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%'e study analytically and numerically a nonhnear diatomic chain with cubic and/or quartic in-

teraction potential between first- and second-nearest neighbors. In the continuum approximation us-

ing a decoupling ansatz for the motion of the two different sublattices we obtain supersonic or sub-

sonic acoustic kink (pulse} solitons, long-wavelength acoustic oscillating solutions of breather type,
and purely optical-envelope-type excitations. %e then introduce an analytical technique which en-

ables us to calculate oscillating soliton solutions of the symmetric or asymmetric envelope or hole

(dark) type, modulating a quasiharmonic carrier the wave vector of which is not limited to long

wavelength. The characteristic energies of all these kinds of excitations are given as a function of
the main parameter. Numerical simulations on their propagation and interactions show these exci-

tations to be long-lived quasisolitons.

I. INTRODUCTION

The study of the dynamics of nonlinear lattices and the
related solitonlike excitations has been greatly infiuenced

by the pioneering works of Fermi, Pasta, and Ulam' and
of Zabusky and Kruskal. Most of the work in this area
has considered acoustic "in phase" modes in models of
one-dimensional (1D) monoatomic chains, ' the prototype
of which is the Toda lattices with exponential atomic in-
teractions. In comparison, the dynamics of nonlinear ex-
citations in diatomic chains has received much less atten-
tion and only recently, due to the analytical complexities
involved. Models of diatomic lattices have been used as
prototypes to approach the transport of energy, 6 the
dynamics of real materials (like ferroelectric perovskites),
which present a quasi-1D diatomic structure along certain
crystallographic directions. ' For complicated polyatom-
ic systems like molecular-hydrogen-bonded chains, poly-
mers, ' or biomolecules" the problem becomes tractable
by selecting the most important degrees of freedom and
using a diatomic model.

Zabusky and Deem' were the first to show by numeri-
cal simulations that nonlinear optical excitations ("out of
phase" modes) created with arbitrary optical Gaussian ini-
tial conditions can propagate in a monoatomic anharmon-
ic chain with cubic interatomic interactions. Based on the
Korteweg —de Vries (KdV) equation, Tasi and Musgrave'
and Tasi' made an analysis of the far-field response of a
diatomic chain to a shock-type acoustic initial excitation.
Biittner and Bilz's have proposed a model of a diatomic
chain with quartic nonlinear interactions. Using an ap-
propriate decoupling technique in the continuum limit
they have shown that acoustic and optical kinklike excita-
tions exist (the optical kink is for a displasive-type in-

teraction) which are, respectively, solutions of a KdV and
equations. Furthermore, it was independently shown

that when the interatomic potential has a cubic nonlinear-

ity, the dynamics of the diatomic chain may support, in
the continuum limit, optical-envelope modes coupled with
acoustic modes, 's' which are decoupled for a quartic
nonlinearity. ' The coupling between diatomic chains was
examined' in order to model certain ferroelectric materi-
als. All the preceding results are analytical in the contin-
uum limit and for models where the coupling between
atoms is limited to first-neighbor interactions (FNI).

In this paper we present the important and new features
which emerge from a systematic analytical and numerical
study of the dynamics of the nonlinear and nontopological
excitations of a diatomic chain model. In Sec. II we
present the model with a nonlinear quartic and cubic cou-
pling potential which includes second-neighbor interac-
tions (SNI). In Sec. III we use the continuum approxima-
tion and apply a decoupling ansatz to obtain the kink soli-
tons (Secs. III A—III C) or the long-wavelength oscillatory
excitations of breather type (Sec. III D) or purely optical-
envelope type (Sec. IIIE). Simultaneously we discuss
their properties. In Sec. IV we describe the method (semi-
discrete approximation) to obtain the short-wavelength
envelope solitons and present the results for the behavior
of the solutions in computer simulations. In Sec. V we
present a model of two parallel interacting chains which is
related to the previous diatomic model chain. In the final
section we present concluding remarks and possible exten-
sions of the present model.

II. THE MODEL

We consider a chain in one dimension with two atoms
of masses Mi and Mz per unit cell with a spacing of 2D
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between cells (see Fig. 1}. The atoms move longitudinally
interacting with their first (FNI) and second nearest
neighbors (SNI). The interaction potential between atoms
is a polynomial approximation to realistic potentials and
has the form

1 2 1 3 1 4I'(«( }= i G &i. + 3 ~(&( + 4 4&(. (2.1)

where r(„ is the relative displaceinent between the lth and
nth atoms from equilibrium (the indices n and / indicate
the atom number and not the cell}. The index i takes the
values 0, 1, or 2 depending whether (2.1) describes FNI, or
SNI between masses Mi, or SNI between masses M2,
respectively. In the following we shall neglect the index i
when i =0 so that the corresponding force constants are

6, A, and 8. Longer-range interactions are neglected
here.

FIG. 1. Diatomic chain mode1 with FNI and SNI.

If we denote by z„(w„) the displacement frqm equili-
brium of the atom with mass Mi (M2) correspondingly
in the nth cell the equations of motion can be written as

Mlzn G((en 2zll +idyll —1)+Gl(zll+i ~n zn —1}+~[(&n zn } (zn (( 5 —1) ]+~l[(zn+i zll ) (zn zn —1} I

+&l(w„—z„) —(z„—w„ i} ]+&il(z„+i—z„) —(z„—z, i) ], (2.2a)

Mz&n=«zeal 2a+a}+Go(a+i —2((n —ion-i}+~[(zn~i —u(n}' —(&n —z. }']+~2[(&n+i &n)' —(ic.—ion-i}']

+8 [(z„+i —w„) —(w„—z„) ]+82[(w„+i —w„) —(w„—ig„ i) ], (2.2b)

where the overdot ( } denotes time differentiation, and
(i = 1,2. . . ,N, where N is the number of cells considered.

