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Monte Carlo methods have been employed to evaluate the energy of two previously proposed trial

wave functions for the quasiparticle at the v= 3 quantized Hall state of the two-dimensional elec-

tron system. The two wave functions have the same energy within our statistical accuracy, and are

consistent with a value e+( 3 )=(0.073%0.008)et/el„where io is the insgnetic length, and e the

background dielectric constant. Simulations of the quasihole state confirm previous estimates of
e (T)=0.026e /elo. We have also studied the charge distributions of the quasiparticle and

quasihole states, and we have evaluated the energies of a previously proposed microscopic trial wave

function for the ground state at v= —,, 3, and 7.

I. INTRODUCTION

The fractional qutuitized Hall effect is characterized by
plateaus in the Hall conductance of a two-dimensional
electron system, where the Hall conductance is pinned at a
rational fraction v of the fundamental unit ez/h. '

Current explanations of this effect require that the ideal
two-dimensional electron system, in a uniform positive
background, must have a series of stable states at the cor-
responding filling factors v=N/Ne, of the first Landau
level, where N is the number of electrons, and Nc, the
number of fiux quanta in the system. ' s (By a stable
state, we mean that there is a positive discontinuity in the
derivative BE/BN of the total energy of the system at the
filling factor v. ) In a seminal paper, Laughlin3 proposed
an approximate form for the electron wave function at fil-
ling factors v= 1/m, where m is an odd integer, and gave
arguments why there should be a discontinuity in BE/Bv
at these values of v. Since a collection of electrons in the
lowest Landau level has a particle-hole symmetry, in the
limit where the cyclotron frequency is large enough to
neglect mixing in of higher Landau levels by the electron-
electron interaction, it follows that there should exist
analogous stable states at filling factors v= 1 —m

However, experiments indicating quantized plateaus at
filling factors such as —', , —', , —,', —', , and —', clearly require
some nontrivial extension of Laughlin's idea to describe
the corresponding stable states. '

Another key result of Laughlin's paper was the obser-
vation that the elementary charged excitations in a stable
state v= 1/m would be quasiparticles and quasiholes with
electric charge +e/m. For more general rational v, the
elementary excitations have charge +qe, where

i q ~

' is
the denominator of the fraction v, expressed as a fraction
in lowest terms. Since the addition of one electron re-
quires the addition of

~ q ~

' elementary excitations, the
discontinuity in slope of the energy curve may be written

BE BE
BN„. BN „

where e++e is the energy necessary to create one quasi-
particle and one quasihole well separated from each other.
(The precise definitions of the individual excitation ener-

gies e+ and s will be discussed in Sec. II D.)
The energy gap Es =a++a is also of crucial impor-

tance in determining the low-temperature electrical prop-
erties of the system. For example, in the limit of small
but nonzero impurity concentrations, we expect that the
electrical resistance p will be thermally activated, with
an activation energy Es/2. Thus it is of great importance
to be able to calculate the excitation energies e+ and e
for any stable v of experimental interest.

It has been proposed that the quasiparticles or
quasiholes of Laughlin's stable states v= 1/m can be used
as building blocks to describe a set of higher-order stable
states, with more general rational values of v; for example,
the v= —', state was obtained by adding quasiparticles to
the state v=-,'. '6 In fact, by hierarchical iteration of
the quasiparticle construction, one can build, at least for-
mally, any rational fraction with odd denominator, in the
range 0(v ( 1, as was first noted by Haldane. 6 '

In a previous paper by one of the authors, it was point-
ed out that a collection of quasiparticles may be described
by a macroscopic pseudo-wave-function, which is a func-
tion only of the quasiparticle coordinates, and which has a
form appropriate for a set of fractionally charged parti-
cles obeying fractional statistics, in the lowest kinetic-
energy level in the applied magnetic field. In this way
one was led to a set of estimates of the ground-state ener-
gies at the various stable filling factors v, which depend in
each case on the quasiparticle or quasihole energies at pre-
vious levels of the hierarchy. For example, using this ap-
proach we may write
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(E/N)„2gs--A + —,&+( 3 ), (1.2}

7.+ ——0.0698+0.0033 . (1.3a}

Although there is no clear way of extrapolating our
finite-size results to an infinite system, we believe that a
reasonable estimate is

7+ ——0.073+0.008 . (1.3b)

Numerical results for s+ based on the pair-wave-
function form are given in the final column of Table II,
below, for systems of up to N =42 particles. Although
the energies obtained appear to be consistently slightly
lower than the energies of the Laughlin's derivative wave
function at the same values of N, the larger uncertainties
of these calculations prevent us from attributing signifi-
cance to this energy difference.

Although the energy of a trial wave function is neces-
sarily an upper bound to the exact energy of a system con-
taining one quasiparticle excitation in the v= —, state, our
quasiparticle energy Y.+ is not a rigorous upper bound be-
cause it requires subtraction of the ground-state energy at
v= —,', for which we only have a variational approxima-
tion. However, within the spirit of Laughlin s analysis, it
seems most likely that the variational energy for the spa-
tially inhomogeneous quasiparticle state should be less ac-

where e+( —,
'

) is the quasiparticle energy for v= —,', the
coefficient —,

' reflects the fact that the density of quasipar-
ticles is one-half the number of electrons, in the —', state,
and the constant A includes the energy of the parent
v= —,

' state and the energy of interaction of the quasiparti-
cles. The value of A, in this approximation, is derived
from the pair-correlation function of a classical one-
component plasma, and has the approximate value
A = —0.461 (see discussion in Appendix A}. [Note: All
energies in this paper, unless otherwise specified, will be
quoted in units of e /elo, where e is the dielectric con-
stant arising from the polarizability of the bulk semicon-
ductor material, and 10——

~

Rc/e8
~

'/ is the magnetic
length. Also, our discussion is confined to the strong
magnetic limit fico, »e /elo with all electrons in the
lowest spin state of the lowest Landau level. ]

In the present paper we shall present calculations of the
quasiparticle energy e+ at filling factor v= —,', and of the
total energy E for the stable groundstate at v= —', . In each
case, these involve a Monte Carlo evaluation of the expec-
tation value of the energy in a microscopic trial wave func-
tion, which is a specified function of the positions of all
the electrons in the system. The trial wave function em-

ployed for the state v= —', has the pair form proposed pre-
viously by one of us [Eq. (21) of Ref. 4]. For the quasi-
particle, we have used two different trial wave functions:
the pair form suggested in Eq. (23) of Ref. 4 and the
derivative form suggested by Laughlin in Eq. (14) of Ref.
3. [See Eqs. (2.38), (2.18), and (2.17) below. ]

Results of our calculations of the quasiparticle energy

e+ at v= —,, based on Laughlin's derivative wave func-
tion, are shown in Fig. 7 below for systems of up to 72
particles. In particular, for the 72-particle system, we
find the result

E/N = —0.414+0.002 . (1.4)

In addition to the quoted statistical error and the un-
known (positive) error due to the inexactness of our trial
wave function, there is an error in this case because we
have included the effects of antisymmetrization only to
second order in the exchange between pairs. However, we
estimate the antisymmetrization error, as well as the
finite-size effects, to be small.

The result for v= —', is not in satisfactory agreement
with the result E/N= —0.435, obtained by Yoshioka,
from exact diagonalizations of systems with up to N =6
particles, in a rectangular cell with periodic boundary con-
ditions. Thus, it seems that this proposed form of the
microscopic wave function is a rather poor approximation
to the true ground state at v= —', . In contrast, the estimate
obtained via Eq. (1.2), using our calculated value
e+{—,

' }=0.073, gives E/N = —0.424, for the v= —,
' state,

which is much closer to Yoshioka's results.
In Ref. 3 Laughlin proposed a simple trial wave func-

tion for the state of one quasihole, added to the ground
state at v= 1/m, whose energy may be evaluated directly
by Monte Carlo methods, or by approximations such as
the hypernetted chain. Laughlin quotes the value
e =0.026, at v= —,', from a modified hypernetted-chain
approximation to the pair-correlation function. ~ We have
performed a direct Monte Carlo evaluation of the energy
of Laughlin's trial wave function and obtain the results
shown in Fig. 4, below, for N =20, 30, 42, and 72 parti-
cles. Our result for a system of 72 particles is

c =0.0268+0.0033, (1.5)

in good agreement with Laughlin's result. Since the re-
sults of Fig. 4 show no change in e from N =42 to 72,
we regard {1.5) also as our best estimate for N = ao.

If we combine results (1.5) and (1.3a), we obtain a value
of the energy gap, for a system of 72 particles, which is

Ez -0.0966+0.0050 . (1.6a)

Our extrapolation for the energy gap Es in the infinite
system limit is

Eg -0.099+0.009 . (1.6b)

This result is substantially larger than the estimate
Es -0.056 obtained by Laughlin in Ref. 7, but it is some-
what smaller than a recent estimate E-0. 11 given by

curate than the estimate for the simple v= —,
' state.

Therefore we expect that our result (1.3) will be somewhat
larger than the exact value of s+ in the v= —,

' state.
We note that all of our results for 7+ at v= —,

' are signi-
ficantly higher than the estimate s+-0.030 given by
Laughlin in Ref. 7, or the estimate e+-0.025 obtained
recently by Chakraborty. The estimates of Laughlin and
Chakraborty were based on the same trial wave function
as we have used to obtain the results (1.3}, but involved
the use of further approximations to obtain the energy.
The present results imply that these further approxima-
tions were inaccurate by approximately a factor of 2.

Our result for the energy per particle at v= —', is
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Girvin, MacDonald, and Platzman. ' The result (1.6)
may also be compared with an estimate by Haldane and
Rezayi" of Es =0.105+0.005 based on computations of
the exact energy spectrum of seven electrons on a sphere.
We remark that in our disk geometry we expect that
finite-size corrections to Es may be smaller than the
separate corrections to 7,+ and c because corrections pro-
portional to N '~ should be equal and opposite for the
two terms.

It is interesting to note that experimental values of Es,
extracted from the thermal activation of the electrical
resistance at the center of a quiuitized Hall plateau, have
been consistently (0.03e /elo, 'z significantly smaller
than any of the theoretical calculations. The precise
reason for this discrepancy is not currently understood.

In the course of our calculations of s+ and 7, , we had
the opportunity also to perform an accurate Monte Carlo
evaluation of the energy of the fundamental state at v= —,',
based on Laughlin's trial wave function. Our result,

E/N = —0.410+0.001,

is in agreeinent with the earlier simulations of Levesque,
Weis, and MacDonald'3 for the same trial wave function,
and is slightly higher than the exact results of Yoshioka
et al. for small finite systems.

Recently, Chui, Hakim, and Ma' have carried out a
simulation for a crystal-like trial wave function for the
v= —,

' state, which they report has a significantly lower

energy than that of Laughlin's wave function quoted
above. Indications of a crystal-like pair-correlation func-
tion have also been found in a renormalization-group
analysis by Chui. ' In the present paper, however, we
shall adhere to the "conventional" view, namely that the
Laughlin trial function is a good physical approximation
to the true ground state at v= —,.

The remainder of this paper describes our calculations
in some detail. In Sec. II, we discuss the forms of the trial
wave functions used in the calculations, along with some
of the motivation for the choices. The energies s+ and 7,

are also defined in this section.
The methods used to evaluate the energies of our trial

wave functions are discussed in Sec. III. Detailed numeri-
cal results for the energies are also presented in this sec-
tion, and we also discuss the charge-density distribution in
the case of the quasiparticle state. Also included are re-
sults of simulations for the v= —', and —,

' states, based on
trial wave functions that are closely related to the one
used for v= —', .

The arguments leading to the approximate energy for-
mula (1.2) are briefly discussed in Appendix A. Some
computational strategies, employed to permit efficient im-
plementation of our program on an array processor, are
discussed in Appendix B.

All simulations in the present paper have been carried
out in a planar disk geometry, arith particle numbers
ranging from N =20, up to a high N =196 for certain
portions of the analysis. Generalizations to a spherical
geometry are currently being studied. %e note that the
wave functions for the quasiparticle at v= —can be readi-

ly adopted to a spherical geometry, but the trial wave

function for the v= —, state has required physically signi-

ficant modification to permit implementation on the
sphere. Details of these generalizations will be presented
elsewhere.

