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We study electron-electron ( e-e) scattering in the presence of Landau quantization of the electron

orbits. The lifetime H, (H) is evaluated for an electron in a given Landau state N; by allowing it to
scatter with all other electrons at the Fermi level EF(H) through a screened Coulomb potential. We
consider the motion parallel to the magnetic field H, corresponding to the longitudinal geometry,
~here H is oriented parallel to E (the electric field). The lifetime v, (H) is obtained from the gol-

den rule; it depends linearly on the temperature, H.,(H)=B;(H)T '. The linear T dependence is

due to the one-dimensional character of the scattering processes at EF(H). The coefficients B;(H)
are calculated for a semiconductor InSb and for a metal Al for different magnetic fields,

%Aalu &EF(H), N =1,2, . . . , 100. The results obtained for the lifetime 8 (H) are compared with

the zero-field case, y, (0).

I. INTRDDUCTION

In recent years some experimental and theoretical ef-
forts have been made to understand the intrinsic electron
scattering processes in metals and semiconductors at very
low temperatures. Of particular interest is the effect of
electron-electron (e e) scatter-ing on the transport phe-
nomena. Its contribution to the bulk resistivity of pure
crystals (e.g., metal whiskers') can be observed by the use
of the superconducting quantum interference effect,
which allows for the measurement of very small voltages
and their small changes. In semiconductors, ee-
scattering in inversion layers can be important in two dif-
ferent cases. In a two-dimensional electron system, devia-
tions from ordinary conduction are observed because of
the tendency towards weak localization. The deviations
depend on the inelastic electron scattering rate which may
be dominated by e-e scattering. In addition, in very-
high-mobility samples the fractional quantum Hall effect
is observed at low temperatures. 6 This effect depends on
the e eCoulomb in-teraction. In these samples one ex-
pects e escattering t-o be relevant for electric transport
phenomena above the temperature regime where the new
condensed phase is formed in high magnetic fields by vir-
tue of the Coulomb interaction. In this paper we discuss
the lifetime, v', ,(H), of an electron at the Fermi energy
EF(H) of a degenerate electron gas. We assume that the
external magnetic field H is sufficiently strong that the
Landau quantization of the electron orbits must be taken
into account. The condition Ace, & k~ T, where
to, =eHlm'c is the cyclotron resonance frequency and
m is the band mass, implies that the electrons at the Fer-
mi level can only undergo "horizontal" transitions, Fig. 1,
i.e., transitions ~here a change occurs in the momentum
quantum number k, that is oriented parallel to the mag-
netic field. Hence, we ignore the "vertical" transitions
which become important for smaller magnetic fields
fuu, & k~ T. %e assume spin degeneracy.

The evaluation of v', ,(H) is not sufficient to obtain the
electrical resistivity p, (H). Let us recall that in the ab-
sence of an external magnetic field the resistivity is given

by the equation

where r,., is the electron lifetime and b, is a parameter of
the order of one that accounts for the e eumklap-p pro-
cesses responsible for p, in a one-component electron
gas; n is the electron concentration and m~, is the optical
mass defined in Ref. 8. In the presence of Landau quanti-
zation, the longitudinal magnetoresistance can still be
written in the form of Eq. (1), where now b, and ~, , be-
come H-dependent quantities. In this paper we only ad-
dress r, (H) and not b,(H). We mention that to obtain
the transverse magnetoresistance, one must solve the
equation of motion for the density matrix as discussed by
Kubo and by other authors, ' " ignoring, however, ee-
scattering. In the transverse case not only the diagonal

FIG. 1. Horizontal and vertical scattering processes: 1 and 2
are vertical processes and 3 is a horizontal process.
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elements of the density matrix are important, as is the
case in the longitudinal geometry.

The calculation of the lifetime is performed in Sec. II;
the results are discussed in Sec. III.

II. ELECTRON Ll&I:TIME

To calculate the electron lifetime we use the following
equation:

N, —1

I/r,'„(H)= g (I/~i')+
max N)

(1/ri ')+1/r, ',
N2 =N)+1

where N is the integer number determined by the Fer-
mi energy E~(H), N W &EF(H) &(Nm~+1)Ace

The first, second, and third terms of the above sums
give the scattering rate of the electron in the quantum
state Ni with electrons in quantum states which have
lower, higher, and the same Landau numbers as compared
with Ni, respectively, (cf. Fig. 2}. The scattering rate

N2 ~

1/ri ' is defined by the equation

1/~) ' = g W(1234),
allowed

scattering
pAxwses

where W(1234) is the transition probability for the follow-
ing scattering process: two electrons, in quantum states 1

and 2, interact through the Coulomb potential and scatter
into the final quimtum states 3 and 4.

