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So1iton-breather approach to classical sine-Gordon thermodynamics
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Thermodynamics of the Boltzmann gas consisting of solitons, antisolitons, and breathers of the
classical sine-Gordon system is studied by taking their interactions into account. A compact expres-
sion for the thermodynamic potential is obtained, which agrees with that obtained from the classical
limit of the Bethe-ansatz formulation of the quantum sine-Gordon thermodynamics. %'e further
find that the average number of breathers excited at low temperatures ( m gg T &gM, where m and
M are the phonon and the soliton masses, respectively) is half the total number of degrees of free-
dom of the system.

I. INTRODUCTION

Recently, the thermodynamics of the quantum sine-
Gordon system has been studied by using the Bethe-
ansatz method. 'z The theory is formulated as an ap-
propriate limit of the Bethe ansa-tz thermodynamics of
the XYZ spin chain. The free energy of the sine-Gordon
system is expressed as a sum of contributions from soli-
tons and breathers. In this paper we shall derive the same
result for the free energy based on a soliton-gas picture in
the classical limit. We shall consider a grand canonical
ensemble of a Boltzmann gas consisting of solitons and
breathers.

There are other approaches to the sine-Gordon thermo-
dynamics based on the soliton-gas picture: the ideal-gas
phenomenology ' (classical theory) and the path-integral
method (quantum theory in the weak-coupling regime).
In these theories solitons and phonons are regarded as ele-
mentary modes, and a dilute-gas approximation to soli-
tons js introduced. Although their results are consistent
with the exact ones, 'z' ' they are valid only at low tem-
peratures' (much less than the soliton mass).

Our approach" here is basically the same as that of the
ideal-gas phenomenology of Currie et al., except that we
regard solitons and breathers, instead of solitons and pho-
nons, as elementary modes, and we take into account all
interactions between elementary modes. Here we should
comment on the independent degrees of freedom of the
system. As shown by Dashen et al. by semiclassical
analysis as well as perturbation analysis, ' the energy
spectrum of the sine-Gordon system is exhausted by soli-
tons and breathers, which is consistent with the Bethe-
ansatz results. ' Further, they concluded that the
lowest-energy state of breathers is nothing but the renor-
malized phonon and that the higher-energy states are
bound states of phonons. ' This means that the breather
and the phonon are not independent degrees of freedom.
Therefore it is possible to formulate the sine-Gordon ther-
modynamics by regarding solitons and breathers as basic
modes (the Bethe-ansatz and the present approaches) or
equivalently by regarding solitons and phonons as basic
modes (the ideal-gas phenomenology and the path-integral
method). A soliton-gas approach starting with solitons,

breathers, ttnd phonons' is clearly inconsistent.
Very recently, Takayama and Ishikawa' established

formal relation between the soliton-gas and the Bethe-
ansatz approaches. Their soliton-gas formulation is dif-
ferent from ours, but the final result agrees with the
present result.

The paper is organized as follows. In the next section
we summarize some properties of solitons and breathers in
the classical sine-Gordon system. In Sec. III the grand
canonical ensemble of a soliton-breather gas is considered.
Thanks to pairwise additivity of phase shifts (factorizabil-
ity of the S matrix} for collisions between solitons and
breathers, the summation involved in the grand partition
function can be performed formally (diagrammatically}
and a compact expression for the thermodynamic poten-
tial is obtained. This expression is shown to be the same
as the Bethe ansatz re-sult' ' and the one obtained by the
extended ideal-gas phenomenology of Takayama and Ishi-
kawa. ' In the present approach we can obtain the
thermal average of numbers of solitons, antisolitons, and
breathers, while in the Bethe-ansatz method only the
difference of soliton and antisoliton numbers (the winding
number) has been obtained. '

In Sec. IV we demonstrate how the Boltzmann gas of
breathers yields the free energy of the classical phonon.
This is a classical analogue of Fowler's analysis of the
Bethe-ansatz thermodynamics in the weak-coupling lim-
it, '6 where he obtained the free energy of a free-boson gas
with the phonon mass. We further find that the average
number of breathers is half the total number of degrees of
freedom of the system at low temperatures where contri-
butions from solitons and antisolitons can be neglected.
This result is consistent with the fact that each breather
has two degrees of freedom. Concluding remarks are
given in Sec. V. Mathematical details of some of analysis
are given in Appendixes A—D.

II. SOLITONS, BREATHERS,
AND THEIR INTERACTIONS

The sine-Gordon model we consider is described by the
Hamiltonian
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0= x —,H +— + l —cosg
1 BP m

2 Bx g

where II=8//Bt is the canonical momentum density of
the field P, g is the coupling constant, and m is the pho-
non mass. We use a system of units in which
fi=kz ——c= l. In this paper we restrict ourselves to the
weak-coupling limit (g~0},where quantum correction is
small. In the rest of this section we shall summarize some
results of the classical field theory, which will be used in
the subsequent sections.