II. FORM OP THE TRIAL %'AVE FUNCTIONS

—)s I
/41II ( — ) II (2.2)

This wave function satisfies Pauli statistics, and it has the
desirable property that for m & 1 the wave function van-
ishes as a high power of the separation between two elec-
trons, which therefore tends to minimize the repulsive po-
tential energy. The probability distribution of the elec-
trons in the wave function f is given by

(2.3)

where

H = —2m gin)r; —r, [+g
&j j 210

(2 4)

(Note: Throughout this paper, we shall use probability
distributions and wave functions that are not normalized
to unity. We define expectation values by ( A )
-=(g( A

~
1(&/(1( ( g&. )

Equation (2.4) is the Hamiltonian of a classical one-
component plasma of particles interacting with each other
and with a uniform neutralizing background via a two-
dimensional Coulomb (i.e., logarithmic) interaction. The
strong tendency of the plasma to achieve charge neutrality
causes the N particles to spread out uniformly in a disk
with particle density n=(2nmlo) ' corr.esponding to a
filling factor v= 1/m.

The classical Hamiltonian H should not be confused
with the true quantum-mechanical Hamiltonian H,
obeyed by the electrons. The latter is the sum of a
kinetic-energy operator T, for N electrons in a uniform
magnetic field, and a potential-energy operator V, given
by

(2.5)

A. The quantum HaH state at v= 1/m

In this section we present the form of the trial wave
functions used in our calculation, and we review some of
the motivation behind these choices.

In all cases we shall confine ourselves to the strong-
field limit, where all electrons are restricted to the lowest
Landau level. ' Then we will always have a wave func-

—)rj t'I4l,'
tion which is the product of a Gaussian factor e
for each electron, and a polynomial in the complex-
coordiante variables of the electrons:

(2.1)

The form proposed by Laughlin for the fundamental frac-
tional quantized Hall states, having filling factor v= 1/m,
with m odd, is given by
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p(r) —=n (r) n—s(r), (2.6)

where n (r} is the two-dimensional electron-density opera-
tor, and —en'(r) is the charge density of the neutralizing
uniform positive background sheet. Note that V involves
the three-dimensional Coulomb interaction, ~ 1/r, in con-
trast to the logarithmic interaction appearing in the ficti-
tious chisslcal Hamllto111an H

The expectation value of the potential energy in a quan-
tum state g is determined by the pair distribution function
for the state. In the limit of an infinite system, we have

f2&g
2e 0+

(2.7)

where the integrals range over the entire x-y plane with
the points r=r' omitted, and p(r} is defined by

z& is moved around a path encircling N' other electrons.
As stated above, in the strong-field limit, we consider only
wave functions which are a product of a Gaussian factor
and a polynomial in complex position coordinates IztI.
The properties of analytic functions are such that if the
magnitude of g is to remain approximately constant over
a large region, the average density of zeroes of the wave
function must not deviate from the value 1/2n la S.ince
Laughlin's wave function has m zeroes per electron, this
fixes the density at v= 1/m.

In order to have a density of electrons slightly smaller
than v= 1/m, it is neceisary to have some extra zeroes of
the wave function with no electrons attached, or else to
have some electrons with more than m zeroes. The first
possibility is easiest to realize. Consider the wave func-
tion

where

g (r) —= (n (r}n (0) )/n (2.8)
0„' 'I:&t )= ff (zj rid' t—&i j

j=1
(2.12)

For Laughlin's wave function, we may simply replace
g(r) by gsi(r), the pair-correlation function of the one-
component plasma. This function, in turn, may be
evaluated to any degree of accuracy, in principle, by
molecular-dynamics simulations, or it may be approxi-
mated by various standard methods. (¹te:The kinetic
energy per electron is a constant iran, /2 which we shall al-

ways omit from our discussion. For this reason, below,
we shall often replace ( V} by the symbol E, for energy. )

It is convenient, for our purposes, to discuss the energy
of a finite system. For this we consider that the positive
charge which neutralizes the electrons is spread uniformly
over a disk of radius R, with

n R =2nml~ (2.9)

The potential energy of the system is then given by

d „, (P( )P(')&
2e /r —r'f (2.10)

where the integrations run from r =0 to r = ao, with the
points r=r' excluded, and

n(r) —n for 0&r &R
p(r) =

n(r) for r &R

The expectation value ( ) is to be evaluated in this case
using the probability density (2.3), for a finite system of N
electrons. Note that the average electron density (n(r))
does not drop off sharply to zero at r =R~, but rather
spills out slightly, falling off with a length scale of order
lo about r =R

(2.11)

B. The quasihole state

An important characteristic of Laughlin's wave func-
tion (2.2) is the number and location of the zeroes of the
function. If all electrons but one are held fixed, and the
wave function considered to be a function of the position
zj of the remaining electron, then we see that there are
precisely m zeroes at the position of each fixed electron,
zk. Equivalently, we note that the phase of the wave
function changes by 2mrnN' if the "test-electron" position

with ri= rl, i re and—
~
ri

~
& R

This wave function has a simple zero at z&
——g for any

j, as well an m-fold zero at each point where zJ
——zk, for

k&j. Since the zeroes must be uniformly spread out with
a density equal to the density of flux quanta, this suggests
that there will be a hole in the electron distribution in the
vicinity of point sl, with 1/m electrons missing, and that
the radius of the disk occupied by the electrons will in-
crease slightly to accommodate the extra 1/rn electron.
Indeed, if we consider the square of the wave function
y'„-', we find

where

H„' '=H~+2+ln ~zj ri~ . —

(2.13)

(2.14)

This is just the Hamiltonian of a classical one-component
plasma in the presence of an extra repulsive "ghost
charge, " at point g, whose strength is smaller by a factor
1/m than the charges in the plasma. The tendency of the
plasma to establish charge neutrality guarantees that the
ghost charge will be "screened" by a deficit of 1/m elec-
trons in the vicinity of the point g, while the electron den-
sity elsewhere in the interior of the occupied disk is the
same as in the absence of the ghost charge. Of course, if
the number N of electrons is held fixed, the radius of the
occupied disk must expand slightly (by a fraction
=1/2m%}, in order to accommodate the ghost charge as
well as the electrons.

Recall that the real three-dimensional electric charge is
carried by the electrons and by the uniform positive back-
ground, not by the fictitious ghost charge. Since the elec-
tron charge density just cancels the uniform background
in the absence of the ghost charge, it is clear there is a real
net charge of positive sign in the vicinity of point g,
whose value is just —1/m times the electron charge e.
This charge is concentrated in a radius =la about the
point g.

The quasihole wave function (2.12) is not an exact
eigenstate of the Hamiltonian. It is certainly the simplest
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wave function, however, that has the necessary property
of enclosing one extra flux quantum, and it is very much
in the sainte spirit as the ground-state trial wave function
(2.2). Therefore, if (2.2) is a goad approximation to the
true ground state of the uniform system, it seems likely
that (2.12) will be a good approximation to the lowest-

energy state containing one extra zero in the interior. %'e

may note that both (2.2} and (2.12}are exact energy states
in the Hmit of a short-range potential. '

short-range repulsive interactions, Eq. (2.15) should actu-
ally become an exact eigenstate for a spin-reversed quasi-
particle excitation, and should be the lowest-energy quasi-
particle in the absence of the Zeeinan energy. ]

If all electrons are assumed to have parallel spins, then
Eq. (2.15) is an illegal trial function, as it is not antisym-
metric under interchange of particle 1 with the other par-
ticles. We might attempt to repair this difficulty by
operating on the wave function with the antisymmetrizer
u, defined by

C. The qnaeiparticle state u=—g( —1)( lP, (2.16}
In order to increase the density of electrons relative to

the stable 1/m value, we must create a state in which
there is slightly less than m flux quanta per electron in
the interior of the system. Thus we seek a quasiparticle
state, in which there is one missing fiux quantum, or one
missing zera of the wave function, relative to the state
(2.2). In this case the choice af trial wave function is less
obvious than in the case of a quasihole. We cannot sim-

ply multiply the wave function (2.2) by Q& (zj —q) ', be-

cause the resulting wave function wauld no longer be of
the form of an analytic function of z times a Gaussian
function, and thus would not describe particles in the first
Landau level.

If we did not have to worry about antisymmetrization
of the wave function, we could consider a trial wave func-
tion of the form

&= II('J —' } '&
j=2

(2.15)

Equation (2.15) is actually a valid trial wave function
for a quasiparticle excitation in which the spin of one
electron is reversed relative to spins of all the others, since
electrons of spin up and spin down may be treated as two
distinguishable species. The potential energy of (2.15}
should be only slightly higher than the energy of the
ground state (2.2); although the singled-out electron does
approach its neighbors somewhat more closely than in the
ground state, [ P (

still vanishes as
) zj —zi [

Indeed, the potential-energy cost of this excitation is prob-
ably lower than that of any other simple quasiparticle
wave function, and it is only the Zeeman energy associat-
ed with the spin reversal that we believe will suppress this
excitation in most practical cases. ' [In the limit of

in which electron 1 is distinguished from all others. This
wave function is nonsingular, because g vanishes when
zj~zi. ~1( ~

is the distributian function for a two-
dimensional plasma in which particle 1 has its charge re-
duced by the factor ( m —1)/m in its repulsive interaction
with the other particles, but has the same interaction as
the other particles in its attractive interaction with the
background. It is clear that particle 1 will be attracted to
the center of the occupied disk, and the remaining elec-
trons will leave a hole near the origin of size (m —1)/m.
The net effect is an extra negative charge elm near the
origin. Alternatively, we may note that when (2.15) is
considered to be a function of the position of any electron
other than the singled-out electron 1, there is one less zero
of the wave function than in the case of the ground state

fo 'IzkI =ufo 'Izk[, (2.18a)

go+'Izk I =
1

z, ——,(z, +z, )
(2.18b)

zi —z2 . 3 (zi —z }(zz—z. )J= J 1

Let us first ignore the antisymmetrizer and examine the
properties of the wave function go+'. We note that go+'

where the sum is over all permutations P of the positions

zj, and ( —1)(~}is the sign of the permutation. It can be
shown, however, that the antisymmetrizer annihilates the
wave function (2.15). Specifically, we note that if we con-
sider the dependence of u1( on one of its variables, say s~,
while all the others are held fixed, then it has the form of
the product of the fundamental ground state f and a ra-
tional function R (zj } which goes to zera for zJ~0 and
which has only simple poles, occurring at the points

zj ——zk, for k+j. Since ug is odd under interchange of z&

and zi„however, it follows that it must vanish as an odd
power of zj —z~, when the two points come together.
This implies the residue at the poles of R (z&) are equal to
zera, and hence R (z&) =0.

A properly antisymmetrized trial wave function for a
(spin-aligned) quasiparticle state at point z =g has been

praposed by Laughlin. It may be written

y= ff e 'J ' 2I,' q' g—(z, —z, ) .
1=1 zJ I (k

(2.17)

Although the square of this wave function cannot be
directly interpreted as the distribution function of a classi-
cal statistical-mechanics problem, Laughlin has shawn
that the charge density can be calculated using a
mathematical transformation. Indeed, the wave function
has the requisite properties of a quasiparticle state: the
charge density is the same as for the ground state P~, ex-
cept within a radius of order lp about z =rl, where one
finds a total extra charge of elm. One may also verify by
inspection of (2.17) that it has one missing zero as a func-
tion of any variable zj, compared to g~. We refer the
reader to Refs. 3 and 7 for further justification of this tri-
al wave function.

In addition to employing the wave function (2.17), we
have used an alternate trial wave function, suggested ear-
lier by one of us, which appears to be more directly
motivated by a classical statistical-mechanics problem.
We write our wave function, for the case of a quasiparti-
cle at the origin, as
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has the form of a polynomial in (zk ), times a Gaussian
factor, and hence describes a collection of particles in the
lowest Landau level, as long as we have m ~1. The
square of the wave function may be written

I

y(+) Iz H-

H=H +4lnI r& —r2I

(2.19)

2 2 ln
I rj —ri

I
+»

I rt —rz
I

(2.20)

(+) (+)

—, (+) g*(z)+z2)/4mlo-, (+ )
jp& ——e V'0

(2.21)

(2.22)

If we set z, =z2-z, and integrate over the positions of the
remaining electrons, then the value of

I
alt v+'

I
is propor-

tional to exp[ —V (z)], where

V' =( —2Retl'z+ Iz I
)/2rnlo . (2.23)

Thus
I g „'+'

I
has its maximum when the center of gravi-

ty of the singled-out pair is at the point z =g.
Next, we would like to argue that the unsymmetrized

wave function go+' has a reasonably low expectation
value of the potential energy V, and from that point of
view is a good starting point for the desired wave function

where H is the Hamiltonian of the classical one-
component plasma (2.4). Thus, compared with H, we
see that H has an extra logarithmic attraction betwo:n
particles 1 and 2, which tends to keep them bound togeth-
er. The remaining particles have a logarithmic repulsive
interaction with the center of gravity of the bound pair, in
addition to a logarithmic attraction to the two members
of the pair, which partially cancels the repulsion con-
tained in H . The net effect is that an electron which is
some distance away from the pair sees a net charge on the
pair of 2m —1, in units where an unpaired electron has
charge m. There will therefore be a hole of size 2 —1/m
about the pair, i.e., including the pair, there will be a net
charge of e/m.