In (2.2) we have 2N coupled nonlinear difference-
differential equations for z„and w„. Howeverto ,be able
to apply the analytical techniques that were used in
monoatomic chains, ' we must find some method to
decouple the two functions z„(t) and (((„(t},as will be
described in Sec. III, when we go to the continuum ap-
proximation. In (2.2) we have not included any
phenomenological damping mechanisms, except due to
discretization effects which will be presented elsewhere. i~

They could be important for narrow solitons. Here we
must point out that due to the discreteness of the chain,
the solutions for the diatomic chain are quasisolitons in
the sense that there is some energy loss during propaga-
tion or collision which is very small for wide solitons.
Also, we will not consider the effect of an external driving
force. Details of the numerical simulations with initial
conditions the solitons obtained in Secs. III—V, are
described elsewhere. z4

III. SQLITONS IN THE CONTINUUM
APPROXIMATION

A. The decoupling ansatz

For a nonlinear monoatomic chain the large width kink
solitons can be described by a single smooth curve since
the displacement y„(t) varies slowly. For optical-type os-
cillations in a linear diatomic chain the ratio of the dis-
placements of two neighboring atoms is inversely propor-
tional to the ratio of their masses and the two atoms move
out of phase. Thus we expect that for a nonlinear diatom-

ic chain we need two smooth functions z„(t) and ic„(t) for
the displacnnent of the odd (Mi } and even (M2) masses.
We apply the continuum approximation for the displace-
ment of each mass separately, i.e., if we let x =2nD we
have

z((+i=z+2Dzx+2D z~+ 3D z~+ 3 D z +
(3.1)

with a similar expression for w„+,. By using expression
(3.1), we transform the system of difference-differential
equations (2.2) into two partial differential equations for
z(x, t) and i(((x,t) which are coupled. The solution of the
system is simple if we can relate the two displacements, jn
analogy with the linear diatomic chain.

To decouple the two equations we use the following an-
satz' by expanding w(x, t) in terms of the displacement
z(x, t) and its derivatives

((((x,t)=(J z+b, Dz„+ D z
b2

x

+ Dz~+ Dzb3 3 b4

+buf(z, z., ) +&(e'+'), (3.2)

where e is a small parameter that scales changes in the
displacements with r =1 or 2 depending on the potential
of interaction. ' The procedure is to substitute ((((x,t}
from (3.2) and its derivatives in the continuum approxi-
mation of the equation of motion (2.2) and impose that
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the two equations in (2.2) for z(x, t) are equivalent. This
will determine the possible values for the parameter o and
the corresponding ones for bi, bz, bi, b4, and bc. In the
continuum approximation there are two values for a =1
or —Mi/Mi. In analogy with the linear chain the o =1
solution corresponds to an acoustic mode where the atoms
move in phase with slowly varying amplitudes. The value
o = —Mi/Mz gi~es a nonlinear optical mode where the
atoms move out of phase with ampHtude ratios equal to
cr Th.e solution of one of the identical equations will give
the displacement of the odd atoms z(x, t), while w(x, t)
for the even atoms can be obtained from the ansatz (3.2).
In what follows we shall present the solutions for the dif-
ferent modes. The last term f(z,z, . . .} in the expansion
(3.2) is a nonlinear function of z and its derivatives. For
simple potentials (i.e., quartic} bp turns out to be zero if
we keep low-order terms in e and no SNI. For a more
general potential we need bp+0, and the form of
f(z,z», . . . ) can be guessed. In the expansion of (3.2} we
can also include time derivatives of z.

u„=cpu + (u ) + (u ) +hpu. ... ,
So 2 Vo

(3.8)

with

2 26 b2 2
cp = +2g1 D

1
L

M
&'[1+2(gi+g»]

1+ 2
T

(3.9a}

The effect of this term is an infinitesimal change in
ic(x, t) from (3.2) since it is of 0(e } [if z-0(1)]. On
the other hand it can change the coefficients of the non-
hnear terms of the resulting continuum equation for
z{x,t), thus modifying the properties of z (and conse-
quently of ic) such as the width, amplitude, etc.

After evaluation of the coefficients b; (i =0, . . . , 4)
from the compatibility condition, we obtain a single equa-
tion in the form of a generalized Boussinesq (6-Bq) equa-
tion for u =z, as

B. Acoustic mode (cr= 1 }
pp

—— 3 +431 D4 3 (3.9b}

2M) —Mz
b3 ——6pp 3M M

—2go
1 2

(3.3)

4= I'0 3M -4Mb =24 —2go +
2 3

M1Mz
Po= I (3.4)

and

Gz g1 gz
gZ G

s gp
1 2

(3.5)

If we include second-neighbor interactions, i.e., gi,gz&0,
to satisfy the compatibility conditions between the two
equations for z and m, me must use the nonlinear term in
expansion (2.3) which, for the case of the quartic poten-
tial, is chosen as

with

bpf(z, z„, . . .)=bpD z,z (3.6)

In writing expansions (3.1) and (3.2) we have scaled the
space and time derivatives as a/ax —0 (e) and
d/Bt-0 (e), and we have neglected consistently high or-
der in e terms. Therefore, we keep up to fourth deriva-
tives of z or ic and the appropriate nonlinear terms (dif-
ferent for the cubic and the quartic potential) to balance
dispersion and nonlinemty. By following the procedure
described earlier we can obtain the coefficients in (3.2) for
the acoustic mode (o = 1) and obtain

1
b1 ——1, bz =2Po —2go

2

69'0=
M 1

2G

1

bz bo
B +881+ D

b4 bi bi
24 6 2

1 2 4——+—g1 D
3 3

(3.9c)

(3.9d)

' 1/2

z =+2 sgn(hp)
9'o

1 X —Uttan tanh
~ 8' L,

+X1

where the speed of souild cp, the dispersion parameter hp,
and the nonlinear coefficients pp and qp depend on the in-
teraction potential. The linear part of (3.8} for hp &0 de-
scribes the propagation of plane waves with a dispersion
relation co (k)=cpk —hpk', which implies an instability
for kz&cp/hp. One could say that it is not possible to
construct a stable wave packet from the normal modes of
the linear system since short-wavelength components
would rapidly diverge. This is not troublesome however,
since Eq. (3.12) describes only long-wavelength propaga-
tion outside the range of instability. In fact, no simula-
tions on the propagation of solitary waves have shown
such an instability for the discrete lattice as predicted in
an elaborate analysis. zs If in (3.8), with the coefficients
given by {3.9), we neglect the cubic part of the interaction
potential and limit ourselves to velocities near the speed of
sound, we obtain a modified KdV (M-KdV) equation and
reproduce the results of Ref. 15. For the limit
Mi ——Mz, the results for the monoatomic chain are ob-
tained 'z ' s and (3.2) is a Taylor expansion of the even
atom displacements around the odd ones.