The soliton solution to the equation of motion derived
from (1) is given by

gg, (x,t
~
a, q, Q)

=4tan 'I exp[Qm cosha(x —Ut —q)]J, (2)

E,(a)=E (a)=Mcosha=(M +P, )'i2, (3)

P, (a) =P~(a) =M sinha, (4)

where M =8ttt /g is the soliton (antisoliton) mass. The
momentum P, (Pr) is the canonical variable to the soliton
position q. ' '8

The breather solution is given by

where a ( —ao &a& ao } is the rapidity which is related
with the velocity U by U = tanha, q {—00 & q & 00 ) is the
position of the soliton at t =0, and Q =+1 is the topolog-
ical charge [Q=+1 ( —1) refers to the soliton (antisoli-
ton)]. The energy E, (E, ) and the momentum P, (P~) of
a soliton (an antisoliton) are given by

eos[vl eos8 coshQ(t —Ux )+f]
g a x, t [ cx,q, , =4 tan tan8

cosh [m sin8 cosha(x —Ut —q )]

The breather has an internal degree of freedom, which is
described by the variables 8 (0 & 8 & e /2) and
(0&1(&2n), as well as the translational degree of free-
dom, which is described by the rapidity a {—oo &a & oo )

and the position q ( —00 &q& oo). The energy Ea and
the momentum Pa of the breather is given by

Ea(a, 8)=2M sin8cosha=(Ma+Pa)'/, (6)

Pa(a, 8) =2M sin8sinha,

where Ma(8) =2M sin8 is the breather mass. The breath-
er mass varies continuously from zero to twice the sohton
mass depending on the internal variable 8 in the classical
field theory, while 8 takes only discrete values in the
quantum field theory' ' [8=jg l16 (j=1,2, . . . ,
&8m/g ) in the weak-coupling limit]. The translational

I

and the internal momenta Pa and 168/g are canonical
variables to the position q and the internal phase g,
respectively. ' '

For small values of 8 (8~0) the breather solution (5)
describes a plane wave ("phonon")

gga(x, t
~
n, q, 8~0,$)~48cos(tokt kx+P)—, (8)

where k =m sinha is the wave number, and the frequency
tok is given by cok =(m'+k')' . In the opposite limit
(8~at/2} the breather solution (5) represents an unbound
pair of a soliton and an antisoliton.

A scattering process involving arbitrary numbers of sol-
itons and breathers is described as successions of two-
body collisions. ' A breather labeled by (a,8) suffers a
shift in its position [q in Eq. (5)] by an amount'

[cosh(u —a')+ sin8 sin8']2 —cos28 cos28'
4aa a,8;a', 8' = ln

2 2 2[cosh(a —a') —sin8 sin8'] —cos 8 cos 8'

when it collides with a breather (a', 8'). The direction of
the shift is the positive (negative) direction of the x axis if
a&a' (a&a'). Position shifts of "particles" in other
two-body collisions can be obtained from haa as'

has(~t 8'tz )= 2haa(rt 8 tz m/2)

b aa (a;a', 8') =haa (a, rt/2; a', 8'),
has(a;a') = —,

' baa(a, m/2;a', m/2),

(10)

(12)

where Aaa(a, 8;u') denotes a position shift of a breather
(a,8) due to a soliton (a'), and so on. The position shifts
are independent of charges of solitons. The relations
(10)—(12) follow from the fact that a breather goes to an
unbound soliton-antisoliton pair in the limit 8~m/2 as
already noted after Eq. (8). The position shift plays an
essential role in counting "microscopic states" to obtain
the partition function in the next section. The breather

I

suffers also a shift in its internal phase [g in Eq. (5)].
However, it has no effects on the thermodynamics.

III. THERMODYNAMICS OF
A SOLITON-BREATHER GAS

0(T,p„p,pa )= —TL ' ln=(L, T,p„pz,pa ), (13)

where I. is the system size and:- is the grand partition
function.