Just as in the wave function (2.15), the extra negative
charge will be attracted to the center of the system. The
pair sees an effective repulsive potential energy, arising
from the interaction with the uniform density of other
electrons, which has the form —(2—m ')r /2lo, but the
interaction of the two particles with the uniform back-
ground gives a larger attractive otential r /lo The net.
effect is an attraction of r /Zmlo, which localizes the pair
at the origin. A similar analysis also shows that the in-
teractions between the singled-out pair and the remaining
electrons lead to an effective quadratic attraction between
the two particles of the pair, which tends to enhance the
binding of the pair.

The above analysis can be generalized to a state in
which the quasiparticle charge is centered at a point 71

rather than at the origin. We define

of a quasiparticle at the origin. We see, of course, that for
most pairs of electrons the correlations are the same as in
the uniform ground state g~. The pair z( and zq ap-
proach each other more closely than the others, as

I
go+'

I
is seen to vanish only as

I z, —z2
I

™2, and this
will certainly increase the energy somewhat. This feature
must be characteristic of any antisymmetrized wave func-
tion which has a higher density of electrons than present
in the state 1l, however, so we must be prepared to pay
such an energy price. Now, consider the interaction of the
electron 1 with the remaining electrons in the system.
The wave function

I g o+ '
I

vanishes only as

I
z, —zj I

', which is slightly slower than in the original
wave function g . However, the electron j is repelled
from the electron 2 and from the center of gravity of the
pair 1 and 2 by additional terms in the classical Hamil-
tonian H, while electron 1 is closer to electron 2 than it
would be to its nearest neighbor in g~. Thus the distance
between electron 1 and any electron other than 2 is prob-
ably slightly greater than it would be in the state g
This should reduce the energy somewhat.

Finally, we must examine the effects of the antisym-
metrizer a. We note that the wave function go+' is al-
ready antisymmetric with respect to the interchange of
particles j and k, ifj & 2 and k & 2, and it is also antisym-
metric under interchange of particles 1 and 2. However,
the wave function does not simply change sign under a
permutation such as P~3 which interchanges the positions
of particle 1 and particle 3. If the pair 1 and 2 were very
tightly bound, and had no overlap in space with the region
occupied by particle 3, then the function P(go+' would
have no overlap with the original function go+'. There
would then be no contribution of the cross term
&go+'

I
P (g3+o') to the normalization of the wave func-

tion go+', and no contribution of &go+'
I

V
I
P,3go+') to

the expectation value of the potential energy.
Since P(3 ——1, and P» commutes with V, the terms

&(Tt'o+'I P(3VP(3 I
fo+') and &Po+'

I P(3P(3 I
ko+')

which appear in the numerator and denominator of the
expectation value are equal to, respectively,

&y(+~
I

V
I

hatt(+~) and &y(+(
I

y(+~)

and have no effect on the ratio.
In actual practice we do not expect there to be zero

overlap of the pair (z„z2) with the other electrons in the
system, but we may hope that the overlap is sufficiently
small that the antisymmetrizer u has only a modest effect
on the energy and correlation functions for the quasiparti-
cle state. In the Monte Carlo calculations described
below, where we have taken the antisymmetrizer fully into
account, we find that these expectations are reasonably
fulfilled. The antisymmetrization process actually leads
to a reduction in the quasiparticle energy 7, + by about
40%, at v= —,.

It should be noted that we have no strong a priori
reason to believe that our quasiparticle wave function
(2.18) is any better or any worse than Laughlin's trial
wave function (2.17). It turns out that the energies of the
two wave functions are very similar, although there are
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some differences in the charge distribution, as discussed in
Sec. III.

To see the possible similarity between the two trial
wave functions, note that if we set r? =0 in Eq. (2.17},and
consider a particular subset of the many terms which re-
sult from allowing the derivatives to act on different fac-
tors in the polynomial g& k (z& —zk), we can recover
our own antisymmetrized wave function (2.18). In partic-
ular, if we let B/Bzi and B/Bzz act an the factor
(zi —zi ), and we let B/Bzk act an the factor
(zi —zk) (zz —zk)~, for all k & 3, we just recover the un-
symmetrized wave function iTO+', if we include all the
permutations af this term, we obtain the antisymmetrized
form $0+'. It is not a priori clear whether the remaining
omitted terms should increase or decrease the energy of
the state, nor is it clear that the omitted terms lead to any
large differences in the properties of the two wave func-
tions.

D. Definition of the quasiparticle energy

Having chosen a particular trial wave function $0+' or
$0

' for the state with quasiparticle or quasihole at the
origin, we may, in principle, calculate the expectation
value of V, and so determine the energy of the state. To
identify the quasiparticle or quasihole energy, however,
we must subtract off the energy of the stable ground state

, and here an ambiguity arises: Should we choose f
at the same value of magnetic field or the same electron-
disk radius'? Should we consider a system with same
number of electrans, or should we alter the total number
of electrons by +1/m, consistent with the idea that the
quasiparticle and quasihole carry an electric charge
+e/m? One may also question whether to alter the radius
of the neutralizing background by an amount of order
1/2mN.

Following Ref. 8, we shall give here two distinct defini-
tions of the quasiparticle energy. A "gross" energy a+ of
the quasiparticle may be defined by the following
Gedanken experiment. We begin with a Laughlin state
v=1/m, containing N electrons in a uniform magnetic
field Bo, interacting with a uniform positive background
of charge —¹,spread over a disk of area i'
=2wNmlo. Let the energy of this state be E . Now let
us add one electron to the system, together with a neutral-
izing background charge of —e, which is spread uniform-
ly over the disk of radius R~. We hold the magnetic field
constant and we require that the extra electron goes into
the system in the form of m quasiparticles of charge
e/m, well separated from each other in space, and also
far from the boundaries of the system. Note that the
outer radius of the disk occupied by the N+1 electrons
will be the same as that occupied by the X electrons in the
original state, and the electron density is unchanged, ex-
cept near the quasiparticles. Now we define the quasipar-
ticle energy e+ as 1/m times the energy difference be-
tween the new state and the original energy E . Note
that e+ is defined so that in the limit of an infmite sys-
tem, it is precisely equal to m BE/BN, where E is the
total potential energy, and the derivative is evaluated at
fixed magnetic field, in the limit v~(1/m}

In Ref. 8 we also defined a "proper" quasiparticle ener-

gy 7.+. For the case of a quasiparticle added to one of the
fundamental fractional Hall states with v=1/m, the
proper energy may be defined as follows. ' Again, we be-
gin with a state g~ containing N electrons in a field 80.
Now, however, we keep the number of electrons constant
and reduce the magnetic field by a factor mN/(mN + 1).
%'e require that the new electron states have one quasipar-
ticle at the origin, i.e., we have a state similar to $0+' of
Eq. (2.18). Since the magnetic length which enters the
wave function has been increased by the factor

~
(mN +1)/mN

~

'/, we find that the outer radius of the
occupied electron disk is the same as in the original state
1b~; the extra charge e/m at the origin is compensated by
a reduction in the uniform electron density elsewhere in
the disk, which is in proportion to the reductian in 8.
The proper quasiparticle energy e, + is then defined as the
difference in the potential energy of the present state and
the original starting state P . We may thus describe 7+
as the change in potential energy upon removing one
quimtum of magnetic fiux from the system at v= 1/m.

In precise analogy to the above constructions, we define
a gross energy s and a proper energy s for adding a
quasihole to the fundamental state at v= 1/m.

It is not difficult to find the relation between s+ and 7+
in the limit of large N. Consider a fundamental quan-
tum Hall state at filling factor v= 1/m, which contains
N+1 electrons in a magnetic field 80(N+1)/N. Since
the potential energy per electron of a given state is in-
versely proportional to the magnetic length lo, the total
potential energy of the state under discussion may be writ-
ten as

' 3/2
N~1 3

Em = &+ (2.24)

(2.25)

In a similar way, we find, for the quasihole energies,

2m N
(2.26)

Note that for quantities such as the energy gap Es which
involve the sum of the quasiparticle and quasihole ener-
gies, it does not matter whether we use the proper energies
or the gross energies, since

E~+E =E~+6 (2.27)

The difference between the individual energies is not

where E is the energy of the state with N electrons in
field 80, as before.

Naw if we repeat m times the construction used to de-
fine the proper energy s+, beginning with the state with
N ~1 particles, locating the quasiparticle at a different
point each time as we reduce the field by the factor
Nm/(Nm +1), we wind up with a state containing N + 1

particles in a field 80, which is precisely the state we used
above to define the gross energy s+.

It follows that
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small, however. For example, in the case m =3 (v= —,
'

)

we have E /N = —0.410e /elo. Then the values

e+-0.073e /elo and e =0.026e /elo quoted in the In-

troduction correspond to gross energies c+
= —0. 132e /elo and e =0.23le /elq.

The quasiparticle and quasihole energies discussed in
the remainder of this paper, as in the Introduction, will al-

ways be the proper energies s+ and 7, . The definitions
used by Laughlin also coincide with this choice.

E. Finite density of qnasiparticles

We now consider the possible states that result from
adding a finite density of quasiparticles to a fundamental

state with v= 1/m. If the density of quasiparticles is suf-

ficiently small, we expect that the lowest-energy state
should have the quasiparticles localized at the sites of a
triangular lattice, forming a Wigner crystal, stabilized by
the Coulomb repulsion of the quasiparticles. If the
density of quasiparticles is increased sufficiently, however,
we expect the Wigner crystal to be unstable to a liquidlike
state of the quasiparticles, analogous to the Laughlin
states for the bare electrons. It is therefore useful to gen-
eralize our quasiparticle wave function to a state with a
number of quasiparticles, which need not be in localized
positions. We consider a wave function containing N
electrons with Ni quasiparticles. We shall represent these
quasiparticles by Ni pairs of electrons, leaving N —2Ni
electrons unpaired. %'e write

i}'jIzk j =ugIzk j,
QIzk j =f~ Izk jPIZi j g (zzi —zzi i ) g [(z2i —zzj)(zgi i zij)(zzi z2j —1)(z2i —1 z2j —1}]

(2.28)

X g [(Z, —„)(z„.—z„)-'(z„,—z„)-'],
i, y

(2.29)

where the index k runs from 1 to N, the indices i and j label pairs and run from 1 to Ni, the index y labels unpaired
electrons and runs from 2N i + 1 to N, the variable Z; is the center of gravity of the ith pair,

1Z;= T(zz;+z2; i), (2.30)

f~ is the Laughlin wave function (2.2}, and P is any symmetric polynomial that vanishes at least as fast as (Z; —Z, )

when any pair of variables Z; and Zj approach each other. This wave function represents a set of electrons in the lowest
Landau level, provided that m & 1. The wave function f is antisymmetric with respect to the interchange of two un-

paired electrons. It is symmetric, as required, with respect to the interchange of two pairs of electrons. It is not yet an-

tisymmetric with respect to interchange of two electrons from different pairs, or interchange of an unpaired electron
with a member of a pair. As in the case of a single pair, however, we expect that the properties of P will not be drastical-

ly altered by the antisymmetrizer, and that we can get good insight by studying the properties of f.
We can further simplify the problem if we ignore the dependence on the internal degrees of freedom of the pairs. We

then write /Ized j ~ P (Z~,z„j,where

y=—~IZ, j g(Z, —Z)4™-4g(Z,—z„)' -'g(z„—z ) ge " 'ge
i,y

(2.31}

We note that the simplified wave function uP is just the
schematic form stated without derivation in Ref. 8, as the
starting point of the inductive derivation of fractional
quasiparticle statistics. (Specifically, uP is equivalent to
the wave function obtained by combining Eqs. (1}and (11)
of Ref. 8, with the definitions Qo[Zk ]= gk i (Zk
—Zi) ', and rni —=m =2jii —1. The roles of upper- and
lower-case position variables here are interchanged rela-
tive to Ref. 8.)