The transition probability W(1234) is calculated from

the eigenstates

4~k g
=—4~(x —A, k»)e " e * (1/1»l.g)' (4)

where k~, k, are the momentum quantum numbers, I.~,J,
are the normalizing lengths, and 4~(x —A, k„) is the wave
function of the harmonic oscillator in Landau state N
with the zero-point coordinate A, k» =(cA/eH)k»:

@N(x —A, k»}=(A,V@2 N!) ' H~((x+A, k»)/A, }
-A.2(x+A.2k )2/2

ge

where ro is the Thomas-Fermi screening length and Ic is
the dielectric constant of the background medium.

Before evaluating the transition probability using the
Eqs. (4) to (7), we discuss in some detail the allowed
scattering processes on the basis of energy and momentum
conservation. At the Fermi level, where the scattering
processes take place, the momentum quantum number k,
has the following value:

E,,
ik~ i

—= ik»'
(
=(&2ni /A)[EF —%co(N;+ ,

' )]'—

For W(1234) the golden rule gives

W(1234) =(2n /R)5(Ei+Ei E3 —Eg)Mi23$ y (5)

where

M(1234)=(gigq
~

V
~
/ger~) .

Here, V is the interaction potential

2 -"~'0
V(r) =

K I'

The Taylor expansion in terms of the parameter
x; = (%co/E» )(N; + —,

'
) yields

2m O'EF
~

" (2n —3)!!
2y tt

This series converges for every Landau state ¹ below EF,
i.e., x«1. Using Eq. (9) we calculate the increment

FIG. 2. Scattering partners at the Fermi level. The states la-

beled with 5 correspond to scattering partners with a higher
Landau number, those labeled with have a lower Landau
number, and the state indicated by an X corresponds to the
scattering partners with the same Landau number as the elec-
tron under consideration.

N,

FIG. 3. Allowed scattering processes. The arrows indicate
the k, moments. The numbers N; label the corresponding Lan-
dau states. The direct scattering is indicated by a dashed line
and the exchange processes by a dotted one.
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~k =
I
k~ —k +I l

as we mov«rom k. «k; +i The
result is

3/2m QEy
Ak;= T~ (xI —xg + I )

.„-(x/ —xI+I)(2j 3 )It

The dependence of b,k; on all of the powers of the corre-
sponding Landau numbers N; and N~+ I, x;
=(Ace/Ey )(Nt + —,

'
), implies that none of the increments

hk; can be obtained by a linear combination with integer
coefficients from other increments 6k', j &i T.herefore,
two electrons in the initial quantum states, fz, k,k, and

QN, k,k, can only scatter into the final states /tv k, „k
and 1(gatv k k . Notice that the same quantum numbers

2 y4(3) z2

N, and k~ from the initial states appear in the final
I

states. Figure 3 shows schematically the allowed scatter-
ing processes. Concerning these processes let us inake the
following comments.

(1) The exchange scattering processes 1A, 18, and 28
(indicated by a dotted line) have the same initial and final
k, momenta and, therefore, they do not contribute to the
scattering rate.

(2) Since the process 2a obviously does not contribute to
the scattering rate, the processes which actually contribute
are the direct scattering processes of lA, 18, and 28 (indi-
cated by a broken line). For these processes we have
X) ——N4 and N2 ——N3.

We now proceed to calculate the lifetime of the electron
in the state 1=(Ni,k, i, kyi). The matrix element M, 234 in
Eq. (6) is obtained by integrating over the two electron
coordinates, taking into account that N I N4 a——nd
N2 ——N3', the result is

1

y ~ 2 (k k )2 (k k )2 1/ 2 "st+ z2' x3+ s4 yt+"y2'"y3+ "y4
q qx+ yI y3 + z1 z3 + ~O

XI(A, /4)[q +(kyi —ky3) ]j ' 'C ' 'Lpg' 'I(k, /2)[q, +(ky, —ky3) ]j

XLN,
' '

I(A, /2)[q, +(ky2 —ky4)'] j

xexPI (A'/2—)[q,, +(k» ky3) —+iq, (k»+ky3 ky2 —ky4)]—j . (10)