Let us consider the grand canonical ensemble of a
Boltzmann gas consisting of solitons, antisolitons, and
breathers (we shall eall it a soliton-breather gas). The
thermodynamic potential per unit length of the system, 0,
is a function of the temperature T, the chemical potentials
p„p, and pa of the soliton, the antisoliton, and the
breather:
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Therefore in the thermal equilibrium the thermo-
dynamic potential density Q~ is a function of T and p, ,
only,

Q~( T,i2, ) =Q( T,P,„—P„O) . (16)

We note that the sine-Gordon system itself does not ap-

proach the thermal equilibrium since it is an integrable

system. The presence of a "heat bath" is assumed when

we discuss the thermodynamics of this system. Then the
thermal equilibrium is achieved by soliton-antisoliton pair
creations and annihilations. These processes may be re-

garded as chemical reactions'*

(14)

and the condition for equilibrium is given by2'

p, +p =pB. Since we cannot control the number of
breathers we have to put p,B=0. On the other hand, the
total topological charge 8"=N, Nr —(the winding num-

ber), where N, and Nr are the numbers of solitons and an-
tisolitons, can be controlled, so that p, can have a finite
value. We thus obtain the equilibrium condition for the
soliton-breather gas,

(15)

dr({Pj l»NB)=L +"' ff gdI„dI,,

XR({Pj~N, NB),

dI; =(2') 'dP, =(22') 'E, (a)da,
dl =(2m) '(16/g )dP (8)d8

=(M/irrn )EB(a,8)da d8 . (23)

The function R in Eq. (21) represents the restriction on
the phase space available for the particles due to their in-
teractions; if there is no interaction R =1. The function
8 can be expressed in terms of the position shifts given in
Eqs. (9)—(12) as

A({Pj!,N, NB)= detR;J({Pj ~N, NB), (2

where the (N+NB ) X (N+NB ) matrix R,
&

is defined by

(21)

where dI, and drB are the phase volume elements (di-
vided by the system size L) of a free soliton and a free
breather, which are given by

0 g=s,s,8 .
~P'a P~ = P~i PB

——0— (17)

However the function Q( T,i2,„i2-„pB)is still useful to cal-
culate the densities n„n„and nB of solitons, antisolitons,
and breathers. They are given by I.Ra ——'

N ~B
L —g'h~(i;j ) gbS—B(i;j ), 1&i &N

j=1 j=)
N +B

L —g &B&(i N;j) Q—~BB(i—N'j}—
(25a)

The winding-number density w = W/L is obtained from
Q,q or Eq. (17) as

w= —(BQ,q/Bp, )=n, n-, . —
and

(i;j), 1&ij &N

N+1&i &N+NB (25b)

(26a)
Now we shall calculate the grand partition function =

in Eq. (13). It can be expressed as

exp[P(I, N, +i,N;+V BNB) j

s y B

x f dr({pj ~N, N, )

LR~) ——.
bsB(i;j N), 1&i &N—, N+1 &j &N+NB

~Bs(l N j } N+1 &1 &N+NB, 1 &j &N

EBB(i Nj —N), N+—1&i,j &N+NB

(26b)

(26c)

(26d)

Xexp[ —PE( {P j i N, NB )],
where p= 1/T, N=N, +N„dI'({Pj ~

N, NB) is the
"phase volume element, " and E( {P j ~

N, NB ) is the energy
of the system with N, solitons, N~ antisolitons, and NB
breathers. The symbol {Pj represents a set of variables
{+si~+s2~ . ~+Ski +(1B~ 18~ )+(2B~ 28»)(+BN»8g&) j~

where a, is the rapidity of a soliton (an antisoliton), and
a~ and 8 are the rapidity and the internal variable of a
breather. The energy E is given by' '

for i~j In Eq. .(25) the prime on g denotes that the
term j =i is not involved in the summation. Derivation of
Fq. (24) is given in Appendix A.

Noticing that dI and E in Eq. (19) depend on N, and
N only through N =N, +N-„we rewrite Eq. (19) as

g (N!N, !)-'Pg,'

x I dr({Pj ~N, N, )

E({Pj~N, NB)= g E,(a„.}+g EB(aB/, 8J}, (20} where
X exp[ PE({Pj

~
N, NB)j, —(27)

where E, and EB are given by Eqs. (3}and (6}.
The phase volume element dI may be written as

g= exp(p1u, }+exp(pp,-), gB ——exp(ppB) .

The summation in Eq (27) is perf. ormed most convenient-
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phonon gas.
In this temperature region, only small amplitude

(8«1) breathers are important. The breather energy,
Eq. (6},is approximated by Es-2M8cosha and the posi-
tion shift in breather-breather collision, Eq. (9), by'

ly by a diagrammatic method (see Appendix B). The re-
sult is summarized as

—PQ =L ' ln"

=g f dI;exp[ —Pe, (a)]

+g, f dr, exp[ —P~, (a8, )), (29) ~so(a, 8;a', 8')=(4~/m8) sech(a)5(a —a') min(8, 8')

Peg(a, 8)=PEs(a, 8)+gfd'I", bsii(a', a,8)

X exp[ —Pe, (a')]

+ps f dI s As'(a', 8',a,8)

&( exp[ —Pes(a', 8')] . (31)

In Eq. (29) the first term represents contribution from sol-
itons and antisolitons, and the second term from breath-
ers. The effective energy spectrums e, and es depend not
only on a (and 8) but also on 1,p„ju, and ps, although
we do not write explicitly the latter variables as arguments
of e, and es. A set of equations (29)—(31), which are the
central result of the present work, describes thermo-
dynamics of the soliton-breather gas.

