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Self-energy of a moving charge in the presence of a metal surface
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Quantum-mechanical expressions for the potential energy of a moving charged particle interact-

ing with a metal surface are derived using the self-energy formalism. The expressions include the

contributions of the surface and the bulk plasmons in the hydrodynamic model. It is found that the
saturation of the image potential at z=0 arises due to both the plasma dispersions and quantum

recoil arising from the plasmon exchange and that the contributions of these two are not additive.

Numerical results for the real and imaginary parts of the self-energy are presented for four speeds of
the incident particle moving normal to the surface.

I. INTRODUCTION

The interaction of a charged particle with a polarizable
medium has been the subject of extensive studies in the
past, first in the framework of classical electrodynamics
where the medium is regarded as a dielectric continuum,
and later in the quantum-mechanical framework where
the response of the medium through the interaction of the
charged particle with the excitations of the system is con-
sidered. The interaction energy of the charged particle is
of direct relevance to the interpretation of experimental
data on surface excitations obtained through electron-
energy-loss spectroscopy and through reflection electron-
energy-loss spectroscopic experiments. This interaction
energy can be interpreted as the self-energy of the charged
particle originating from the induced charge polarizations
associated with the excitations of the medium. '

In the presence of a surface, the real part of the self-
energy at a large distance from the surface approaches to
its classical image-potential value, while the imaginary
part is related with the damping of the scattered particles
from the incident beatn. When the particle approaches
the surface the interaction energy saturates to a finite neg-
ative value. This has been recently demonstrated experi-
mentally' and has stimulated analysis' of the interaction
potential in close proximity of the surface. There are two
factors leading to this saturation. The first is the disper-
sion of plasmons, both bulk and surface. This leads to
screening of the charge when it is at the surface or inside
the metal, and hence to a finite self-energy. This effect
has been analyzed in various semiclassical approaches to
the problem. The second factor is essentially quantum
mechanical, arising out of the virtual or real emission and
reabsorption of plasmons by the particle, depending on
whether its energy is below or above the threshold energy
for production of plasmons. This effect has been
analyzed for a model of surface plasmons which do not
have dispersion. '

The purpose of this paper is to present an analysis of
the interaction potential of a moving charge particle in
the presence of a metal surface using the self-energy for-
malism' and the hydrodynanucal model for the metallic
electrons. We obtain the explicit variation of the interac-

tion potential of the charged particle with distance from
the surface by considering the combined effects of the
plasmon dispersion and the quantum recoil, the two ef-
fects being nonadditive.

In spite of the known limitations of the hydrodynami-
cal model, it provides the main effects associated with the
collective excitations of the metallic electrons rather easi-

ly. It is known that the model does not include the effect
of the excitation of the electron-hole pairs. The effect
should be included in a more complete theory. Since the
image-type interaction arises primarily from the interac-
tion of the external charge with the collective plasmon
modes of the metal, most of the work in this field use
models that give the correct collective behavior of the me-
tallic electrons. A phenomenological way of including the
effect of the electron-hole pairs would be through intro-
ducing the damping of plasmons. This alters the value of
the imaginary part of the self-energy somewhat, but does
not affect the real part significantly.

There have been several attempts to calculate the in-
teraction energy between a charged particle and a metal
surface. These approaches differ from ours in their ap-
proaches to the problem and in their assumptions. Mills
calculated the retardation effect on the image potential,
but in his calculations he negle:ted the dispersion effects.
His paper therefore is not directly related to ours. Al-
though Equiluz formulated the self-energy of the particle
by including both the dispersion and the quantum recoil,
he evaluated his results in the limiting case of the infinite
mass of the particle. His results therefore are valid in the
semiclassical limit. Ekardt by his own admission used
Equiluz's work and derived results which are valid for the
dispersionless plasmons. His work therefore is less gen-
eral than ours.

We use the definition of the self-energy of the particle
as introduced by Manson and Ritchie, which is different
from the form used for the self-energy in the electron-gas
theory. The latter nonlocal form arises from the nonlocal-
ity of the exchange-correlation potential by the electron.
In the formalism of Manson and Ritchie' and in ours, the
self-energy is defined directly in terms of the energy shift
of the charged-particle —metal system. The formal con-
nection between the nonlocal self-energy and our self-
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energy is known. We will not deal with this question be-
cause it would be peripheral to our objective of evaluating
the form of the interaction potential.

The plan of the paper is as follows. In Sec. II we derive
the general expressions for the self-energy, valid for an ar-
bitrary angle of incidence and for the particle energy
below and above the threshold plasmons energies.
Separate expressions for the self-energy are given for the
surface- and bulk-plasmon contributions. Some limiting
cases for the self-energy are also derived. In Sec. III we
present the calculations and discuss the results.