Here, the first Kronecker 5 accounts for the conservation of the k, momenta and the second Kronecker 5 in the ky mo-

menta accounts for the conservation of the zero-point coordinate A, k„. The number C ' ' is equal to 2 ' 'Ni!N2!.
With the above result for MI234 we proceed to evaluate the scattering rate

1/wt
' ——(2m/Iri) g g 5(EI +E2 E3 —E4)M I—234f (2)[1—f(3)][1—f(4)], (11)

ky2, ky3, ky4 kzg, kz3ykz4

M I234 =2

k 2,k 3,k„4

where f(i) is the Fermi-Dirac function for the electron in the state i From . the above six sums we first carry out the
energy-independent ones, i.e., the k„2, ky3, and ky4 sums

2
2

4me

y k, t+k, 2, k, 3+k, 4

1

k 3 e qx+( yi y3) +(km i kg3) + 1/ro

2
'

A,
2

2(N2 —Ni )

[q, + (ky I
—ky3)']

yt y3 (L 2 I(y(2/2)[ +(k k )2] I
)4

1
(12)

2M I234 =
k2, k3,k4

Equation (12) is valid for N2 & NI', for Ni & N2 we have to exchange N2 with Ni in this equation. Next we carry out
the integrations over q and ky3. To this end we introduce the polar coordinates H,p, where 9=1(kyt —k„i,q ) and
P =(kyi —ky3) +q„. We find

(L„/2n)(Ly/2n) f d8 f. dppe "y (Ap/4) ' '
[,Ltv' '(A, p l2)]

'2
/(P'+&k3 ki)'- (13)

&ki k3=«. I —k.3)'+1«O *
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To obtain a simplified expression for the above equation we introduce the quantity

P +~k1—k3

2(N2 N—[)( 3 ][[[ N2-
=(A, n) f dz[L,' '(z/2)] e

(N3[)'(z+~'&k[ k3)'
(14)

~u34 =
k ~,k 3,k„~

Using the above definition we rewrite Eq. (13) as
2'2

N]N2
(Lg/2e){L&I2n)Qk] k3 .

1/w~ (2m——/A)(4ne /a V) (Lz/2n )(Lg /2n )

N)N2
X g 5(E,]+E,2 E—,3 &—4)Qk[

Xf(2)[l—f(3)][1—f(&4)] . (17)

The next step in the evaluation of the scattering rate deals
with the energy-dependent integrations. We notice that
the 5 function in the energy variables can be written as
follows:

5(Ei+E2 E3 E4)—
=5[E,i+(N[+ —,

' Hko+E, 2

+(N3+ ,' )%co E—,3 (N—3+ ——,
'

)%co

Eg4 —(N4+—,' )%co] —.

For the allowed scattering processes we have Ni N4 and-—
Nz N3 so tha——t the right-hand side of the above equation
reduces to

5{E]+E2 E3—E4)=—5(Eg]+Egi—Eg3 Eg4) .

Taking this equation into account, the integration over
k,4 in Eq. (11)yields

Here, b4 means that the energy E,4 is being replaced by

Eg4 ——(]]1 /2m) X(k„+kg2 —kg3)

in the corresponding functions 5(E,4) and f(4). The 5
function

5(E i+E 2
—E 3

—h4)

is given by

5(E,i +E,3 —E,3
—b,4)

={m I])i'
I kg] kg31 )[5{k—g [—kg 3)+5(kgb kg3) ]

for k, [+k,3.
For the allowed scattering processes we have k, ]+k,3

so that the above equation can be used to proceed with the
evaluation of the scattering rate, this rate, Eq. (17), be-

Comls

1/r) =(2e'/R)(4n'ezlirV) (Ly/2'){L /2n'){L /2~)z(mls )

X f dk, »(1[k,) —k, » [ f dk, »g„' »g'(2)[l —f(3)][1—f(k, ))[()(k„—k,»)+5(k, »
—k, »)] .