As noted in Ref. 8, if we take the trace of
~ P ~

over
the unpaired electron coordinates zy, the result has the
form

~
g[Z;]

~
P[Z;], where

1([Z,]=~(Z, ) g ~Z, —Z, ~-'/™
I (J

—
~ Z; ~

2/4m102
X e

while P[Z;] is the partition function of a classical one-
component plasma with sources at positions Z;. This
partition function is independent of Z; for large values of
the separations, due to the screening property of the plas-
ma. Thus,

~ P[Z;] ~
is, at least approximately, the proba-

bility of finding quasiparticles simultaneously at positions

Z;, and P[Z;] may be interpreted as a pseudo-wave-
function for the quasiparticles.

P. %ave function for the state v= ~

If we are interested in stable states of particularly low
energy, we should look for a state where the quasiparticles
Z; are uniformly spread out over the area occupied by the
electrons, and kept away from each other as well as possi-
ble. By analogy with Laughlin's wave functions g, we
would guess that a particularly good choice for the sym-
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1
(n —2ni)m +ni(2m —1)=

2m io
(2.33}

(n —2n i }(2m —1)+n i(2p +4m —4)= z, (2.34)
1

neo

where n i is the density of pairs and (n —2n i ) the density
of unpaired electrons. The solution of these equations

metric polynomial P is the product form

P(Z, )= g (Z, -Z, )'s, (2.32)
l (J

where p is an integer &1. Now
~ P ~

is the distribution
function of a classical statistical-mechanics problem with
two kinds of particles, interacting with each other and
with a uniform background charge density via logarith-
mic potentials of various strengths. The equivalent of the
plasma neutrality requirement applied to each of the
species results in the following equations, applicable in the
region where both species are present:

gives

v=2mlon =2p/(2pm —1),
2wlo(n —2n i ) =2(p —1)/(2pm —1) .

(2.35)

(2.36)

v=2/(rn +2),
n —2ni ——0.

(2.37)

(2.38)

The last equation implies that there are no unpaired elec-
trons in this case.

In the present paper we shall analyze the potential ener-

gy of the wave function g for the state v= —', , which we

obtain from (2.28), (2.29), and (2.32), with p=1 and
m =3. Exqhcitly, we may write the trial wave function
for the v= —, state in the form P=czg, with

These are the stable states at the second level of the
quantized Hall hierarchy, obtained by adding quasiparti-
cles to the fundatnental states v= 1/m. We note that the
choice p = 1 is a limiting case which gives

e sk I
2] 4102

k
~k ~l

k(l
Z2l —Z2i —1 g (Zi —ZJ)

l (j
(2.39)

where k and I run from 1 to i', while i and j run from 1 to Ni ——E/2, and Z~ is the center of gravity of the pair, as be-
fore.

The wave functions given by (2.28), (2.29), and (2.32) are actually special cases of some more general trial wave func-
tions discussed originally in Ref. 4. For example, Eq. (2.39) above is a special case of Eq. (22) of Ref. 4, which may be
written in the present notation as

e
—

t sk I '/4lO

k
~k ~l

k(l
g (z2; i

—zz;) ' g (Z; —Zi)"
i(j

(2.40)

where s, t, and u are required to be integers with s &0,
u & 0, s t & 0, and s— t odd. Also—, u or t or both are re-
quired to be &0. It may be shown that this wave func-
tion leads to a filling factor v=2/(2s + u).

As another example of Eq. (2.40), consider the choice
s=u =1, t=0, which gives a filling factor v= —', . From
one point of view, this wave function may be considered
an attempt to build a v= —, state by adding triply charged
quasiparticles (q =1}to the v= —,

' state.
As we are much more inclined to build the —, state by

adding ordinary holes to the completely full Landau level,
we might not expect a priori that this construction would
lead to a very good wave function for the —', state. Anoth-
er serious problem is that the choice t =0 removes one of
the factors that led to binding of the pairs in the case of
the v= —', state, or the other examples given by Eq. (2.29)
above. As a result the antisymmetrization operator u
should have a much more drastic effect on this wave
function than in the ease of the v= —', state.

Despite the above reservations, we have attempted to
evaluate the expectation value of the potential energy in

this trial wave function for the —,
' state —partly to test our

Monte Carlo methods and partly to test the intuitive pic-
ture discussed above, which has motivated our choice of
trial functions.

As will be discussed in Sec. III, the effect of antisym-
metrization is indeed larger in the case v= —, than in the
case v= —,', and the leading antisymmetrization correc-
tions to the energy have opposite sign in the two cases.
(The corrections to the binding energy are —3% and 1%,
respectively. ) Nevertheless, the antisymmetrization seems
well converged in both cases, and the value of the energy
appeiirs to be closer to the exact result in the case v= —,

than for v= —,.2

We have also carried out simulations of Eq. (2.40) with
s =3, t =0, and u =1, corresponding to a filling factor
v= —', . We obtain a reasonable value of the energy, in this
case, and the effects of antisymmetrization are quite
small. The values of the energy differences between possi-
ble trial states for the v= —', state are also very small, how-
ever, and are smaller than the uncertainties in our calcula-
tion, so that no conclusion can be drawn.
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III. COMPUTATIONAL METHODS
AND NUMERICAL RESULTS

-0 39

In this section we discuss the methods employed to
compute energies and other properties of trial wave func-
tions for the fundamental fractional quantized Hall states
and excited states. As discussed in Sec. II, all these wave
functions lead to statistical-mechanical problems related
to that of the two-dimensional one-component plasma.
For our calculations we have used the standard Metropo-
lis Monte Carlo (MC} method. ' All computations were
carried out on a CSPI MAP-300 array processor, which
performs up to 4X10 floating point multiplications per
second and twice as many additions in parallel. In Ap-
pendix B we illustrate the methods used to do efficient
Monte Carlo calculations on such a machine.

Throughout this section, unless otherwise noted, dis-
tances will be measured in units of the "ion-disk radius"
Rp, which is defined for a uniform state of density n as

0

Ctvi
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FIG. 1. Energy per electron E/N in the v= 3 state. Results

are based on Laughlin's trial wave function {2.2). Monte Carlo
results for E/X are plotted versus N ' 2 for systems with
N =20, 30, 42, 72, and 144 electrons. The length of the vertical
bars indicates the standard deviation.

Rp (nn——) (3.1}

For the fundamental states g, (2.2), this is related to the
magnetic length lp by

Rp ——v'2m lp . (3.2)

We also use (3.2) for the state with one quasiparticle or
one quasihole. The contents of this section closely paral-
lels So:.II, where the trial functions were introduced.

A. Energy of the quantum Hall state v= 3

It is straightforward to perform a Monte Carlo compu-
tation of the Coulomb energy (2.10) of the one-component
plasma (2.3) and (2.4). The only problem is how to extract
the thermodynamic limit of E/N from results using sys-
tems with a finite number of particles, N. Rather than
working with periodic boundary conditions (associated
with complications due to the long-range logarithmic in-
teraction) or placing the system on the surface of a sphere
in order to eliminate the effects of boundaries, we directly
use the system defined by Eqs. (2.3} and (2.4), i.e., a disk-
shaped system.

In Fig. 1 we show the results for E/N plotted as a
function of N '~z for systems with N =20, 30, 42, 72,
and 144 particles. The size of the vertical bars indicates
the standthrd deviation, computed from between 12 (for
N =144) up to 80 (for N =20) independent Monte Carlo
simulations, each of which consists of between 50000
(N =144) and 160000 (N =42) Monte Carlo steps per
particle. The results for E/N are fitted accurately by the
polynomial

E/N =( —0.4101+0.06006/v N 0.0423/N)e /1 p .—

Using fits by first-, second-, and third-order polynomials
in N '~ leads to values (in units of e /lp) for the ther-
modynamic limit of —0.4092, —0.4101, and —0.4099,
respectively, consistent with results by Levesque et al. , '

or about 1.2% higher than Laughlin's approximate result
(—OA156} based on solutions of hypernetted-chain equa-
tions.

In order to compute directly the thermodynamic limit
for the Coulomb energy per particle E/N, we can also
make use of Eq. (2.7), in which E/N is expressed as an in-
tegral over the pair distribution function g(r). For its
computation we use a procedure which helps to efficiently
eliminate the effects of the boundary: Let r,' ' be the posi-
tion coordinates of particle i in the kth Monte Carlo step.
We define our approximation g(r) for the pair distribu-
tion function g (r) on a set of discrete separations
ri=(l+ —,

'
)b, (1=0,1,2, . . . ) by

g(Pi) =
&Me

27%5 NMC k i Ni J I '= i
(k) (k)

l+J

(3.3)

where the summation g' includes all particles jwhich lie
inside a circle around the origin with radius Ri. Ni
denotes the average number of particles within this circle,

(i) By using only pairs, one member of which lies inside
a circle of a radius R, around the origin, for a given ri,
g(ri) will cease to be affected by the boundary, provided
that the radius of the system R & ri+0 (g), where g is the
correlation length of the fluid.

(ii) The reason for binning with weight
~
r,' ' —rj '

~

(rather than with the more usual weight ri ') is that, with

The summation g" runs over att particles j whose

separation s =
~
r,' —r~

'
~

from particle i lies in the inter-
val

r( a/2(s (r, +a/—2.
By NMc we denote the number of Monte Carlo configura-
tions. Note that in our units mn =1. The significance of
definition (3.3) is twofold.
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this definition, the computation of the Coulomb energy
(2.7} can be carried out by direct summation of [g(rt ) —1]
without introducing discretization 6-dependent integra-
tion errors. N =144

C(R)=2 J [g(r) —1]rdr, (3.4)

which, owing to charge neutrality, must tend to —1 in the
thermodynamic limit. We note that, provided that we use
an upper cutoff R such that C(R)= —1, the size depen-
dence of the results for the Coulomb energy E/N is very
small, with values (in units of e /@le) of —0.4096 for
N =42 and 72, and —0.4097 for the system with 144 par-
ticles. From these results we estimate the value in the
thermodynamic limit to be

E/N =( 0.410+0.—001)e /ale, (3.5)

in close agreement with the Monte Carlo result by
Levesque et al. , ' but slightly larger than Laughlin's re-
sult (E/N)(v= —,

' )=—0.4156e2/@le, based on computa-
tions using hypernetted-chain equations.

In Fig. 2 we show plots of the pair distribution function
for the state v= —,

' for systems with sizes N =30, 72, and

144. Results are obtained from 5.6X10, 2.4&&10, and
0.5 g 10 Monte Carlo steps per particle, respectively. For
the discretization interval, a value b, = —,0 and a radius of
the small circle R i ——Rc is used. As can be seen, there is,
within statistical errors, no size dependence of g(r} in the
30-particle computations for r & 2, and for the 72-particle
system for r ~5. This can be easily understood: The
short-distance behavior of g(r) shows that the correlation
length g is of the order of about 3. We may expect that
the effects of the boundary decay within about this same
distance. For our choice Ri ——Rc we expect that g(r)
should only feel the effects of the boundaries for
r ~RE (g+R—c). By Rs we denote the radius of a sys-
tem with N particles, which, in units of the ion-disk ra-
dius Rc, is given by N'~2.

In Table I we list the values of the Coulomb energy per
particle E/N [Eq. (2.7)] as a function of the upper limit
of integration R, together with the values of the integral
C(R),

c7) 0 5

0. 0 2. 0
I

8. 0 10.0

FIG. 2. Monte Carlo results for the radial distribution func-
tion g(r) [Eq. (3.3)] for the system in the Laughhn v= 3 state

[Eq. (2.2)]. Results are based on calculations with N =30, 72,
and 144 electrons.

B. Energy of the quasihole excitation
in the v= 3 state

Straightforward Monte Carlo simulation of the
statistical-mechanical problem defined by Hamiltonian
(2.14) for a quasihole at the origin (i)=0) in the v= —,

'

state leads to results for the electron density (n (r) ) plot-
ted in Fig. 3. The density is calculated according to
(3.3), but replacing r&

'
by zero. We have used systems

with N =30, 42, and 72 particles. The deficiency of —,
'

electron at the origin is conspicuous. Indeed, the particle
excess X(R) defined by

X(R)=2m' f [n (r) —n ]r dr (3.6)

has values of —0.340, —0.326, and —0.327 at R =2.5 for
the 30-, 42-, and 72-particle systems, respectively.

Let us now turn to the computation of the excitation
energy. Consistent with the definition of proper energy

of a quasihole, described in Sec. IID, we must calcu-
late the difference between the Coulomb energies Ez(A)
and Ett(A) of systems with the same number of particles
N, with and without a quasihole, occupying the same
physical area A, but with slightly different values of the

TABLE I. Energy per particle E/N of the v= 3 state. Shown are Monte Carlo results for E/N, calculated by integrating the ra-

dial distribution function g (r) (cf. Fig. 2) up to an upper cutoff R; also listed are results for the integral C(R ) [Eq. (3.4)], which
in the bulk limit tends to —1. Choosing R &4 such that C(R )=—1, yields the results in the second line from the bottom.
(Config. denotes configurations. )

3.2

5
6

Config.