The kink-type solutions for (3.8} are presented in Ref.
21 for the monoatomic chain and here we give the analyti-
cal expression for the general case (pp~0, qp&0) as

3pp 81
bp = 2Bgp —86 M1

Bz

Mz
(3.7}

(3.10)
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[po+6(v' —co)eo]' +po

[po+6(v' —co)col'"+po
(3.1 1)

I.=2
U —Co

(3.12)

In (3.10},xi is an arbitrary constant that defines the ini-
tial position of the soliton while v is the velocity. The
signs (+ ) or (—) in (3.10) denote that the solution can be
either dilatational or compressional. The parameter
sgn(ho )=+ 1 depending on the sign of ho.

The width of the soliton depends on both the parame-
ters 8' and L except when either po ——0 or qp ——0, where
only L is important. The parameter L must be multiplied
by a numerical factor to give us the halfwidth at half
height. The special cases po ——0 or qp

——0 reduce to the
Boussinesq (Bq) or modified Boussinesq (M-Bq) solitons. i
The possible types of solutions (compressive or dilatation-
al) are summarized in Table I, depending on the signs of
Ap, po, alld gp. In (3.10) and (3.12) the quantities hp/qp
and hp/(vz —cp) must be Positive. Table I is subject to
the restriction that the values of hp, pp, qp, and the soli-
ton velocity are such that the continuum approximation is
obeyed, and there are no discretization effects. 2 An
acoustic-type soliton presents a net dilation related to the
soliton mass which is a constant of the motion to 0(e).
For the q~~~ic potential it is independent of the velocity
(true only in the continuum approximation) and depends
only on the potential parameters. For a purely cubic po-
tential, however, the amplitude (A~) and, consequently,
the mass depends on the velocity like ( v2 —cp)'~ for the
Bq solution and ( v —cp)'~ for the KdV solution. z'22 For

the full potential (cubic and quartic), near the speed of
sound, there are two different solutions one of which
behaves like the cubic potential solution with amplitude
proportional to (v —co)'~ and another one with a large
amplitude but velocity independent. This can be seen by
taking the appropriate limits in (3.10) and (3.11). The
large-amplitude solution is denoted by an asterisk in Table
I and could be unstable due to discretization effects.

Solution (3.10) is valid near cp. To study the properties
of solitons with velocity away from co we performed
computer simulations (using 3.10) as initial conditions for
propagation in a discrete lattice. The initial kink within a
very short propagation time adjusts to a wave form with a
new shape. In Fig. 2 we plot in (a) the variation of the
width parameter L and in (b) the amplitude A~ of the
particle displac4nnent as a function of the normalized
velocity v/co of the kink. We see that when the width
(L) is less than 3, the soliton relaxes in a new form but it
preserves the portion of energy devoted to potential or ki-
netic the same as for the Bq. Once these solutions adjust
to the discrete lattice tliey behave like solitons. For veloc-
ities near the speed of sound (within 5%) the agreement of
(3.10) with the numerical solution is very good. For the
M-Bq or 6-Bq cases we have similar curves.

In Fig. 3 we plot the total energy of the kink soliton on
a diatomic chain with a cubic [Fig. 3(a)] or a quartic po-
tential [Fig. 3(b)] as a function of the normalized kink
velocity v/co for different mass ratios. For supersonic
velocities (v/cp) 1}, in the region where the continuum
approximation is valid, the energy increases when the ra-
tio Mz/M i strays from unity. Near v /cp ——1 the total en-
ergy behaves as follows: [(v/co)2 —1]'~ for the quartic
potential and [(v/co) —1]3~ for the cubic potential.
Therefore, the energy of the soliton in a quartic potential

TABLE I. Possible t)tpes of solutions for Eq. (3.8).

&o&o

Potential
parameters

p&0

q=0
q)0
q~0
q=0
qpO
q&0

Kink
soliton

NO
YES
NO

YES
YES
NO

YES
YES
NO

Excitation produced
on the lattice

rarefaction or compression

rarefaction
rarefaction or compression

compression
rarefaction or compression

Velocity

Supersonic
U +Co

ho~0 q=0
q~O
qgO

q=0
q~O
q~O

q=0
q~O
q~0

NO
NO
YES

YES
NO
YES

YES
NO
YES

rarefaction or compression

compression

rarefaction or compression

rarefaction

rarefaction or compression

Subsonic
U (cp
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/

L

V/Co ).05
0

1 &/Co

A=O.5

l.05

FIG. 2. Variation of (a) the width parameter L and (b) the

amplitude A versus normalized soliton velocity v/co for vari-

ous mass ratios of the Bq soliton with A =0.S, 8 =0. Dashed,
solid and dotted lines correspond to mass ratios M2/M~ ——1, 2,
and 10, respectively. The stars are the results from numerical

simulation after 100 time units of propagation on the discrete
chain for the case M2/M~ ——2.

W/C,

is larger for u near co, but is soon overcome by the cubic
potential. The stars represent the results of a numerical
simulation using Bq solitons as initial conditions and
measuring their final total energy and velocity after prop-
agation of 100 time units. The agreeinent with the
theoretical curve is very good, so that the adjustment of
the solitons in the lattice for this range of velocities is
small. It should also be pointed out that the total energy
is divided between potential and kinetic energy (dotted
lines in Fig. 3) in such a way that the kinetic energy is

slightly higher for supersonic solitons, while the opposite
is observed for subsonic solitons.

