noble metals in the present simplified
model [Eqs. (28)—(33)]. For comparison, three of the five model-adjusting constants are also listed for
Cu and Ag for the fuH pseudopotential model (Ref. 27).

Element

Cu
Ag
Au

(Ry ao)

5.3344
36.823

144.26

(Ry ao)

4.1859
7.401&

20.638

A

(10 3 Ry)

6.6397
4.6598
3.2660

13.167
14.697
16.297

Reference

present work
present work
present work

2.92
22.41

4.62
4.21

14.95
15.26
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The binding energy per atom, as given by Eqs.
(28)—(33), contains four adjustable constant, i.e., a, p, A,
and 8. We matched these four constants to the experi-
mental values of the three 0-K elastic moduli given in

Table I and lattice parameters (3.6153, 4.0856, and 4.0783
A, respectively) for Cu, Ag, and Au; the values of these
model adjusting constants are given in Table II, together
with the "comparable values" based upon the full pseudo-
potential fit. The parameters a, P, and 8 increase while
A decreases with increasing atomic number. Table III
shaws the contributions of the individual energy terms to
the total pressure P and bulk modulus K of these metals in
the framewark of the present model; these terms are

dEva dEcc, dE~
dQ

' dQ ' dQ

Eoi
P.oi =PFx+Pcc+P~ Pstr =—

Q

dPcc
P =P„,) +Pst„KFE———Q, Kcc——Q

dP'
vol

——x'FE+ x'cc+x

str
K t = Q, and K=Kvo)+Kstr I

dQ

the derivatives are all taken at Q=Qo (for the values list-
ed in Table III). The values of P„) and K„,) are slightly
different in Table I from those in Table III; this is because
for Table III the summation in Eq. (32) was summed to

TABLE III. Contributions of the individual energy terms to
the pressure and bulk modulus of the noble metals at zero pres-
sure and temperature; the units are 10' dyn/cm .

Ppp

Pcc
PO

P.oi

pgt.
p

0.151
0.123

—0.597
—0.323

0.323
0

0.064
0.408

—0.647
—0.175

0.175
0

0.065
1.616

—1.818
—0.137

0.137
0

PCFE

Kgc

Keg

&vol

&str

0.334
0.246

—0.796
—0.216

1.636
1.420

0.159
0.816

—0.863
0.112
0.975
1.087

0.160
3.233

—2.424
0.969
0.834
1.803

convergence, rather than just over nearest neighbors [that
this difference is very small somewhat supports the use of
the nearest-neighbor approximation in determining Pqs.
(20)—(23) in the preceding section]. Values of K„,i—2P„,i
based upon Table 111 of course agree with those in Table
I, since the derivation of Eq. (10) did not limit E„, to
nearest-neighbor interactions only. The approximate can-
celing of the net contributions af KFE Kcc and K' is seen
for Cu and Ag, but not for Au (as, of course, was expect-
ed from the values of K„,i/K in Table I).

As a further test of the efficacy of the simplified poten-
tials far the noble metals, we used the potentials to com-
pute theoretical pressure-volume relatians and the first

TABLE IV. Pressure derivatives of the bulk and shear moduli a, p, and p' of the noble metals.

Element dz/dp dp/dp dp'/dp
d'2&/dp2 d 2p /dp2 d2p'/dP ~

(10 ' dyn/cm~) Footnote

5.57
5.80
5.44
8.07
5.3

0.80
0.92
0.38
0.70

2.66
2.58
2.63
2.43

—4.1

—3.6
—0.85
—0.69

—2.4
—1.3

5.48
5.73
4.11
5.96
5.1

0.78
0.80
0.76
0.64

2.42
2.07
3.04
2.27

—4.0 —0.62
—0.61

—1.5
—0.84

4.66
5.21
6.43
4.6

0.49
0.38
0.44

1.43
1.52
1.79

0.56

'Computed in the present study using Eqs. (28)—(33).
Computed in the present study using the pseudopotential model developed by Thomas (Ref. 27).