II. THEORY

A. Metal-particle interaction
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For the bulk plasmons the corresponding expressions are
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P being the parameter describing plasmon dispersion. As
is customary in such problems, P can be chosen to be
3vF /5, v~ being the Fermi velocity of the electron gas, to
be consistent with its high-frequency behavior. The nor-
malization factor N„ is

The Hamiltonian of the charged particle of charge Q
and mass M and the metal is
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ai and ai are the creation and annihilation operators of
the quanta of plasmons in the metallic electron gas, ))(, be-
ing the index specifying the kind of plasmon (surface or
bulk), its wave number, etc. q)i(r) is the electrostatic po-
tential that a plasmon with index A, produces.

Explicit forms of q)i(r) for the hydrodynamic model of
the metallic electron gas have been by Barton. For the
surface plasmons they are
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q being the wave number along z direction.

B. The self-energy of the particle
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The definition of the self-energy E(r) of the particle, as
has been demonstrated by Manson and Ritchie, ' is
through the equation

Here co& 4qre n/——m,
2 2( )
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~ is the wave vector parallel to the surface, r=—(p,z) and
the semi-infinite metal exists for z & 0, and

where
~
ko) is the state of the particle moving with

momentum ))lko and EEO is the change in the energy of
the metal-particle system due to the interaction V. Up to
second order in perturbation theory,
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Here a mixed representation
~
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n )
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k) is used,

~
n) referring to the plasmons and

~
k) to the particle. Compar-

ing Eq. (7) with (6) we get
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The last part of Eq. (8) follows from the fact that
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Substituting Eq. (3}into (8) we may obtain E(r) by two methods: either by evaluating the matrix elements first and then
completing the summation over the intermediate states or by reversing this order. The final result is the same. If we fol-
low the second method we express the result of the summation over n and k by the Green's functions
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The resulting expressions E,(r) due to the interaction of the particle with the surface plasmons when the energy of the
particle is less than the energy of the surface plasmon (i.e., below threshold) and for Es(r) due to the interaction of the
particle with the bulk plasmon when the energy of the particle is below the threshold energy for the bulk plasmons, are
as follows:
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Here a =(Ko—K) +k, —ko, k, =2M&o, /fi, and qo is the z component of ko=(aO, qo).
With ri =(Ko a) +kryo

—ko and ka———2Mcoz /R, the bulk Part is
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The corresponding results above threshold with dispersion included are complicated. If the dispersion of the plasmons is
neglected the results are relatively simpler and are given as follows:
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In Eqs. (13) and (14), 8(x )= 1 for x & 0 and zero otherwise.
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C. Limiting values of E(g)

The summations in Eqs. (8)—(11) can be performed analytically in certain limiting cases. The values of E(r) in such
cases are useful for their direct physical interpretation and also for their use in experimental comparisons. Such analyti-
cal expressions also provide a test for numerical work.

In the limit z~ —oo and ko~0 the self-energy is obtained from (12b) and is given by
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dispersionless plasmon p=O or A =0, Eq. (12) reduces « Q COpEs(z~ —oo, kp ——0)=—

2
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and for the case of infinite mass of the particie ~~ oo «
3~00,

If we neglect dispersion (i.e., p=O) the self-energy for all
energjes of the particle can be obtained either from Eq.
(12b) or (14a). It is given by
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It can easily be shown that the imaginary part of (18) is
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Es' is the nonconservative imaginary part of the self-
energy and is zero for all energies of the particle below
threshold. The real part of (18) is given by the same equa-
tion, but now the principal value of the logarithm should
be taken. The real part of the surface contributions to the
self-energy for

~

z
~

~Dc varies as —Q l4~z ~, a
behavior which is well known. For energies well below
threshold the self-energy at the surface can be obtained
fram Eqs. (11)and (12) to be
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when the particle mass M~oc (i.e., semiclassical limit).
On the other hand, it reduces to

—Q kqE(z=0, ko~O) =
(2)5/4

(21)

in the limit of dispersionless plasmons (i.e., P~O).
The real and imaginary parts of the self-energy at the

surface due to surface-plasmon contribution, for the above
threshold case (ko ok, ), can easily be worked out from
Eqs. (13). The results are
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separated far belaw the threshold case. In this case the
real and imaginary parts are even and odd functions of
ko, respectively. For the terms with poles on real axis
above the threshold, the real and imaginary parts are ob-
tained using the identity

1 1=P— i@5(x),—x+i5 x
(23)

where P stands for the principal value. The real and
imaginary parts arising from (23) do not have a fixed par-
ity with ko. The imaginary part is then the nonconserva-
tive component which decreases slowly away from the
surface. The surface contribution goes to zero while the
bulk contribution saturates to a finite value. The conser-

-I 0-
I

I I 1

-4 -2 0 2 4

z(units of k ')

FIG. 1. Real part of self-energy E'(z) as a function of z,
below the threshold speeds. Dashed curves are the contributions

due to surface plasmons. Solid curves denote the total (surface

plus bulk) contributions.