In Fig. 4 we present the time evolution of the head-on

collision of two solitons with velocities (widths) equal to
vi ——0.823 (L& ——5.272) and Uz

———0.822 (L2 ——5.732) in

a diatomic chain with Mi /M& ——2 with FNI only, and a
cubic interaction potential (G =1,A =0.5,8 =0). In the

plot we present the relative displacement between neigh-

boring atoms which is related to u(=z, ) at different

propagation times and the collision is quasielastic with in-
finitesimal changes in the soliton forms.

Detailed computer simulations for various values of the
parameters of the interaction potential including cubic
and quartic terms show that the solutions of the continu-

um equations for large width are also good solutions for
the discrete medium. Their propagation creates no radia-
tion and their collisions are quasielastic. In general, there
is a phase shift during colhsion of the order of a few lat-
tice spacings. It can become significant however, for cer-
tain values of the parameter hog0, where the solitons
behave quite different (resonance phenomena ). When
the simulations are performed on a finite chain there is
also a small phase shift due to scattering from a fixed
boundary.

D. Breather solitons

E ~
~

~ 0

0
V/C

B=2

1.05

a breather solution that consists of a slowly varying ain-
phtude of 0 (1) and an oscillation with a long wavelength.
The displacement of the odd atoms is given by

r

z(x, t) =+A tan —sech13

a
X —U, t

+XI
e

FIG. 3. Plot of the total energy E, for a kink versus normal-

ized soliton velocity U/co for (a) a cubic and {b) a quartic in-

teraction potential, for different mass ratios and without SNI,
dashed, solid and dotted-dashed lines correspond to mass ratio

M2/M& ——1, 2, and 10, respectively, from the continuum-

approximation results. Dotted lines indicate the potential ( E~ )

and kinetic {E,) parts of the soliton energy for the case

M2/M~ ——2, while stars correspond to simulation results for the
same mass ratio.

For a quaitic potential (po ——0) in the continuum ap-
proximation and for velocities near the speed of sound,
Eq. (3.8) reduces to the M-KdV equation, which also has

X —Uot
Q sin +Xp

Lo
(3.13)
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I=30

0.05
1.05

-0.005
1

FIG. S. Plot of the total energy for a breather versus the pa-
rameter P for various mass ratios Mz/M~ =1 (dashed Hne}, 2
(solid line), 10 (dashed-dotted line}. Dotted lines indicate the po-
tential (E~ ) and the kinetic energy ( E, ) for the case M~ /M ~

——2.

6hp
(3.14)

FIG. 4. Evolution and collision of two solitons in a diatomic
chain with a cubic potential. Plot of the relative displacement.
The initial conditions are two Sq solitons.

would have the same form as for the kink in a quartic po-
tential (see Fig. 3) since P is proportional to ( u, —cp)'/ if
a=0. For competitive intemtctions, however, the curve
can depart from hnearity much sooner. The breather soli-
ton given by (3.13} is stable under collision, ~ it does not
present a net compression or dilatation and the mass in
excess to (Mi+Mz) for each cell vanishes to O(e).

u, =cp —2 (3a —P ), L,,=0 1

cp
' ' 2P

' (3.15a)
E. Optical mode {n™,/Mz }in
the long-wavelength appro™ation

pp=cp —2 (a —3P'), L,,=0 2 1

~0 2a ' (3.15b)

where a and P are small arbitrary parameters so that I.,
alld Lp are large. The constants xi and xp indicate the
initial position of the envelope and the oscillating wave
form, respectively, while v, and up are their velocities
which are close to the speed of sound. The M-KdV equa-
tion has a breather solution if hp and qp have the same
sign (pp ——0). When both hp and qp change sign due to
SNI, u, becomes subsonic from supersonic or vice versa.

In Fig. 5 we plot the energy of a breather in a quartic
potential without SNI as a function of the parameter P
for different mass ratios. The energy is larger for
Mi/Mz departing from unity. If we include SNI, the en-

ergy can significantly incrinise if the SNI are additive or
significantly decrease if they are competitive. Increasing
the parameter P corresponds to incroling the velocity of
the breather, and decreasing the width. The calculations
are performed for a constant a=0.05. It seems that in
comparison vrith the kink solitons there are taro arbitrary
parameters (a and P). The extra restriction that u is very
close «cp imposes a constraint on the possible values of
a and P. Notice that in Fig. 5 the plot is linear as a func-
tion of P. When viewed as a function of u„ the curve

1
bz =2pp +2gp

1

(3.16a)

(3.16b)

with the other coefficients bi, b4, and bp set equal to
The parameters pp and gp are given in (3.4) and

(3.5)~

In this section we limit ourselves to a quartic interac-
tion potential (A =Hi ——Az —0) with FNI and SNI while
the more general potential will be discussed in Sec. IV. If
the coefficients bi and bz are chosen as in (3.16), we ob-
tain a single equation to be solved for the displacement of
the odd atoms while that of the even atoms is jven by
(3.2) keeping only the first three terms [j.e., O(e' )], with
b i and bz given by (3.16). The equation for z (x, t) is

In this case the ansatz of (3.2} satisfies the compatibility
conditions to O(e ). This is brause the highest term is
of O(e ) as is the case for the acoustic mode. We can
then neglect higher than second derivatives and nonlinear
terms that include derivatives. These order-of-magnitude
arguments also determine the order of coupling between
acoustic and optical modes.