C(R )

—1.0062
—0.9993
—0.9711
—1.1328
—1

1.2X10'

—0.4101
—0.4096
—0.4088
—0.4132
—0.4096

C(R )

—1.0059
—1.0015
—0.9996
—0.9983
—1

—0.4099
—0.4097
—0.4096
—0.4095
—0.4096

0.96~10'

C(R,„)
—1.0072
—0.9975
—0.9985
—0.9993
—1

—0.4101
—0.4096
—0.4096
—0.4097
—0.4097

0.48 X 106
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FIG. 3. Electron density {n{r})in the Laughlin quasihole
state (2.12) at v= 3, for systems with N =30, 42, and 72 elec-

trons. Note that apart from the width of the Aat regime, results
are essential independent of ¹

FIG. 4. Proper energy e, of quasihole excitation in the v= 3

state. Monte Carlo results for 7. are plotted versus N ' for
systems mth N =20, 30, 42, and 72 electrons.

magnetic field. In the present section, however, we have
chosen to measure all distances in terms of the ion-disk
radius Rc (2m)'~——lo, so we will have to correct for the
difference in the magnetic length lc.

In each case, we first calculate the Coulomb energy of
the finite system, at Monte Carlo step k, according to the
prescription

2 N l N

EN = g {k) {k} + g Utt(rg ')+Eao(N) y

(k)

e i,i=i

Iran

—rl l g={
i&j

(3.7)

where Us(r) is the energy of an electron at position r, in-
teracting with the positive background,

Ua(r}=— d r (3.8)
e {t'{«s lr —r'l

and Eaa(N} is the energy of the background,

e 5 drdr'
f~ ){«J{r'{ga lr' r

l

In these equations, Rs is the radius of the neutralizing
background disk, and n =N/(nR&). —For the system in
the fundamental state v= 1/m, we choose

We have carried out computations at m =3, using sys-
tems with N =20, 30, 42, and 72 particles. The differ-
ences EN (A) Ett(A) gi—ve our estimates for the quasihole
energy s ( —,

'
},which we finally express in units of e2/elo,

where lc is the magnetic length of the fundamental state.
In Fig. 4 we plat the results for e based on MC com-

putations using systems with N =20, 30, 42, and 72 parti-
cles. The standard deviation, computed from the results
of, respectively, 80, 56, 40, and 24 independent MC simu-
lations, with between 40000 and 100000 Monte Carlo
steps per particle, is indicated by the length of the vertical
bars. Note that for the N =72 system an accuracy in s
of 0.001 would require the computation af the electron-
electron interaction energy (3.7) to a precision of 1 in 2's,
i.e., only about 1.5 orders of magnitude below the limits
of the arithmetic precision of the MAP array processor,
whose mantissa has 24 bits. Owing to the large statistical
errors we are unable to perform a reliable extrapolation to
the thermodynamic limit. However, results of
s =0.025 —0.027e /elc for systems with 42 and 72
particles are consistent with Laughlin's result

=0.026e /elo, based on solution of modified
hypernetted-chain equations.

R, =N'"=(A/~)'",

while far the system with the quasihole we choose

Re (N+1/m)' =—(A——'/m)'i

(3.9a)

(3.9b)

C. Energy of a quasiparticle in the v= T state

In this subsection we present the results of computa-
tions based on the two types of trial wave functions (2.17)
and (2.18) for a quasiparticle in the v= —,

' state.

We identify the energy Ez(A) with the average {EN ') of
the Monte Carlo energies for the fundamental state, while
for the quasihole we write

E„-(A)=(A'/A)'"E„-(A'),

where EN (A') is the average of the Monte Carlo energies,
(Ez"'), for the system with the quasihole.

1. Laughlin's tnal ioave function (2.17)

As first discussed by Laughlin, the absolute square of
wave functian (2.17) can be written in the form of a distri-
bution function of a generalized statistical-mechanical
problem. Making use of the identity



33 MONTE CARLO EVALUATION OF TRIAL %'AVE FUNCTIONS. . . 2233

which holds for any polynomial P{z), the two-particle density (n (ri)n (rz) & takes the form

r r r
( n {ri)n (ri) & =

r r . ~ r
(3.10)

with

N

e & VJ exp 2m gin(r; —rk(
4m

(3.1 1)

Integrating by parts, the Laplacians in the integrals (3.10}can be eliminated,

& f g d'r r' — e ' exp 2m g»lr —rk I

where Z =Tre is the partition function of a generalized {complex) Hamiltonian E, given by

N-H
e =e rj ——

rn

(3.12)

(3.13)

and H~ is the one-component plasma Hamiltonian (2.4). Equation (3.12) for the two-particle density can be brought

into a better readable form. Using the notation X~ ——e and defining the expectation value ((0&&» of operator 0 in the
state (3.13) by

((0»„=Z 'Tr(Oe «),

Eq. (3.12) may be rewritten as

(3.14)

X( Xg ~ J) J~
( n (ri)n (rz) & =

& ViVz 2 z ((n (ri)n (rz) »»
16m ~ ri 1 /m rz ——1/m

(3.15}

ln our present work we also make use of expressions
(3.15) and (3.17) for the two- and one-particle densities.
However, we do not make any approximations, calculat-
ing the expectation values ((0»» by Monte Carlo impor-
tance sampling.

The difficulty associated with the fact that the proba-
bility density e is not positive is handled by treating its
sign separately. Using the decomposition

~-E ~-Eg (3.19)

which after elimination of Xi ——exp(mr i ) can be put into
the form

Vi+ ri Vi+r i+ f{ri}I g 1 2 1

4m 76
(3.17)

where

where ((n (ri)n (rz) »» is the two-particle density of a sys-
tem, defined by the generalized Hamiltonian K. A similar
derivation leads to an expression for the density (n (ri) &,

2

(n(r, ) & =X-. . . ((n(r, ) », , (3.16)) V( X)
4m r i —1 lm

J

with

(3.18)

Ne-~=e ff r, ——
m

(3.20)

In his computation, Laughlin made use of expression
(3.16) for the density (n(r)&. Using an approximate
method he computed (n (r) & and determined a pseudopo-
tential for use in a type of by@+netted-chain equation,
consistent with the already known (n (r) &. By this set of
aPProximations he gets a value e+{—,)=0.03ez/ele for the
proper energy of a quasiparticle. Chalfraborty9 has car
ried out an axmlysis quite similar to LaugMin s, and re-
ports a slightly lower energy, 7+(—,

'
)=0.025.

N
S =sgn g rj'

j~l
(3.21)

the required expectation values ((0 »» take the form

r(OSe Z) ((OS»g
« 0»» = (3.22)

and can be readily computed by standeId Monte Carlo
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. configurations isre in which the generation o c g
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E=H —g ln rj ——
j=l

(3.23)
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(3.24)r'"'
~
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(3.25}
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background energy Etio. We have used the notation

1 p 1 2 1D;= tV; ——r; V;+r; ——. (3.29)

obtained for the N =72 electron system,

Es =e++Y =(0.0966+0.0050)e /@le . (3.32)

In (3.28) the primes (U~ and EaG) indicate the use of a
background with radius Rii =(A'/n )'/ =(N —I/m)'~ .

Since, however, D; Uii(r;) has a singular behavior at the
edge of the disk (if a sharp cutoff is used for the charge
density of the positive background), we have split Us(r; }
into a polynomial part U s(r; ).

' 2N

U'tt{r)= 2n—ne Rg g a„
Rg

whose contribution is evaluated using Eq. {3.28) and a
remainder U~ —U~, which we evaluate by integration
over the density [Eqs. (2.10), {2.11), and (3.17)]. The coef-
ficients a„are ao ——1, a i ———0.259 17, a2 ——0.060 52,
a3 ———0.441 60, as ———0.655 45, and as ———0.37709.

The required Coulomb energy E~+(A) is then obtained
by performing an average over NMC Monte Carlo steps,
and rescahng according to the discussion in Sec. III 8:

+Mc

in g S (E~ +Eztt)
(k) (k) (k)

E~+(A) =
A

(3.30)

S(k)
k=1

where A'/A =(Nm —1)/Nm.
In Fig. 7 we plot the results for e+ from computations

with systems with 20, 30, 42, and 72 particles. Standard
deviation is obtained from 80, 56, 40, and 24 independent
MC simulations„respectively. Results are derived from a
total of 6.4X10s, 5.6X 10s, 7.2)&10s, and 3X 10s Monte
Carlo steps per particle, respectively. We cannot reliably
extrapolate these results for s+ to the thertnodynamic
limit, but a plausible estimate is

In any case, our results do not agree with Laughlin's re-

sults e+{—,)=0.03e /@le, and give reason to doubt the

validity of the approximations made in that calculation.
The operator S [Eq. {3.21)] has an expectation value

((S))x -0.708+0.002, (3.33)

which implies that in somewhat less than 15% of the con-
figurations, one electron is located inside the disk r (—,.
The large value of ((S))x ensures that there is no loss of
accuracy due to the division of (3.22).

u= g'( 1){ )P
P

(3.34)

where P stands for a permutation of N particles and
( —1}{) is its sign. Using this expansion of the antisym-
metrizer u, expectation values (0) of an operator 0 in
the fully antisymmetrized state PIi+' ——ugI)+ can be cal-
culated as follows. We note that

2. One pair trial ioaue function (2.1S)

Monte Carlo simulation of a system described by the
classical Hamiltonian H defined in Eq. (2.20) allows one
to study directly the properties of the nonsymmetrized
wave function P'+' of Eq. (2.18b). The mean density
(pc+'

~
n(r)

~
pc+ ) is plotted in Fig. 8 for systems with

N =20, 30, and 42 particles. The excess charge accumu-
lated around the origin is conspicuous; however, the de-

tailed shape of (n(r) ) is very different from the one ob-
tained using Laughlin s trial wave function for a quasipar-
ticle (cf. Fig. 6}. Since go+' is not fully antisymmetric,
however, it is important to study the effects of the an-
tisymmetrizer u in (2.18a). Let us write

7+ =(0.073+0.008)e /elo, (3.31)

and as a value for the gap Es ——e++s we list its value

& 0 & = &
O'+'

I
0

I
A'+'&/& y'"

I

A'"
&

can be expressed in terms of integrals of the form

(3.35}

2.0

0.07 '

0.05 '

~O
'4

0.04
(D

$.0
{

¹20

~C 1

0.02 '

0.01 '

0.00 i

0.00 0.02 0.04
0.0

0.0
I

2. 0
I

4. 0 6.0

s/x
FIG. 7. Quasiparticle energy s+ in the v= 3 state. For the

state containing the quasiparticle excitation, the Laughlin
derivative ~ave function (2.17) is used.

R/Ro
FIG. 8. Density {n {r) ) in the state with quasiparticle excita-

tion at v= 3. The Monte Carlo result is based on the nonan-

tisymmetrized pair wave function P o+' [Eq. {2.18b)].
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Its com~utation ret(uires evaluation of integrals of the
form (QI)+)

~

OP
~

$0+'). Defining the ratio Rr [z;],

Rp[z ]=PC o+'[z, ]ly()+'[z, ], (3.37)

we may write

(y(+)
~

OP
~

y(+))
(y(+)

~

y(+))
Tr(OR pe ~~)

Tre-&8
(3.38}

in a form suited for computation by means of Monte Car-
lo importance sampling according to the distribution

(+)
l

2 e
—P8

Let us now discuss the antisymmetrizer u. Due to the
fact that lt I)+' is already fully antisymmetric with respect
to particles 3, . . . , N, and also antisymmetric under inter-
change of the positions of particles 1 and 2, the antisym-
metrizer u takes the form

wit

u = 1+u'"+u (3.39)

( y
(+)

~

PioP
~ y

(+))

For a symmetric operator 0, satisfying PO =OP for any
permutation P, the term ( —1)l l(PQO+'

~
0

~
l()I)+') in the

expansion of (upi)+' 0
~

PI)+') contributes a value
( —1)l )(l(0+'~ 0 ~PgI)+ ), which, owin to the antisym-
metry of QI)+', is given by ($0+'

~

0
~

g()+'), independent
of permutation P. Applying this consideration to both
numerator and denominator in (3.33), the expectation
value (0 ) of a symmetric operator 0 can be written as

&o&= (3.36)

particle exchanges u'" and u' ', respectively,

«o "&)-((o&)(& ")&
«1+-'"+-"'»

Here, we use the definition

(y(+)
( g (

y(+) )
(y(+)

~

y(+))

(3.43)

(3.44)

for arbitrary operator Q, e.g., sums of permutation opera-
tors Por OP.