Since for the allowed scattering processes k, 3+kg3, the above equation yields

1/ri '
(2m IA'){4ne——z/~V) {L„/2m)(L, /2n )(L,/2e)3(m IA )X,21 I)—g2 g)' g2 2 1 — 2 1— j (20)

The integration over k,z can be carried out by taking into account that the quantity Qk i' k2 can be taken outside the in-
tegral. This is allowed since at the Fermi level, where the scattering takes place, the k, moments admit only the value»

+k&'. Hence, Eq. {20)becomes for Ni ——N2

1/r] ' (2n /A)(4ne /——~V) (Iy /2n)(Lg /2m)(Lg/2'm)(m /]]1 )(1/
I
k'r '+km

I )Qk '+k [1—f(1)]J dkgz f(2)[1—f(2)],
(21)

and for X~&N2

1/r, g=(2m'/A)(4n'ezlzV)3(Ly/2n'){L /2~)(L /2~) (mls )

X[{1/Ikp —ky 1)Qk -k +(1/14 '+4 '
I )Qk,'+k, ][1—f{1)]J dk &f(2)[1

The final integration is ciirried out in the Appendix. The result for the scattering rate is for N[ —N3 given by—
1/r~ ' (m e /L&Lgv——dPtc )(1/kr )(1/14' +kr I )Qkg'+k~[1 —f(1)]kT,

(22)

(23)
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for Ni&N2 we have

1/r, '= (m e /L„L.w'2)(1/kp '[(1/
( kp

' —kp
'

( )Qk,
'

k, + (1/
~
kF '+ kF

'
~ )Qk,'+k„][1—f(1)]kT . (24)

N)N~
Equations (23) and (24) with the quantity Qk i~k2 numeri-

cally evaluated are used to determine the lifetime from
Eq. (2). The coefficients 8;(H), defined by H, (H}
=8;(H)T ', are plotted for different magnetic fields. In
Fig. 5 we use the electronic parameters of a semiconduct-
or InSb, and in Fig. 6 those of a metal Al.

n (cm 3)

m /rn

rp (cm)

InSb

1018

0.008
18
3.672g10 '

Al

18.1X10"
0.8430
1

0 488)& 10—s

The Fermi energy in the magnetic field is calculated from

EF(H) =
9 (EFp/%co)EFp, (25)

where E~p is the Fermi energy in the absence of a magnet-
ic field. The above equation is taken from Ref. 12.

III. CONCLUSION

We now discuss the results based on Eqs. (2), (23), and
(24) of Sec. II. The main qualitative result is that the
Landau quantization leads to a linear T dependence of the
e-e scattering rate 1/2, =8;(H) 'T, as compared with
the quadratic T dependence found theoretically and ex-
perimentally in zero field, H =0; i labels a Landau state
at EF(H).

The linear T dependence is a direct consequence of the
one-dimensional character of the allowed scattering pro-
cesses at EF(H). For a longitudinal geometry, H~ ~E (the
electric field) ~~R, the orbital quantization confines each
conduction electron to a fixed-space region in the x-y
plane and, therefore, only the transitions along the z axis
are responsible for the electrical resistivity. In other
words, the quasi-one-dimensional restriction of the phase
space (k, ) available for scattering processes causes the
linear T dependence. This dependence will not be
changed if instead of a parabolic band we use a nonpara-
bolic one (InSb); the phase-space argument remains valid.
We mention that a linear T dependence of 1/r, ~ is dis-
cussed by other authors' for quasi-one-dimensional sys-
tems (H =0).

The contribution of the e-e scattering processes to the
longitudinal magnetoresistance is the only one that is
dependent on the temperature T; at low T. The electron-
photon and electron-impurity scatterings lead to
temperature-independent contributions. '

The scattering rate 1/2 (T) is plotted in Fig. 4 for a
fixed magnetic field H =0.5248T, and for different Lan-
dau states i =0,30,59, as a function of temperature. The
electronic parameter values used correspond to those of
InSb. Together with these curves is also plotted the curve
of the zero-field situation. We note the existence of two
different T regions. At low temperature the scattering

rate in the presence of a magnetic field is bigger than the
scattering rate with zero magnetic field, whereas at higher
temperatures, the opposite becomes true.