From the compatibility conditions using o =—Mi/Mz
we obtain the coefficients in (3.2) and
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z„+C,z +C,z+C,z'=0, (3.17) A =4'/(Ku)'~, Ko ——gulp,
with

2682 M2 I)
l —2 g) ~ +g2M1+ 2 1 2

262=
P0

(3.18a)

(3.18b)

2
2a

C3 ——

P0 IM0

(3.18c)

For C2 & 0 ( G & 0},(3.17) has no stable large-amplitude
solutions of O(1) because the bonds are stretched beyond
the inflection point of the interaction potential. If Cz &0
there are kink solutionsz9 for z, giving us an optical kink
for the diatomic chain, "which is unstable for FNI only. z4

This case is discussed elsewhere. 30

For Cz & 0 we can find oscillating solutions by
transforming (3.17) into a nonlinear Schrodinger (NLS)
equation for the slowly varying complex envelope func-
tion F(x,t) if we look for solutions of the form

z(x, t) =F(x,t)e" "+cc. (3.19)

iF,+ —,
' pF@+go ~

F
~

F=0, (3.20}

where k and t0 are chosen to satisfy the linear dispersion
relation toz=t0 (k) =Cz —Cik at the center of the folded
Brillouin zone {k=O) for the optical branch. By going
into a reference frame moving with the group velocity

uz =des/dk =C)k/tu, we obtain from {3.17) and (3.19) a
NLS equation for the first haimonic F(g', &), with
g=x —uzt aild 1 =t:

1
vc =pg+2aP~ I.

2?l

uo ——[a)+2auz+2(a —I) )p]/(k +2a),

Lu ——1/(k +2a),

(3.23)

where x, and xo (x, =xu in the simulations) indicate the
initial position of the envelope and the carrier, while k, I),
and a are small arbitrary parameters. Actually k and a
come in the combination k+2a and the quantity in
sq~re brackets for uu is essentially t0(k+2a) expanded
in a Taylor series with a frequency shift of —2' p due to
nonlinearity. The actual wave vector and frequency of the
carrier are small corrections from k and cu. The restric-
tions due to the scaling used in the approximations are
that A~ E, k &'0. 1(-e}, u, && 1, L, —1/e, with e the
small scaling parameter.

IV. OSCILLATING SOLUTIONS
%'ITH ARBITRARY %'AVELENGTH

For envelope solitons with fast oscillations, we cannot
expand the displacements z„+I in Taylor series around z„,
and we must keep differences when fast changes are in-
volved in the "carrier, "while in the continuum limit treat
the envelope part of the displacement that varies slowly
(semidiscrete approximation}. So we have automatically
introduced two different space and time scales and the
analysis can be done using the multiple-scales technique
of reductive perturbation. '3 In this method the variables
x or t are extended to many independent variables each
with a different scale, i.e.,

where we neglected terms like F, and p, =d co/dk is re-
lated to the dispersion while

x))=Ex, t~=E f, n =0, 1,2, . . .

A space or time derivative should be replaced by

(4.1)

3C3
0

ZQ)
(3.21}

d " 8 d " 8
dx „Bx„dt „dt„ (4.2)

X —U, t
z(x, t)=A~ sech +x cos

X —Vot
+X0

0

with

The NLS equation for p,gu &0 admits envelope solutions,
which, for the discrete diatomic chain, define spatially lo-
calized envelope solitons in the form of a wave packet
with an envelope function that modulates an essentially
harinonic carrier wave. ' For p, QO &0 we have dark soli-
tons I'2 '3'3 where the envelope has a finite amplitude as

~
g'~ ~Do and a compression near the soliton position.

Since us~ near k=O, the sign of pgu depends only on
the parameter of the potential. Therefore, if C, C3 & 0, we
have envelope solitons and if Ci C3 &0, we have dark soli-
tons.

The envelope-soliton solution for pgo &0 with SNI is
given by

Because of (4.2) the method is also called the derivative-
expansion method. In our case the variables xo ——2nD
(discrete) and to t in (4.1) c——ome only in the phase
H=k2nD tot and the—derivative 8/Bxu in (4.2) is a
difference operation for the discrete variable n. A general
oscillating solution for the displacement of the odd atoms
can be written in the form of an asymptotic series

z„(t)=g e gt(n, t)
I

g PgF ( I) I Ix,t)+ (4.3)
l nt

The method is to substitute (4.1), (4.2), and (4.3) in (2.2)
and equate powers of e for the same harmonic. In gen-
eral, the functions FI~ are coupled, but a few of them are
needed to determine the solution to O(e). In fact for a
quartic potential only the term I'I is needed and is
decoupled from the others which contribute to O(e ). In
what follows, we shall illustrate this case but we shall also
present some numerical results for the cubic potential
where more than one component is coupled, and the
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analysis is quite more complicated since a different ansatz
of (2.2) must be used for each Fi~.

For the quartic potential in the equation of motion (2.2)
we substitute

(a} ~=f (k)

E (&)ei(zibLD u—t)+c c

io„(t)=Q„(t)e" "+cc.
(4.4a)

{4.4b}

for the displacement of the odd and even atoms, respec-
tively. In the resulting equations there are terms like F„~i
or Q„+i which are expanded in a continuuiii approxima-
tion around E(x,t) or Q(x, t) with 2nD~x Th. erefore,
the fast changes of the phase 8=2knD cur—in {4A) are
correctly taken into account by taking differences in the
phase for the discrete variable iL We obtain two equa-
tions for F(x,t) and Q(x, t), which can be decoupled us-

ing an ansatz similar to (3.2},i.e., 0
-'L555 $.555

Q(x, t)=oe'~ F+biDF~+ D E~
2

+bDF +b IFIE (4.5)

tb) 69)k)

In (4.5) the coefficients bi, bz, and bi are complex while

bo and 0 are real. To make the two equations for E(x,t)
identical we must also include (in comparison to the pre-
vious results) the terms E„and I

E
I

F. The compatibili-

ty condition for the term proportional to F will give us

the parameter cr which is equal to

p+v g (4.6)
2cos(kD) '

1 ~~~~ eesak %sass

~ ~ ~ ~ ~ 4 & ~ ~ i ~L

M)P= — 1—
M2

M)
g&

— gz [1—cos(2kD)], (4.7a)
M2 -3

-1.555 4.555

5=P2+4 cosi(kD) . (4.7b)

co = [(1+gi ) cr cos(kD) —g~ —cos(2kD}]2=2
3f)

The vanishing of the coefficient of E determines the
dispersion relation to 0 (e), i.e.,

FIG. 6. Plot of (a) the dispersion relation co(k) and (b) the pa-
rameter cr as a function of the wave vector k for different mass
ratios, with 6 = l, G~ ——62 ——0. 1 is monoatomic limit
M& ——M2 ——1 (dashed line). 2 is M2/M& ——2 (solid line). 3 is

M2/M~ ———, (solid line). 4 is M2/M& ——5 (dotted-dashed line).