In Table II we list results of computations of the quasi-
particle energy Y+ in the v= —,

' state. Systems with
N =20, 30, and 42 particles are used. The energy of an
N-particle system occupying area A = URN —nN is—denot-
ed by E~(A) for the reference system without a quasipar-
ticle and by E~' ' ——E~(A)+a'+' for the system in the
nonantisymmetrized state tt 0+ '.

As can be seen, corrections b,(" and 5( ' [(3.42) and
(3.43)] both reduce the energy, resulting in values of the
proper energy a+ of the quasiparticle in close agreement
with those obtained using Laughlin's trial wave function
(2.17) (cf. Fig. 7). Note that the correction 6( ' due to
four-particle exchanges is about a factor of 5 smaller than
the leading correction 6"). Better statistics are required
to determine the size dependence of these quantities. This
will be difficult to achieve since the results for the 42-
particle system required more than four weeks of compu-
tatian time an the MAP-300.

Let us now return to the behavior of the density. In or-
der to study antisymmetrization effects on its shape, we
compute the expectation value (0(a) ) of operator 0(a),

0(a)= g e (3.45)

and

-"'=- g (P«+P»)
k&3

P(kP2I .(2)

l)kp3

(3.40)

(3 41)

which measures the behavior of the density near the ori-
gin. Its expectation value (0(a) ) is related to the density
(n(r)) by

(3.46)

Operator P;k interchanges the positions of particles i and
k. Using expression (3.39) for the antisymmetrizer, the
expectation value (0 ), (3.36), can be expanded as

& o &= «0»+~"'+~"', (3.42)

where 6(" and b( ' are corrections due to two- and four-

and is equal to unity in the system without a defect. In
Table III we list results for (0(a)), based both on
Laughlin's trial wave function (2.17}and on the pair trial
wave function (2.18) with and without antisymmetrization
corrections b,("and b, ( ' resulting from contributions u'",
(3.40), and u' ', (3.41), to the antisymmetrizer u, (3.39).

TABLE II. Proper energy e+ of quasiparticle excitation at v= i . Results for e '+' and e+ are based on pair wave functions 1( 0+' an
$0+' ut/io+' [Eq. (2.18}——], the latter being fully antisymmetrized. Corrections to the energy 6") and 6(~) [Eq. (3.43}]from two- and
four-particle interchanges u" ' and u(i) [Eqs. (3.40}and (3.41)] are also listed, as well as contributions to the normalization of the wave
function, ((u'"» and ((u' '&). Results are from Monte Carlo calculations with systems of 30 electrons. Standard deviation of the
last digit is indicated by numbers in parentheses. (Config. denotes configurations. )

20
30
42

Config.

1.8 X 106

1.9x 10'
1.5x10'

0.103(4)
0.103(2)
0.107(3)

0.728(20)
0.709(9)
0.732(23)

((u'"))

0.064(27)
0.092(27)
0.092(30)

—0.038(4)
—0.036(3)
—0.033(3)

—0.008(4)
—0.006(3)
—0.008(4)

0.058(7)
0.061(5)
0.066(6)
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TABLE III. Gaussian weighted integrals O(a} [Eq. (3.46}] of density (n(ri) in the quasiparticle
state at v= 3 . Monte Carlo results (O(a})N~ and (O(a})p are based on the nonantisymmetrized pair

wave function $0+' and fully antisymmetric t//0+ =~CAPO+ [Eq. {2.18)] respectively. (O(a}}L,refers to
results for the Laughlin derivative vrave function (2.17). Also listed are the antisymmetrization correc-
tions 6'" and 5' ' resulting from two- and four-particle interchanges u'" and a' ' [Eqs. {3.40} and
(3.41)]. Systems of N =30 electrons are used.

%ave function

0.601
0.849
1.201

(O(a})N~

1.422(3)
1.317(1)
1.204(1)

Pair type
g[1]a

—0.183(6)
—0.090(4)
—0.030(2)

g{2)
a

—0.072(14)
—0.033(8)
—0.010(3)

(O{a})p
1.167(17)
1.194(10)
1.164(4)

Laughlin
(O(a}},
1.126(8)
1.159(3)
1.140(1)

O(a)=
2 g D;exp — r;tz;; —1/m a

(3.47)

where the operator D; is defined by Eq. (3.29), the expec-
tation value (O(a}} in the Laughlin quasiparticle state is
given by

NMc N

(O(~)} y g{k)O(k) y g{k) (3.48)
k=1 k=1

Here, S{ ' and 0Ie') stand for the values of operator 5
[Eq. (3.21)] and O(a) in Monte Carlo step k. Results of
this computation are listed in the last column of Table III.
As can be seen, the values for (O(a)} so obtained are
consistently slightly lower than those based on the pair
wave function, with a slightly stronger dip at the origin
than for the system described by the pair wave function.

Note that the values quoted for (O(a) }correspond to a
system of N =30 particles occupying a disk of area
A'=n(N ,

'
}, in contrast t—o—the results for the Coulomb

energy, where the contraction due to the quasiparticle is
compensated.

D. States at v= —,, T, and 7
2 2 2

As a trial wave function for v= —,', —,', and —', , we use

pair wave functions lb=uij), (2.40), with s =2, u =t =1
for the —', state, s =u = 1, t =0 for the —,

' state, and s =3,
t =0, u =1 for the —,

' state. As discussed in Sec. H, we

hope that the antisymmetrizer u will produce only small
corrections to the structure of the wave function and the
Coulomb energy, and that its effect can be computed by
perturbation methods. Let us therefore first ignore the

Results are obtained using a system with 42 particles.
Note that both correction terms he ' and he ' reduce the
expectation value of O(a), the contribution from four-
particle interchanges, Q', being only a factor of 2.5
smaller than the leading correction he '. The slight in-
crease of the values of (O(a)) from 1.167 for a=0.601
to 1.194 at a=0.849 again implies a dip in the density at
the origin for the system described by the fully antisym-
metrized pair wave function go+ ', Eq. (2.18).

Results for the Laughlin wave function are based on the
same method used to compute the electron-background
interaction (3.28). Using the notation

antisymmetrizer a. The probability density
~ P ~

can be
related to the statistical-mechanical problem defined by
the Hamiltonian

H = —2s g ln
( rk —r)

~

—4u g ln
~
R; —R

~

k(l

+2tgln~r2) —r'2; i ~
+ hark .

l k

(3.49}

Here, k and / run from 1 to N, whereas i and j run up to
M=N/2; R; is the center of mass position of pair
(2i —1, 2i). Note that length is measured in units of
Rc =v 2$ +u Io.

1. Results before antisymmetrisation

In Fi~. 9 we show the radial distribution function for
the v= —, state [Fig. 9(a)], the —', state [Fig. 9{b)],and the
—,
' state [Fig. 9(c)], as obtained from Monte Carlo simula-

tions based on Hamiltonian (3.49). The radial distribution
function is computed via Eq. (3.3) with values b, =—,', and

Ri ——2Rc (implying that an average of Ni ——4 particles
contribute to the sum over j}. In order to illustrate the
finite-size effects, we show results for g(r) in the v= —',
state [Fig. 9(a)] for systems with N =72, 144, and 196
particles. Notice the shoulderlike structure around
R =Re and the shift of the peak of g(R) from the usual
value of R =1.8Rc to about R =2.5R&, which is larger by
a factor of =v 2, as would be expected if pairs are strong-
ly bound. Notice also that the finite-size effects are negli-

gible for R &2.5R& for N =72 and for R &6.5Rc for
N =144. Plots of g(R) for the v= —', [Fig. 9(b)] and the
v= —', state [Fig. 9(c)] are from simulations of systems

with N =144 particles. In contrast to the shape of g(R)
for the —', state, no conspicuous shoulderlike structure can
be discerned on the rising part of the curve of g(R) for
the v= —,

' and —', states. This may be caused by the fact
that, for t =0, the repulsion of particles within the same
pair is not decreased, as is the case in the —', state.

The Coulomb energy E/N for these nonantisym-
metrized wave functions is listed in Table IV, together
with the integral C(R) [Eq. (3.4)]. Values for the thermo-
dynamic limit are
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—0.410(1), v= —,

E/N = —0.522(1), v= —',

—0.380(1), v= —', .

(3.50)

1.0

(0) t/= 2/5

N =?2 N=I44
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The tilde on E is used to indicate the fact that these
values correspond to the nonantisymmetrized pair wave
function g, (2.39). The value E/N= —0.522 for the —',
state may be compared to the value EL ( ,

' )/N —obtained
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FIG. 9. Radial distribution functions resulting from nonan««

tisymmetrized pair wave function fi, Eq. (2.40}, for states (a)
v=

5 {s=2, t =u =1), {b) v= 3 {s=1, u =1, t =0), and {c)
v= 7 (s=3, u =1, t =0).
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vu(v) =(1—v)u(l —v)+(n/8)'i2 — (1—2v),
alp

(3.51)

from the Laughlin v= —,
' state via the electron-

hole —symmetry relation, s 0.125lo, v=
5

0.425lp, v= —,
' (3.56)

where u(v) is the potential energy per electron in the
state. This gives

E, ( ', )/Ã—= 0.5—18e2/sip, (3.52)

which is somewhat higher than our result (3.50) for the
nonantisymmetrized state.

Following Yoshiaka, 2 let us now examine the asymptot-
ic behavior of the radial distribution function g(R) for
small R. In Fig. 10 we show the asymptotic farm of
g(R) by plotting g(R)/R2 as a function of R2 for both
the v= —,

'
(open circles) and the v= —', (plus signs) states.

From this we deduce an asymptotic form

g(R)-ciR +c2R4+O(R6), (3.53)

1.3Ro ——0.26lo, v= —',

0 9Ro =0 31o v=7' (3.54)

—1.6Ro = —0 064lo, v= s

—0.17R () ———0.019lp, v= —', .
(3.55)

1.0.

0

P= 2/5
0

0

+ + 0
+

+

V=2/3 +

0.5.

Again, the tilde denotes the fact that those values do not
include antisymmetrization corrections. The correspond-
ing values obtained by Yoshioka from exact numerical dt-
agonalization of the Hamiltonian (using systems af up to
eight particles) are

—0.031(), v = —,
'

—0.10l(), v= (3.57)

significantly different from our values e„before antisyin-
metrization corrections are included.

2. Antisymmetrixution

Let us now turn to the problem of calculating the effect
of the antisymmetrizer u. The expectation value of any
symmetric operator 0 in the fully antisymmetrized wave
function can again by written as (cf. Sec. III C 2)

In the case of the cp~asiparticle wave function (2.18), the
antisymmetrizer consisted of, altogether, O(l)l ) permuta-
tions which could all be included in our numerical com-
putatian. However, in the present situation, although P is
already symmetric under arbitrary permutation of the
pairs and antisymmetric with respect to interchanges of
particles belonging to the same pair, the antisymmetrizer
still consists of O(M!) contributions, which for a suffi-
ciently large system cannot all be included in a calcula-
tion. We thus have to resort to an approximate method.
The basis of our approximation is to express the antisym-
metrizer u in terms of particle exchange P;k, where parti-
cles i and k belong to different pairs. We are guided here
by the idea that, provided that the pairs had little overlap
with one anather, the effect of operator P;k on the struc-
ture of the wave function would be small. Moreover, one
would expect that products P'"' of n exchange operators,
P'"'=P(kP( . , corresponding to many-particle inter-
changes, would have an effect which decreases with the
order n as a", where a measures this overlap of different
pSlrs.