'Experimental at 300 K, Ref. 28.
~Experimental at 4.2 K, determined in Ref. 27 from data in Ref. 33.
'Experimental at 300 K, Ref. 34.
Experimental at 77 K, Ref. 35.
experimental at 300 K, Ref. 36.
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and second pressure derivatives of the elastic moduli ~, LM, ,
and )M', and compared the results with available experi-

mental data and with the results of analogous computa-

tions using the full pseudopotential model. These com-
parisons are summarized in Table IV and Figs. 1(a}, 1(b),
and 1(c). The theoretical values of the pressure deriva-
tives of the elastic moduli (i.e., the first two rows for the
elements Cu and Ag and the first row for Au in Table IV}
were determined by computing the moduli themselves as a
function of pressure and taking numerical derivatives of
the data in the neighborhood of the zero-pressure state;
this was done for both the simplified model and the full
pseudopotential model. (Numerical accuracy was such
that the number of significant figures far exceeded those
listed in Table IV.} The values computed for the first
derivatives with the full pseudo otential model agree well
with those reported by Thomas; small differences occur,
evidently because we summed E,&

to converge and Tho-
mas used nearest neighbors only (e.g., for der jdP of Ag,
we obtained 5.73 for the full pseudopotential result
whereas Thomas reported 5.72}.

In recent years, a variety of investigators have em-

ployed various simplified models and theoretical tech-
niques to study bonding and related properties of metals.
Rose et al.~ studied "universal features of the equation of
state of metals, " and obtained a scaling relation from
which zero-temperature equations of state and first
derivatives of bulk modulus with respect to pressure were
calculated. For Cu, Ag, and Au, respectively, they ob-
tained d~/dI'=4. 99, 5.55, and 6.18. For Cu and Ag,
there is reasonably good agreement with our values in
Table IV, but for Au, there is about a 30% discrepancy.
Barnett et al.~ modeled multilayer relaxation at metal
surfaces using a model in which the total energy is ex-
pressed as a sum of the ground-state electron-gas energy,
the Madelung electrostatic energy of point ions in the
presence of a semi-infinite negative neutralizing back-
ground, the interaction of point ions with the surface di-
pole layer, and the Hartree and band-structure contribu-
tions. In the evaluation of the latter contributions, they
used the local form of the Heine-Abarenkov model pseu-
dopotential. They compared their computational results
with those of simpler models (e.g., the PITB model, con-
sisting of point ions in the presence of a truncated bulk
electron density), and concluded that the multilayer relax-
ation phenomena predicted by the simple electrostatic
models do occur when electron response is included prop-
erly. For bcc metals, Finnis and Sinclair ' constructed an
empirical model consisting of a bonding term, which is
the square root of a site density, summed over atoms, and
a summation over repulsive, pairwise terms. They defined
their potential by fitting to experimental data for a perfect
crystal, taking into account first- and second-neighbor
atoms. The model successfully accounted for experimen-
tal vacancy-formation energies. Daw and 8askes
developed an embedded-atom method, based upon
density-functional theory, as a means of calculating
ground-state properties of metals. They obtained the
embedding energy and associated pair potentials semi-
empirically for Ni and Pd, and found that a simple
embedding energy and a short-ranged pair potential
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FIG. l. Theoretical and experimental pressure versus stretch
[A, =(Q/Qo)'~~] relations; the theoretical results were computed
in the present study using Eqs. (28)—(33) ("simplified model" )

and using the pseudopotential model presented in Ref. 27 ("full
pseudopotential"); the experimental data are from Refs. 37 and
38. (a} copper; (b) silver; (c) gold.

(nearest neighbors only) were sufficient to give reasonable
fits to several properties of the bulk crystals (e.g. , lattice
parameter and elastic constants) and to calculate energies
and geometries of defects. They emphasized problems
with hydrogen and with surfaces which could not be treat-
ed with pair potentials alone. They concluded that the
embedded-atom method gives a reasonable description of
metallic cohesion and ground-state impurity energies.

In this section of the present paper we proposed to for-
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mulste simplified models (for the noble metals) that can
provide accurate descriptions of elastic properties (both
harmonic and anharmonic). The specific format for the
models is suggested by pseudopotential theory; four
empirical parameters were adjusted so that the theoretical
values of the second-order elastic constants and lattice pa-
rameters fit the respective 0-K experimental values. The
models were then used to compute various anharmonic
properties [Table IV and Figs. 1(a), 1(b), and l(c)]; the
computed values are fairly close to experimental values
and to those computed using the full pseudopotential
model (in some respect the simplified model computations

are in better agreement with experiment than those made
with the full pseudopotentials). Finally, in addition to the
increased computational simphcity, there is the "added
bonus" of having obtained an interatomic potential model
for gold, which was unfittable in the pseudopotential
scheme of Ref. 27.
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