Positive values of o define the acoustic branch (AM) and nega-
tive values define the optical branch (OM).

2
[n(1+g2) —cos(kD) —age cos(2kD)] .

M2
(4.8)

Expressions (4.6} and (4.8) are the same as for the har-
monic lattice as is seen in Fig. 6. The + ( —) sign corre-
sponds to the acoustic (optical) branch of the dispersion
relation. In the limit k~O we have ir= 1 or —Mi/M2,
which is consistent with the result for the purely acoustic
or optical mode in Sec. EEE. The compatibihty conditions
for the terms with E, F, F „and

I
E

I
F will deter-

mine the parameters bt b2 53 and 5p corresponding)37
and their analytic expressions are given in the appendix
The coefficients of the other terms like F, or F„can be
identical in both equations. Using the transformations
g=x us t and r =—pt in one of the two equations we again
obtain a NI.S equation as in (3.26) with us=8 c0/Bk be-

iE,+ ,'I Fqq+Q-o IE I'E=o .

The parameter Qo in (4.9) is now given by

Qo —— ir cos(kD) —cr [2+cos(2kD)]
coM)

+3o'«s(kD) —1 —8 sin (kD)
Bi
8

(4.9)

G+ obp coskD .
~M& (4.10)

ing the group velocity and p, =8 co/Bk the second deriva-
tive of the dispersion corresponding to co(k) given by (4.8}
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If Qo/p &0, Eq. (4.9) has envelope-soliton solutions with
z(x, t) given by relations similar to (3.22) and (3.23). The
displacement of the even atoms is given by (4.4b) and (4.5)
with the parameters b~, b2, b3, and bo given in the ap-
pendix and o from (4.6). In the limit Mi ——Mi the above
expressions reduce to those obtained for a monoatomic
chain. ' If Qo/p &0 in (4.9) we have dark solitons
which will not be discussed here.

The positive sign of Qo/p determines the existence of
envelope solitons and the instability of plane waves due to
modulation. ' In Fig. 7, we plot the ratio Qo/p=Ko as
a function of the wave vector k for the acoustic and opti-
cal branches of a diatomic chain with a quartic potential
for three different cases for the SNI constants. For the
acoustic branch without SNI or additive SNI there are en-
velope solitons, while for weakly competitive SNI near the
center there are dark solitons. For the optical branch
there is significant change only for strong additive SNI
force constants [Fig. 7(b)]. The behavior near tr/2 for
both the optical and acoustic branches is dominated by
the sign of the dispersion parameter p, . In fact, the ex-
istence of the gap in the dispersion relation for the dia-
tomic chain as compared to the monoatomic chain strong-
ly dominates the stability or not of plane waves near ~/2.

In Fig. 8 we plot the energy of an envelope soliton as a
function of the wave vector k for the acoustic and optical

(a)

Ko

0.5'
I

\

(a)

:E„,
:E

i

+isa+~+~~

0.2

0'
Ec,

'

FIG. 8. Plot of the total energy for an envelope soliton versus
the wave vector k for (a) the acoustic (AM) and (b) the optical
model (OM), for different mass ratios and without SNI.
Dashed, solid, and dotted-dashed lines correspond to mass ratios
M2/M& ——1, 2, and 10, respectively, from the continuum-
approximation results. Dotted lines indicate the potential (E~)
and the kinetic {E,) parts of the soliton energy for the case
Mg/Mi =2.

(b)

(c) J
D

FIG. 7. Plot of the parameter Ko ——Qo/p versus the wave
vector k for the acoustic (AM) and the optical (OM) branches of
a diatomic chain with M~/Ml ———,, 8=6=1, and a=0.05,
g=0. 1. E denotes envelope solitons, D denotes dark solitons.
( ) G, =G =0, (b) G, =G =0.5, ( ) G, =G = —0.2.

branches for different mass ratios. If there are no SNI the
energy in the acoustic branch varies slowly except when
we go to very different masses. In the optical branch,
however, for Mq/Mi ——1 the energy is almost a constant
[dashed line in Fig. 8(b)], while for M2/M| ——2, 10 it
changes significantly with k due to the appearance of
d~~k solitons at the k values where the energy of the en-
velope soliton vanishes. These conclusions for the energy
and the amplitude of the envelope soliton can be general-
ized to SNI if we keep in mind the results of Fig. 7. This
means that if the masses are not very different, the energy
does not vary significantly with k except near the points
where there is a change to dark soliton. The calculations
have been done for constant values of a and g with
a=0.05, g=0. 1, but small changes in a and q do not
alter the results qualitatively except to raise or lower the
curves for the energy.

The approximate solutions derived for the envelope sol-
itons are also valid for the discrete lattice except for some
small adjustment. In fact as we see in Fig. 9 (also see Fig.
10), the soliton does not change in form during propaga-
tion and the frequency of the carrier wave stays the same
as observed in the time Fourier transform [Figs. 9(b) and
9(d)] of the atomic displacement of a particular light
mass. In Fig. 9(a) we represent, in enlargement, the final
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T=200)

0.2

-0.2
1

V=200 (b)

I I,
'

'h

-0.2
295

FIG. 11. Asymmetric envelope soliton with k =0.9, a =0.05,
and g =0.03 in a diatomic chain (M2/Mi ——1.5) with cubic and

quartic FNI (6=1, A = —0.5, 8=1) and harmonic SNI
( G~ ——62 ——0.5). The initial condition was that of a monoatomic
chain. (a) evolution, (b) final state at time T =200.