Contrary to the simple, namely linear, dependence of
1/8, on the temperature, its dependence on the magnetic
strength H is not determined by a simple power law, Eqs.
(2), (23), and (24}. The basic reason is that in the
electron-electron scattering events, the eigenstates of both
the "target electrons" and the "scattered electrons" are af-
fected by the magnetic field. This is not the case for other
pertinent scattering processes, such as the electron-phonon
and the electron-impurity scatterings. Here, a simple
power law determines the H dependence of the resistivi-

14

We now proceed to a quantitative discussion of v',

These results are plotted in Figs. 5 and 6. Figure 5 shows
the lifetime coefficients 8;(H) [cf. Eq. (25}]for three dif-

ferent magnetic fields. The magnetic fields are deter-

mined such that

flCll(N~gx 1 ) (EF(H}(15CON~gg y

where N ~ =30, 60, and 100 are the number of Landau
states filled with electrons. The abcissa refers to the Lan-

10

FIG. 4. Temperature dependence of the scattering rate in the
presence and in the absence of a magnetic field. The electronic
parameters used to calculate the scattering rates correspond to
the semiconductor InSb. The curve Z indicates the scattering
rate in the absence of a magnetic field. The lines labeled with

A, B, and C show the scattering rate in the presence of a mag-
netic field H =0,5T for an electron in the states with Landau
number N =0, 30, and 59, respectively.
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10 ~O X. 6O 9Q

FIG. S. Lifetime coefficients for InSb. The curve labeled
with A corresponds to the magnetic field H =1T, the curve la-

beled with B to the magnetic field H =0.ST, and the one labeled
with C to the magnetic field H =0.3T.

dau state at the Fermi level IiI;, and the ordinate gives the
lifetime coefficient 8;(H) of this state. The electronic pa-
rameter values used to calculate these coefficients corre-
spond to those of the seiniconductor InSb. In Fig. 6 are
drawn the equivalent curves for the metal Al.

Let us first discuss the results found in the case of InSb.
This semiconductor has a small conduction-band mass,
m '/m =0.008, and the assumed electron density,
n =10's cm is also low. As a consequence of these
values, the required magnetic field for 100 filled Landau
states is relatively weak, H =0.3T. The relatively weak
magnetic fields required for the Landau quantization have
the following consequence: In the sequence of curves for
Bi(H} with N =30, 60, and 100, respectively, we ob-
serve a tendency towards a constant value for 8&, indi~ni-
dent of the Landau state i, cf. Fig. 5.

In the case of aluminium, strong magnetic fields
(H-10 T) are required to fill even 100 Landau states.
Therefore, 8; strongly depends on i

Finally, let us discuss the common features of the life-
time coefficients 8&(H) shown in Figs. 5 and 6. The larg-
est values of 8;(H} occur for Landau states with either
very sma11 or very large Landau quantum numbers X;.
This behavior can be understood by taking into account
the momentum dependence of the scattering rate. The
leading term of this dependence is given by

N —1
l1/8 (H) = g ~ . (26)

[
kF' kF —

[ [ kF'+kF
[ kF

(,N+N( )

This rate is smaller the larger the differences in the k,
momenta at EF are. For either very small or very large
values of N;, we get the largest differences and hence the
largest values of Bi. The asymmetry of the values of
8;(H), that the states with very large quantum numbers
N~ exhibit the largest values of 8; (H), can also be under-
stood on the basis of Eq. (26). Remember that the k, mo-
menta at EF(H) are not uniformly distributed. There is
an accumulation of the k, states for the electrons with
small quantum numbers ¹ the reason being the paraboli-
city of the bands, cf. Fig. 1. Therefore, the scattering
rate of an electron in a state with very large I mdau num-
ber has more small terms in the sum as compared with an
electron in a state with a small Landau number, cf. Eq.
(26).

APPENDIX

We calculate the following integral

I= f dk, g(2)[1—f(2)],
where f(2) is the Fermi-Dirac function. We can write I

I=(V'2rnkT /2A) f d(ex"/(e~+1) )(~1/v' +xd ),

where

x =[E,2 EF(H)+Pm/2—]/kT

d = [EF(H)—Ace/2]/kT .

0
LI)

K}

10 4D N, 60 90

For very low temperature d »1 we have, therefore,

I=(V'2mkT/2A') f dx(e'/(e +1) )(1/&x+d )

=v'2mkT /2A'2v d

=(v'2m /4A)[l/(EF(H) —Are/2)'~]kT+o((kT) ) .

(A2)

FIG. 6. Lifetime coefficients for Al. The curve labeled with
A corresponds to the magnetic field 8=336OT, the curve la-
beled with 8 to the magnetic field H =1680T, and the one la-
beled with C to the magnetic field H =10 T.

Using (RkF ) /2m =EF(H), we finally obtain

I=(m/2A }(1/kF ')kT+o((kT)i) . (A3)
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