If one expands the antisymmetrizer u to second order
in P~, one finds

1+ (i)+ (2)+ (3)+O(P(3))

=1—g Pk+g P kPki+ g PkPi . +o(P"').
i, k i,k, l i,k, l, m

(3.59)

0.0
0.0 0.40.2 0.6

x~ = (R/Ro)~

FIG. 10. Asymptotic behavior of radial distribution function
g(r) for small r. %'e plot g(r)/r~ as a function of r2 for the
states v= 5 (open circles) and v= 3 (plus signs). Results are ob-

tained using nonantisymmetrized pair wave function P, Eq.
(2.40), with s=2, t=u =1 for v= —and s=u =1 t =0 for

2
0

(1)a
1gi&kgM

(P2;2k+P2; 2k —) ) (3.60)

Notice that P2l ) 2k/= P2g 2k (Q and —P2i 1 2k 1$—=P2; 2k/ because of the symmetry of p with respect to in-

Denoting the number of pairs by M, the summation g
in (3.59) consists of, altogether, M (M —1) terms; it can be
written as
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terchange of pairs i and k. Therefore terms of the form

Pz;, zk and Pq; i ik i are implicitly included in sum-

mation (3.60). Note also that permutations P2; z& i are
not included in (3.54) since g is already antisymmetric
under their action. The second term u' ' in Eq. (3.59) is
the sum of —', M(M —l}(M—2) permutations involving

cyclic interchange of three particles. Using the notation
of cycles,

(i&k&1) =PkiP&k &

it can be written as

1 M M M
u'2'= g g g g (2i, 2k —a, 21—A, ) .

A,,x'~0 1~1 k&i I&i
l~k

(3.61)

(3.62)

Note that cycles in which the first element is odd are im-

plicitly included in (3.62) because, when acting on P, per-
mutations (2i —1, 2k —ir, 21 —A, ) are equivalent to
(2i, 21 —1+A,, 2k —1+~).

Finally, the last term, u' ', consists of
—,M(M —1)(M —2)(M —3) permutations, each corre-

sponding to two two-particle interchanges,

1 M-3 M M-1 M

a,p=0 i=1 kgi 1&i mal
I+k m+k

Again, as in term u'", (3.60), permutations P, such as
P =P2, i 2k,Pii, 2 &, are implicitly included in Eq.
(3.57) because of the symmetry properties of it&.

With the use of expansion (3.59}for the antisymmetriz-
er u, the expectation value (0 ), Eq. (3.58},takes the form

1 3

(0)=—((0))+ g ((0 '"')) +0(P'"}, (3.64)
D n=1

where

(& "'»-o(g'w, (3.70)

which implies that even for very small overlap of different
pairs, as the number of pairs M increases, the first-order
"correction" will excaxl the "leading" contribution, unity,
in (3.66). The same argument will, of course, also apply
to the numerator in Eq. (3.64). This suggests that one
should formulate the expansion in powers of P&k for the
ratio directly. Expanding D ' [Eq. (3.64)] up to second
order in P k, we obtain

3

&o&=«o»+ y [«0. »-«o»«. »~

—« "'»[«0 "')&—&(0)&« '"&)]+0(P' '),

(3.71)

which is in effect a linked-cluster expansion.
Indeed, using expressions (3.67)—(3.69) for ((Ou'"')),

we find

3

(0)+((0))+ y &o'"'+0(P"'),
n=1

(3.72)

tions is controlled by Hamiltonian H [Eq. (3.49}]. A
problem arises, however, with the expansion of expecta-
tion value (0 ) in the form of Eqs. (3.64) and (3.66). This
hxomes obvious if we examine the first-order correction,
Eq. (3.67), for instance, for the case 0=—1, as occurs in
the denominator D, (3.66}. We would expect that the con-
tributions to expectation value ((P»)) will mainly ori-
ginate from regions in phase space in which the separation
of particles 1 and 3 is less than the correlation length g of
the system. Since the probability that particle 3 will lie
within a disk of radius f around particle 1 is 0(g /N), we
expect that

«o&)=(11 ~0 (1T&r&|T~y& with the first-order correction3.65

60 ' ———M(M —1)((OPi3)), (3.73)

D=l+ g « '"'»+o(P'"). (3.66) and two second-order corrections, one due to cyclic three-
particle exchanges

For a symmetric operator, the first-order term can be
written as [cf. Eq. (3.60)]

(&0 "'» = —M(M —1)«OP„», (3.67)

while the two second-order terms, cf. (3.62} and (3.63), are
given by

((Ou' ')) =—,M(M —1)(M —2)((OPi3Pig )) (3.68)

((0 ' '))= ,'M(M —1}(M——2)(M —3}((OP, P )) .

(3.69)

3 M(M —1)(M —2)[((OPi3P35 ))

—«0))((P P ))]
—M(M —1)(4M —6}((Pi3)) ((OPi3 )), , (3.74}

(3.75)

We have used cumulant notation,

(3.76)

and the other due to (pairwise} four-particle interchanges

bo ' ———,
' M(M —1)(M —2)(M —3)((OPi3P57 ))g

(&ABC)),= ((A&c))—((~& && &(C&&

—«&C»«&» —«&C&) «& &)

+2«&« «&»&(C»,

The calculation of expectation value ((OP)) for any per-
mutation P is done by Monte Carlo importance m~-
pling using the procedure outlined in Sec. III C2. Again,
f Pg is expressed as Rp ( lP ~, where Rp Pfilg is the-—
ratio of two polynomials, and the updating of configura- (3.77)
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(0)=((O)) 1+ +Ra'+O(P') .
i~i

(3.79)

Let us now turn to the results of computations of an-
tisymmetrization corrections. In Fig. 11 we show the
behavior of the expectation value ((u[")) af the first-
arder contribution to the antisymmetrizer u as a function
of the number of particles N. Crosses represent values of
{(n"'))for the v= —,

' state and diamonds those for v= —,'.
The size of the vertical bars indicate the standard devia-
tion. Results are from simulations with between 100000
aiid 600000 Moilfe Carlo califlguratlans. Consistent with
aur discussion above [cf. Eq. (3.70)], ((ds" ])) increases
linearly with N. {We note that plotting
[M/(M —1)]({de["))inStead Of ((u[")) [Cf. (3.67)] re-
sults in a behavior accurately fitted by a straight line
through the origin. ) We also note that the expectation
value has a different sign for the states v= —,

' and —', and is
about 5 times larger in absolute value far the latter.

Let us now turn to the effects of antisymmetrizer u on

for arbitrary operators A, 8, and C.
Here we have split the last term of Eq. (3.71},

—M (M —1) ((P» )) ((OPii ))„ in a somewhat arbitrary
manner into two parts, one included in curn ant
C(3PttPrr]], in correction d' ' [ . (333]] snd the
retnstnder totten into scconnt in (3' [Hq. (3.74)]. We
have not used cumulant notation (3.77) for the contribu-
tion due to permutation P]3P35 in Eq. (3.74} since the fac-
torization of cyclic permutation (153) into two two-
particle exchanges is not fundamental and it would be
more natural to define the cumulant by the expression in
square brackets in Eq. (3.74).

In the following we will also make use of the definition
of the fractional change,

R (l] g(l)/(( 0 )) (3.78)

of the expectation value (0) of operator 0 due to the
contribution a'" to the antisymmetrizer u, writing

the Coulomb energy. In Fig. 12 we plot results for the
fractional change RE" b——,E"/E caused by two-particle ex-
changes ~[" as a function of system size (1/N} for the
states v= —', (circles), v= —', (triangles), and v= —', (squares).
Systems mth N =20, 46, and 100 particles are used. In
all three cases, the dependence on E.E" on system size is
very weak and an accurate determination of its behavior
as a function of 1/N would require much smaller statisti-
cal errors. However, data are consistent with the follow-
ing values, for N= ao:

0.010+0.003, v= —',

RE"= —0.007+0.002, v= —,
'

—0.030+0.006, v= —,.

(3.80)

As we can see, the effect of two-particle exchanges results
in a lowering of the energy for the v= —', state, but an in-

crease for the states v= —,
'

and —,'. Including these shifts,
we find energies

—0.414(2),
E {/)=—(1+RE ) = —0.377(2),

N N
—0.502(2),

2
5

2
7

2
3 ~

(3.81)

In Table V we list the results of computations with
N =20 particles of the higher-order contributions Rx '

and RE owing to the effects of the three- and four-
particle exchanges u[ ' and u[ '. We note that neither for
the v= —,

' nor the v= —', state do statistically significant
contributions to the energy result, while for the v= —,

'
state a small additional contribution about 5 times smaller
in magnitude and of opposite sign from the leading con-
tribution RE is obtained. Assuming that finite-size ef-
fects are unimportant, we obtain values for the energy

2 x IO
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P= 2/5

9'= 2!3
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I/d—2
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I/ -—2
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I/ =-=2
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80 (00

N

FIG. 11. Expectation value ((~"]))=—g {(P[k)), Eq.
{3.60), of the first-order contribution u'" to the antisymmetrizer
u. Shown are Monte Carlo results for the v= —, and 3 states.
For definition of wave functions, cf. Figs. 9 and 10. The length
of the vertical bars denotes the statistical error.

-4 I t

0 2 3 4 5 6

coo/~
FIG. 12. Antisymmetrization corrections to Coulomb energy

E. Shown are Monte Carlo results for the correction
Rs"——hE']/E, Eqs. (3.73), due to two-particle interchanges for
the states v=

~ {open circles), v= 3 {squares), and v= 7 {trian-

gles). Results are plotted for systems with N =20, 46, and 100
electrons as a function of N
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TABLE V. Antisymrnetrization corrections to energy of the v=
5 3 and 7 states. Listed are

Monte Carlo results for the fractional change Rso [Eqs. (3.73)—(3.78)] of the Coulomb energy due to
two-particle interchanges n' ', cyclic three-particle interchanges u' ', and two two-particle interchanges
~'i' [cf. Eqs. (3.60)—{3.63)]. Systems with 20 electrons are used. Consult Table IV for definitions of
wave functions.

Operator

"'=g"'PuPi

Total

2
V 5

+0.0074(7)
—0.0001(16)
+0.0002(10)

+0.0075(20)

RE
2V=—
7

—0.0065(7)
+0.0005(30)
+0.0005(27)

—0.0055(41)

2
V 3

—0.031(1)
+0.005(6)
+0.001(6)

—0,025(9)

including antisymmetrization corrections up to O(P },

—0.414(2}, v= —,
'

E' '= ~ —0.377(3), v=-,'

—0.509(5), v= —,
' .

(3.82)

These results should be compared to those obtained by
Yoshioka by exact numerical diagonalization of systems
with up to N =6 particles (using a rectangular cell with

periodic boundary conditions). His value for the v= —,

state, E/N= —0.435, is so significantly lower that the
difference cannot be attributed to finite-size effects and it
appears that our pair wave function (2.39) for s=2,
u =t =1 is not a good trial wave function for this state.
It is interesting to note that the value E/N = —0.410 [Eq.
(3.50)] corresponds reasonably well to the value

E/N= —0.409 that one would obtain from Eq. (1.2),
constructing the v= —', state by adding quasiparticles to
the v= —,

'
state, and using for s+( —,

'
) the value s '+'-0. 103

(Table II) based on the nonantisymmetrized pair wave

function go+' [Eq. (2.19)] for the quasiparticle. By con-
trast, the value E/N = —0.424 is obtained from Eq. (1.2)
if one uses the value Z+ -0.073 obtained from the proper-

ly antisymmetrized quasiparticle wave function. One
might have hoped that the antisymmetrization corrections
would decrease the energy of the v= —', state accordingly.

Up to order P, however, the antisymmetrization correc-
tions do not achieve this. We cannot completely rule out
the possibility that the fully antisymmetrized wave func-
tion /=mls [Eq. (2.38)] would have a significantly lower

energy, but this seems unlikely in view of the smallness of
the O(P ) correction obtained above.

The result E' '/N= —0.377 for the v= —', state may

look more promising: the value obtained by Yoshioka is
E/N = —0.385 for N =4, and differs from our value by
a similar amount as in the case of the v= —,

' state (for
which E"/= —0.416, compared to the energy of the
Laughlin state, E/N = —0.410. However, we should bear
in mind that at low filling fractions the difference be-

tween the ground-state energy and the classical plasma en-

ergy gets very small (E,i;~/N = —0.3838 at v= —', , cf.
Ref. 13), so that the accuracy required for a calculation to
be useful becomes accordingly great.

As expected, our values for the energy of the antisym-

metrized v= —', , state E'i'/N = —0.509, is higher than the

value Et /N= —0.518 obtained using particle-hole sym-

metry, according to Eqs. (3.51)—(3.52), and the energy at
the Laughlin wave function for v= —,'. s This shows that

our pair wave function (2.39},with s =1, u =1, t =0, is

not as good a trial wave function as the wave function ob-

tained by particle-hole duality from Laughlin's v= —,

state.

(3.84}

and which, for large values of p, will tend to ci [Eq.
(3.53)]. In Table VI we list results for the fractional
change R&' to the expectation value (0„)resulting from
two-, three-, and four-particle interchanges a"', u' ', and
u' ', both for the v= —', and the v= —', state.