The approximation of a single chain with longitudinal
motion is an idealization that permits us to obtain exact
solutions which can be used as prototypes. However, even
in quasi-one-dimensional physical systems, we must con-

sions since the calculation is very lengthy due to the cou-
pling of many harmonics which, however, can be decou-
pled. The final result to O(e) is the superposition of a
kink of purely acoustic type and a symmetric envelope of
the type calculated in this section with amplitudes which
are related and moving as a coupled excitation. The ini-
tial condition of Fig. 11 is that for a monoatomic chain, '

which soon adjusts itself to the lattice with M2/Mi ——1.5
and the excitation is stable. In Fig. 11(b},we show an en-
largement of the details of the final soliton state after an
evolution of 200 time units on the discrete diatomic lat-
tice.

V. A MODEL OF TWO-PARALLEL CHAINS

sider the infiuence of the coupling to the surrounding
chains. Such an extension together with the inclusion of
transverse motion will lead us to the study of propagation
of nonlinear excitations in three dimensions. As a first
step, the diatomic model presented here can be used
directly to study the coupling of two monoatomic chains
as in Fig. 12. It consists of two chains with different
masses each coupled diagonally with two masses in the
other chain. Now the FNI of the diatomic chain corre-
spond to interchain interactions, while the SNI become in-

teractions between nearest neighbors for each chain. In
the new model both the interchain and the intrachain cou-
plings can be nonlinear. If we assume that there is no
transverse motion, then the solutions presented earlier can
be directly applied so that z and m are the longitudinal
displacements of the atoms in each chain.

While there is a strong similarity between the models of
Fig. 1 and Fig. 12, the dynamical behavior can be quite
different since the second case can correspond to a dia-
tomic chain with weak FNI and strongly anharmonic
SNI. This can make a difference on whether the kinks are
subsonic or supersonic while the region of stability of
plane waves could be very different. At the same time the
coupling between the chains can induce collective motion
on the other chain when one is excited. If the two chains
are excited with initial displacements those of the diatom-
ic chain the soliton can propagate even for the range of
parameters of interest. ~ If, however, we excite a single
chain, the response of the system is different when the ini-
tial excitation has a finite or zero mass. The reason is ob-
vious since for finite mass the first chain has a net strain
so that even for weak interchain coupling there is a large
amount of energy. As a result, a kink is also created in
the other chain with large-amplitude long-wavelength os-
cillations. On the contrary, if we excite on one chain an
envelope soliton (zero mass), the second chain gradually
(for weak coupling G} builds up the corresponding en-

velope soliton (see Fig. 13} and they propagate together.
If the coupling is strong the violent transient behavior will
not permit the creation of a coherent excitation. A partic-
ular case of this model is when one of the masses is much
larger say Mi &&Mi. In particular, if Mi-O(1) and
Mi -O(e ') then this is a solution such that the leading
term in z„ is of O(e ), while for w„ is of O(e). For the
appropriate choice of the signs of the force constants,
with a cubic term in the interaction potential between
chains, the solution is a kink of 0 (e ) along the chain of
heavy atoms coupled to an asymmetric envelope for the
light atoms. The asymmetric envelope consists of a sym-

-2D == 2D

L={2N-) )0

FIG. 12. The model of two parallel interacting chains.
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FIG. 13. The chain 1 (lower part of each figure) is excited by
an envelope soliton, which is an exact solution of the uncoupled
system. The coupling between the two chains (G=0.01,
A =8 =0) very quickly induces soliton motion on the other
chain (upper part of each figure): G~ ——G2 ——8~ ——82 ——1,
A ) ——A2 ——0, g =0.06, a =0.01, k =0.82.

metric envelope of O(e) superimposed on a kink of
O(e ). This problem is analogous to one in a different
physical situation including electronic excitations con-
sidered by Davydov in alpha helical proteins. This
case will be studied in more detail later.

VI. SUMMARY AND CONCLUSIONS

In this paper we have studied the dynamics of acoustic
and optical solitons in a nonlinear one-dimensional dia-
tomic lattice model, in which the atoms interact with
their first and second nearest neighbors following a non-
linear interatomic potential with harmonic, cubic, and/or
quartic terms, which is simple enough so that analytic
solutions can be obtained. The results, however, are ex-
pected to be valid for more realistic potential interactions
(Buckingham, Lennard- Jones, Morse, etc.).

We first used the continuum-limit approximation and
demonstrated that the chain dynamics can be approxi-
inately described by nonlinear partial differential equa-
tions of the integrable or quasi-integrable type. This al-
lowed us to calculate, within the long-wavelength limit,
acoustic and optical solutions of the nontopological soli-
ton type. We then used an analytical technique (semi-
discrete approximation) which enabled us to calculate os-
cillating soliton solutions, of the pulse or kink type,

modulating a quasiharmonic carrier wave, the wave vector
of which is not limited by the continuum-limit approxi-
mation.

Table II summarizes soliton solutions for the nonlinear
diatomic chain. Supersonic or subsonic kink excitations
given by (3.10) with velocities close to the speed of sound
co propagate without modification in the discrete lattice.
If the velocity deviates significantly from co, the kinks
adjust by emitting the excess energy and modifying the
soliton parameters as shown in Fig. 2. The oscillating sol-
itons (envelope or d~~k), which propagate in a lattice with
asymmetric potential (cubic or cubic + quartic), are like-
wise asymmetric (see Fig. 11). The solution is the sum of
a kink and a symmetric enve1ope or dark soliton pro-
pagated at the same 'gr' oup' velocity. When the asym-
metric (cubic) part of the potential vanishes the kink
disappears and the oscillating soliton becomes symmetric
(see Figs. 9 and 10).