kQ 2k(k —k)'1
E,„"(0-+)=+ ln 1

4ko 2k', —k,' (22c)
-)0 -8 -6 -4

z(units of gp')
-2 0

Equation (22c) represents the nonconservative imaginary
part of the self-energy arising from the poles of energy
denominator of Eq. (8), whereas (22b) is the conservative
part of the self-energy which tends to zero away from the
surface. Equations (22a) and (22c) have also been ob-
tained by Manson and Ritchie. '

III. CALCULATION AND RESULTS

We now proceed to the numerical evaluation of expres-
sions given in Sec. II. For a unit volume (or area) replac-
ing

g ~ f d K f dq alld g ~ f d K,
x,q

the problem reduces to numerical integration. The real
and imaginary parts of the self-energy can be easily

8 gg I

-0.2.

0 06
Vl

-0.8-

N
—(0-

4J
—l.2-

FIG. 2. Real part of the self-energy E'(z) far above the
threshold speeds. Curves a,a' and b, b' are for particle speeds 2
and 4, respectively. Here again, dashed and solid curves
represent the surface and total contributions, respectively.
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-0.2-
O
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-08-

0/kp)-

—l.o-

I I I I

—l0 -8 —6 -4 —2 0 +2 +4 +6 +8 +lO

z(units of k&')

FIG. 3. Imaginary part of the self-energy far above the
threshold speed of 2. The solid and dashed curves are the non-

conservative and conservative (total) imaginary parts, respective-
ly.

vative imaginary part does not represent dissipation and is
associated with those energy losses which are recovered as
the particle leaves the surface. " It decreases quickly
away from the surface.

The semiclassical limit of our expressions (11) and (12)
which ignores the plasma-exchange processes is obtained
in the limit M/irt tending to infinity. Our results then
reduce to the expected behavior of a moving charge parti-
cle in a dispersive semi-infinite medium. The results in
the absence of plasma dispersion are obtained in the limit
P~O. In this limit Eq. (11) naturally reiuces to the form
given by Manson and Ritchie. '

For the surface contribution above the threshold our ex-
pression (13) can be easily cast to the form" given by
Manson and Ritchie. ' However, we make explicit calcula-
tions of the conservative and nonconservative parts of the
imaginary parts of the self-energy.

The real and imaginary parts of the self-energy have
been calculated for two normal-incidence (ao ——0) speeds.
In Fig. 1 we plot the real part far below threshold speeds.
The surface contributions are shown separately. In Fig. 1,
for A we take the value corresponding to metallic copper
(r, =2.7) and A =0. It is found that at zero speed the ra-
tio of the inner potential to the potential at the boundary
is 0.84, when the exchange of plasmons without dispersion
is considered, and the same ratio becomes 0.71 when the
dispersion effects are included. The experimentally found
ratio is about 0.5. If may be noted that the saturation of
the potential at z=O arises due to both the plasma-
dispersion and the plasmon-exchange processes. In the
limit ko ——0, i.e., for a stationary charged particle, the
self-energy is real. For nonvanishing speed the imaginary
part is an order of magnitude smaller than the real part
and is therefore not plotted.

In Fig. 2 the real part of the self-energy far above the

-lO —8 -6 -4 -2 0 t2 +4 +6 +8 +lO

z(units of k&')

FIG. 4. Same as Fig. 3, but for incident-particle speed of 4.

threshold case is plotted as a function of z for two speeds
ko /k =2.0 and 4.0. The surface contribution is shown

by the dashed curve while the total (bulk plus surface)
self-energy is drawn by the solid curve. The bulk-plasmon
contribution derived neglecting dispersion is zero outside
the metal. It is clear from the figure that the potential
saturates to a finite value at the surface. Inside the metal
it oscillates and the amplitude of the oscillations decreases
with increasing speed of the particle. The oscillatory
behavior of the self-energy which has been demonstrated
also by Manson and Ritchie, ' in their dispersionless
surface-plasmon model, is a feature of the quantum na-
ture of the interaction. It is analogous to the similar
behavior' of the generalized pair-distribution function of
Van Hove used in the neutron scattering theory. For
large z inside the metal the potential attains a velocity-
dependent inner-potential value given by the real part of
Eq. (18). In Figs. 3 and 4 we plot the conservative and the
nonconservative imaginary parts of the self-energy by the
dashed and the solid curves, respectively. Asymmetry in
the conservative part is due to the bulk plasmons. The
conservative part is sizable near the surface. The noncon-
servative part inside the metal for large z approaches a
constant value given by Eq. (19).

We wish to point out that the accuracy of our numeri-
cal integration is better than 5%. Our computed results
for the real and imaginary parts of the self-energy at
z =0+- and

~

z
~

—+ ao agree extremely well within our ac-
curacy with the corresponding analytical results given in
Sec. II C. Preliminary results of this paper have appeared
in an earlier publication. '
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