Systems with 20 particles are used and results are from
400000 and 600000 Monte Carlo configurations. As can
be seen, the major contribution does come from two-
particle exchanges, in both systems. However, for the
v= —, state a statistically significant contribution also
comes from cyclic three-particle interchanges u' ', whose
effect is about 4—5 times smaller than the leading contri-
bution, R„'". Performing an extrapolation to )M = 0o, we
obtain

R~ -0.43+0.15, v= —,

and using c] -0.310

ci -(0.43+0.05)lo

(3.85}

(3.86)

consistent with the value obtained by Yoshioka.
For the v= —', state, results for the higher-order correc-

tions are very noisy and no reliable extrapolation to p = 00

3. Radial distribution function near r =0

Let us now turn to the asymptotic behavior of the radi-

al distribution function. In order to study the effects of
the antisymmetrizer on its form, we compute antisym-
metrization corrections to Gaussian integrals,

G& ——2p J g(r)e "' r dr, (3.83)

which can be computed also from
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TABLE VI. Antisymmetrization corrections to short-range behavior of radial distribution function for the v= 3 and —, states.

L1sted are the Monte Carlo results for the fractional change R„'" Eq. {3.78), to the Gaussian-weighted integral 6„,Eq. (3.83), of the

radial distribution function g (r). The definition of wave functions same as for Tables IV and V.
2
5

g(1}

g (2)

g(3)
(&)

p =2.77

0.197(7)
0.046(19)
0.013(25)
0.256(32)

@=5.55

0.257(13)
0.063(38)
0.009(46)
0.329(61)

p= 1 l. 1

0.297(26)
0.078(65)

—0.015(86)
0.360(110)

p =2.77

—0.064(4)
—0.001(15)
—O.OO7(6)
—0.072(17)

@=5.55

—0.080(8)
0.004(29)

—0.006(10)
—0.082(32)

@=11.1
—0.083(15)

0.018(44)
—0.004(17)
—0.069(50)

is p sible. I my c~, including tw~, thr~, md fom-
particle interchanges n'", u' ', and u' ' will not lead to a
decrease in c i by more than about 15%, leading to a value

ci -0.22l0, still very significantly larger than
Yoshioka's results cubi-0. 12510 . This again points to a
serious problem with our trial wave function, in the case

2
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APPENDIX A: APPROXIMATE RELATION
SE1%PEEN ENERGY QP v= ~

STATE AND QUASIPARTICLE ENERGY AT r=T

In Ref. 8 an approximate iterative formula was
developed for the ground-state and elementary excitation
energies of the qu mtized Hall states, based on the
hierarchical construction. Here„we shall restate this ap-
proximate formula, and illustrate its use in deriving the
relation between E(—', ) and s+( —, ), quoted in Eq. (1.2)

above.
According to the hierarchical construction, each stable

qiumtized Hall state is represented uniquely by a finite se-
quences's of the form

(pl ~r l~p2irs2~ . «ps&rig) s

where p, is a positive integer, and a, =+1. Among the
essential parameters of the quantized Hall state, deter-
mined by the sequence, are the filling factor v„ the charge

q, e of the elementary "particlelike" excitation, and a ra-
tional number m„which characterizes the fractional
statistics of the quasiparticles.

If a sequence of length s is extended by addition of an
integer p, +~ and a sign a, +~, we obtain a new sequence,
characterizing a state with filling factor v, +i, which we
say is deriued from the previous state v, . The parameters
of the state at level s + 1 are related to those of the parent
state by

ms+ i 2ps+ i izs+1/mg 7

vs+i =+s++s+iqs I qs I ™s+i~

qs+i =&s~iqs/ms+ i ~

(A 1)

(A2)

(A3)

As starting values for these parameters, we set vo ——0, and

qo ——mo ——aj ——1.
The approximate energy formula is obtained by assum-

ing that at any stage of the hierarchy the quasiparticles or
quasiholes can be treated as point particles of charge
+q, e, and that the derived state v, +i can be represented
accurately by placing the appropriate number of qnasipar-
ticles in a Laughlin pair wave function, appropriate to the
fractional statistics of the quasiparticles. Because the po-
tential energy of the Laughlin state is determined by the
pair-correlation function of a classical one-component
plasma, one can then derive the approximate relation

E(v, i) E(v, )+n, e (v, )+n, ~q, ~'~ u~i(m, +,},

(A4)

where E(v) is the energy per quantum of magnetic flux,
n, = ~q, ~

/m, +i is the density of qua~iparticles in the
Laughlin wave function, measured in units of

~

2nBe/he ~, and s+(v, ) is the gross energy of a single
quasiparticie or quasihole. The function u~(m, + i } is the
potential energy per particle, in units of e2/ele, for a
set of particles of charge e, obtained from the pair-
correlation function of a classical one-component plasma,
at plaema parameter I'=2m, + i. {The plaSma parameter
is a dimensionless measure of the inverse temperature of
the plasma. ) The factor )q, ~

~ reflects the smaller
charge and larger magnetic length of the quasiparticles.
We note that the argument of u~ was incorrectly stated as
m„ in Ref. 8. The quimtity ui, i is clearly a smooth func-
tion of its argument, and various an~&ytic formulas have
hMsi proposed to inter-polate between pints which have
hxn fixed by Monte Carlo evaluations. s'3

In order to use the approximate energy formula, it is
necessary to adjoin a suitable approximation for the quasi-
particle or quasihole energy s+(v, ). Using the Laughlin
wave function for a quasihole excitation, one can express
the energy e (v, ) in terms of the previous quasiparticle or
quasihole energy s+(v, , ) and the quasihole energy for
the Laughlin state at plasma parameter I =2m„ for
which a reasonably accurate formula exists. [See Eqs. (9)
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and (10) of Ref. 8.] For the quasiparticle energy, howev-
er, the situation has been much less clear, and it was
necessary in Ref. 8 to adopt a crude approximation —for
purposes of illustration, it was assumed that the proper
energy of a quasiparticle is simply 3 times the proper
quasihole energy at the same value of v.

In the present paper we wish to use Eq. (A4} to estimate
the energy per electron of the v= —,

'
state, based on our

new Monte Carlo evaluations of the proper quasiparticle
energy a+( —,

'
) at the parent state v= —,

' .
The state v= —', is described by a sequence of length

s=1, with pi ——2, ui ——1. The state v= —, has s =2, with
the additional parameters p2

——1 and a2 ——1. From formu-
las (Al)—(A3), we see that m i ——3, q( ———,, m2 ———,, and
n i ———,

' . Since E( —,}=——,
'

uzi(3), we have, from (A4),

E(—', ) = —,
'
a+( —,

' )+ —,
' uii(3)+ —,(-,' )' u~i(-', ) (A5)

From Eq. (2.25) above, or from Eq. (9}of Ref. 8, we have

e+( —,
'

) =7.+( —,)+—,
'

u~i(3) . (A6

Thus, dividing both sides of (A5) by v2 ———', , we obtain the
energy per particle, in the form of Eq. (1.2), as
A + —,

'
s+ ( —,

'
), where

(A7)

The numerical value A = —0.461 is obtained from the re-
sult u~i(3) = —0.410, derived in Sec. III A above, and the
Monte Carlo result uzi( —', }= —0.520, which we have ob-
tained by the same method as u~i(3).

APPENDIX B: COMPUTATIONAL METHOD
FOR ARRAY PROCESSORS

1. Efficient Monte Carlo simulation

Like most array processors, the CSPI MAP-300 used
for our computations is programmed by calls to special
subroutines performing arithmetic operations on vectors
or matrices, such as producing the sum u;+i); of two vec-
tors u; and u;, the logarithmic log)Du; of all elements, etc.
No matter how an array processor is constructed, each
call of such subroutine involves a certain overhead, in-
dependent of the vector dimension. In the MAP-300 this
overhead amounts to a minimum of about a thousand

I

floating point multiplications (or, since, in parallel with
these, 2000 additions can take place, a total of about 3000
fioating point operations). For this reason, efficient use of
the array processor is only possible if each subroutine call
involves many thousand floating point operations. This is
not easy to achieve in the usual Metropolis Monte Carlo
algorithm in which only one or a small fraction of all par-
ticles are moved at once, unless very large systems (with
N —1000 particles or larger) are used. The method we use
in the present work consists of performing independent
Monte Carlo computations on many systems in parallel.

The number Ns of independent systems is chosen such
that NNs-2000, where N is the number of particles in
each system. For each Monte Carlo step, in each system
k one particle is chosen at random, it is moved by a ran-
dom amount hr("), the change in energy &&' ' is comput-
ed and the move is accepted if exp( —~&' ') & u'"', (u' '

being a uniformly distributed random number between
zero and one), and otherwise rejected. This process is car-
ried out for all Ns systems in parallel and thus the over-
head is shared by Ns independent Monte Carlo computa-
tions and can be made negligible. The whole computation
is carried out in the MAP, without host interference
(Hewlett-Packard HP-1000/E} since the MAP contains its
own manager system, which allows decisions to be made,
loop control and the initiation of data and command
transfers from or to the host. In this mode of operation
the host is used exclusively for storing programs into the
MAP and retrieving results from the MAP for further
analysis and storage on magnetic disk.

2. Computation of antisymmetrization corrections

In this subsection we sketch our method for computing
antisymmetrization corrections using the example of the
two-particle exchange operator u") [Eq. (3.60)] and pair
wave function g [Eq. (2.39)]. As discussed in detail in
Sec. III, we need to compute the sum of the ratios

~i [& ]=Pi 0l& ]/il [& ]

[cf. Eqs. (3.37}and (3.38)], which is the ratio of two poly-
nomials. Using the notation

(1)
Zi =Z2$1

the ratio Rzi z takes the form

~u, 2 [& ]=Pzi,z 4/it)
'

(
(1) (2))( (2) (1))

(z(l) z(2))(z(1) z(2))Zl Zl ZI Zm i~i (Zi —Z;)(Z —Z;)
i~m

and similarly for 82i, z~. This can be further simplified if we introduce the quantities

S;„(I,m)= g (z"+z' ' —Z„)
n~l, m

for 1 & I & m &M =N /2 and i,k = 1,2, and

T(1)= g(Zi —Z„)

(&2)

(&3)

for 1 &1 &M =N/2.
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The ratio R2I 2 then reads

(zl —z ){zl —z ) S12(I,m )S2({Im (1) (2) (2) (1)
(I) (2) (2) (1)

(1) (2) (1) (2) T f l l +Zm {Zl +Zm }]{ I Zm }
{Zl Z—l )(Zm —Zm ) T f T m

2N

(84)

and equivalently for ratio R21 1 im. The most efficient
computation results if these ratios are computed for all
exchange operators I'21 2 and P21 1 2 (1 & I & m
&M =I)I/2) in parallel, i.e., vectorizing in l, m. The com-
putation thus proceeds by first calculating S;a(l,m) for all
values of l, m as well as the quantities T(l). This is done
by forming vectors such as Vi(l, m) =zl "+Zm ' —Zi (vec-
tor in I,m), V2{l,m) =zl'"+z'k' —Z2, and before comput-
ing the product Vi V2 to replace the values zl' +z —Zi(i) (k)

for I = 1 or m =1 and zl" +zm ' —Z2 for 1=2 or m =2
by unity. This is done using a table which, for each value
of the running index n, lists the elements of the corre-
sponding vectors to be replaced by unity. Thereby the
conditions in n+I, m is removed fram the loops. In the
MAP-300 this replacement is carried out by the "manager
processor" (called CSPU) in parallel with the arithmetic
processor (while the product Vi V2 is computed using the
arithmetic processor, the "ones" are put into V3 by the
CSPU). The remainder of the computation, according to
Eq. (84},is straightforward.

Equations similar to (84) can be derived for three- and
four-particle exchanges (ijk) and (ij)(kl) [cf. Eqs.
{3.61)—(3.63}], expressing the corresponding ratios in

ttnns of S~(ij) and T(i). Again, high efficiency on the
array processor is achieved by vectorizing over all ex-
change contributions (ijk) and (ij )(kl), respectively.

I„=XOR(In 250~In —103} ~ (85)

where XOR is the exclusive-or and I„are, in our case,
16-bit (binary digit) integers. Initial 250-seed integers are
generated using a standard random number generator (of
the power-residue type) to generate 250 "random" bits,
and then the Tausworthe algorithm (85} is used to gen-
erate the 4000 bits ( =250X 16 bits) for the seed numbers.

Unifarmly and Gaussian distributed pseudorandom
numbers are generated from these 16-bit integers in the
standard way, by first converting them into suitable fioat-
ing point numbers and summing an appropriate number
to obtain Gaussian statistics.

3. Random number generators

The generation of pseudorandom niittibers is done in
the "manager" processor (CSPU} of the MAP-300 array
processor, using the Tausworthe algorithm, 26 as discussed
in detail by Kirkpatrick and $ta11 2
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