The stability of oscillating solitons, and, therefore, the
instability of plane waves, depend strongly on the poten-
tial parameters and the mass ratio M2/M i. In particular,
the opening of a gap in the linear dispersion relation for
the carrier wave [Fig. 9(a)] drastically alters the character
of the solutions near k =mr/2 (see Fig. 10). We also calcu-
lated the energy of each excitation and we find that for
the same energy the widths of the three types of excitation
are comparable. However, only an order-of-magnitude
comparison can be made. This is because extra parame-
ters characterize some of the solutions. However, in each
case there can be a limitation on the possible numerical
values of these parameters from order-of-magnitude argu-
ments.

It would be interesting to extend the kink solutions to
large velocities U/cc & 1.5, where we cannot use the con-
tinuum approximation and at present we do not have any
analytic expressions. However, by considering the dynam-
ics of a few atoms near the core of the soliton we can ob-
tain relations between the physical parameters that
characterize the soliton, i.e., amplitude and velocity,
which are very different from those calculated in the con-
tinuum limit. This analysis along with computer simula-
tions is published elsewhere. These quasisoliton solu-
tions would be very useful to study stable shock-wave
propagation in solids.

The diatomic chain with a cubic nonlinearity has also
been treated by Yajima and Satsuma with a different
method and using new coordinates which to O(e) are the
center of mass and relative coordinates for the two
masses. Their results are in qualitative agreement with
ours and their solution corresponds to a particular solu-
tion in our case which is the asymmetric envelope soliton.

TABLE II. Nontopological soliton excitations in nonlinear diatomic chains.

Acoustic

Optical

Excitations

Kink (pulse) soliton

Breather soliton
Envelope or dark soliton

Envelope or dark soliton

Equation model

Bq, M-Bq, 6-Bq
(or KdV, M-KdV, G-KdV}

M-KdV
NLS



2320 ST. PNEVMATIKOS, N. FI.YTZANIS, AND M. REMOISSENET 33

However, the instability they predict for —,
'

&Mz/Mi &2
is valid only for the acoustic branch near k -0, where we
expect to have asymmetric dark solitons, while very close
to k-0 special care is required. In fact for a general k
the stabihty of the envelope solitons is always determined
from the sign of Qo/ .

Recently Collins, using some clever techniques, has
applied a "semicontinuum" approximation (SCA) for the
acoustic nonlinear excitations in a diatomic chain. The
method is best suited for the acoustic-type excitations
even though in principle it can be extended for the
oscillating- and optical-type excitations using techniques
similar to the multiscaling method described here. The
main advantage of the SCA is that a general interatomic
potential (GIP) with FNI can be easily treated, but the
problem is more complicated with SNI. The GIP case
does not alter the conclusions for the optical mode in Sec.
IIIE since the amplitude is of O(e) and (3.17) is con-
sistent to O(e ).

In the simple model of two parallel chains we have
shown that envelope solitons are less sensitive than kinks
to the coupling with neighboring chains. This means that
they also should be important dynamic excitations in
one-dimensional macromolecular systems. Extensions of
the diatomic chain model to include coupling between
chains could be useful to treat realistic macromolecular
systems, "3 ~ while the inclusions of electronic charge
with a polarizable ion which creates local nonlinearities

has been used in the study of ferroelectrics. ' The above
results could also be generalized for spin systems with
easy-plane anisotropy when the spins can be treated classi-
cally. To examine the relevance of the nonlinear excita-
tions in thermal conductivity and other mechanical prop-
erties, one must also consider their stability in a chain
with impurities and also the effect of external forces (con-
stant or oscillating) that could balance the energy loss due
to inhornogeneities and their pinning due to discretization
effcets.

The analytic expressions for soliton excitations will per-
mit us in the future to evaluate correlation functions and
study the thermodynamics of these systems. The in-
clusion of transverse oscillations and the coupling with
other chains would make the techniques described here
applicable to study the dynamics of three-dimensional sys-
tems. As a first step we could consider surfaces where we
can approximate the crystal as a static substrate potential
for the atoms in the surface layers. Recent works in this
direction seem hopeful.
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APPENDIX

The complex coefficients b i, b&, b&, and bo used in the ansatz (4.5) for the oscillating soliton solutions so that the two
equations for z and w are compatible are given as

bi ——1+i lm(bi ),
with

(Al)

where

tall( kD )

R
M) Mi 1 Bo—0' —4 gi — gt cos(kD)

crMZ M2 ~Dak ' (A2)

M)R= +g
oM2

and 0(k) is given by (4.6}. The coefficients bz and b3 are

b2 ——Reb2+i Imb2,

(A3)

(A4)

M) M) M)Reb, =2 cos(kD)+a Im(bi )sinkD —2 gi — g2 cos(2kD) —2 g2 Im(b, )sin(2kD)aM2 M2 Mp
[R cos(kD}], (ASa)

M) M)
1mb' ——2 sin(kD)+cr Im(b& )cos(kD)+2 g2 sin(2kD)

crM2 M2
[R cos(kD)], (A5b)

b3 ——Reb3+I Imb3, (A6)

Reb3 ———Im(b&)coM&/[GR cos(kD)], (A7a)
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Imb3 ——toMi l[GR cos(kD)] .

The coefficient of the nonlinear term is real and given by

(A7b)

Mi Mi
bo ——38 1—2 +2a — o +

Mz Mz

M, M,+3 cr o— 3—o cos(kD)
oMz Mz

Mi 8I
tr — cos(2kD) +8

2

Mi &z
o sin (kD) [R cos(kD)] . (A8)

In the limit Mz ——Mi from (4.6) and (4.7) we get tr =+ l. If we choose tr = 1 (acoustic branch) then the real parts of b
~

and bz are equal to unity while Reb3 ——0 since Imbi ——0. On the other hand since I',= UsE—+0 (e ) then the imagi-
nary part of (bqD /2 Usb—3D) in (4.5) also vanishes. The coefficient bo is equal to zero so that (4.5) is again a Taylor
expansion for the even atoms about the odd atoms when Mi ——Mz.
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