Equations (29)—(31) with $=2cosh(PIt, , ) and fs ——1,
which will give Q~ [see Eq. (16)], agree with the classical
limit of the corresponding equations of Hida et al."ob-
tained by the Bethe-ansatz method. To see this explicitly,
we first note the relation

&,(a) =—,
' es(a, n /2),

which comes from Eqs. (3), (6), (9)—(12), (30), and (31).
The classical limit of the Bethe-ansatz iesult jy achieved
by replacing the discrete sp tom of the brmther mms by
the continuum one (the weak-coupling limit) and replac-
ing the Fermi statistics by the Boltzmann statistics (this
means we take the limit rtj. ~no for j=1,2, . . . , vi —1

and i}„-+0in the results of Hida et al. '5). Then we find

that Eqs. (2.9a), (2.10), and (4.1) of Hida et al. 's coincide
with Eqs. (31), (29), and (32). The classical limit of the
Bethe-ansatz results obtained by Foozler and Zotos' and
by Imada et al. agree with Eqs. (29)—(31) with /=2 and

gs ——1.
It is not difficult to show that the extended ideal-gas

phenomenology of Takayama and Ishikawa'4 yields Eqs.
(29)—(31) if solitons and breathers are regarded as ele-
mentary modes, and chemical potentials are introduced in
their formulation. The proof is left for the reader.

IV. BREATHER GAS AT LO%' TEMPERATURES

We shall solve Eq. (31) at low temperatures
(m « r«M —

~ p, ~
) where contributions from solitons

and antisolitons can be neglected. The free energy of the
breather gas then reduces to the free energy of a classical

where e, md ea me dete~in& by the eoupl& integral
equations:

Pe, (a)=PE,(a)+g f dl,' b, (a';a) exp[ Pe,—(a')]

+ps f dry &tis(a', 8';a) exP[ —Pea(a', 8')],

(33)

for 8,8' «1. Then neglecting the second term (contribu-
tion from solitons and antisolitons} in Eq. (31), we have

13ett(a, 8) =2PM8cosha
e/2

+2(2M/m) gs f d8'minI8, 8'I

X exp[ —Pe&(a, 8')] .

(34)

Equation (34) can be solved following Fowler's
analysis'6 of the Bethe-ansatz thermodynamics in the
weak-coupling limit and at low temperatures (g~0 and
T «M }. The solution is found to be (see Appendix C)

gs exp[ —Pea(a, 8)]

—,
'
Pm cosha

sinh[(PM8+ ,' Pm gs
'—)cosha]

'2

(35)

for Pm «1. Substituting Eq. (35) into Eq. (29) and
neglecting contribution from solitons and antisolitons, we
obtain

e'l24J — dS f 2MHcosha

Xexp[ —Pcs(a, 8)]

OO
1m cosha[in(Pm eosha) —
2 pcs) .

27K'
(36)

Now we set ps ——0 in Eq. (36) to get the thermodynam-
ic potential density (the free-energy density in the present
case) of the breather gas in equi1ibrium,

Q,q
——T ln(Ptot, ), cgk ——(m +k )'~

2m
(37)

where k=m sinha. This expression agrees with the free
energy of a classical harmonic-phonon gas with the
dispersion cok. This phonon is nothing but a sma11 ampli-
tude limit of a breather given in Eq. (8).

The breather density ns is calculated from Eq. (17)
with Q given by Eq. (36), resulting in

e/a
ns=g f dk (38)

2m

where we cut off the integral at +m/a (a is the "lattice
constant"). Since (L/2m) f dk can be interpreted as the
total number of degrees of freedom of the system, Eq. (38)
shows that the number of breathers Xs Lns is half the-—
total number of degrees of freedom. This result is con-
sistent with the fact that each breather has two degrees of
freedom.

The distribution function ns(a, 8) of the breather in the
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phase space defined by

ns ——f d I s ns(a, 8)

is found to be

(39)

na(a, 8)= —,
'

Pm cosh(a) coth[P(M8+ —,
'

m ) cosh(a) )

X exp[ Pcs—(a, 8
~
p,s ——0}],

where e s( a8
~ ps ——0) denotes es(a, 8) given by Eq. (35)

with ps ——0 (gs ——1). We note that ns(a, 8) is not simply
given by exp( —Peg ).
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V. CONCLUDING REMARKS

We have studied thermodynamics of the Boltzmann gas
consisting of solitons, antisolitons, and breathers of the
classical sine-Gordon model, by taking their interactions
into account. A set of equations (29}—(31) determine the
thermodynamic potential. This agrees with the result of
the Bethe-ansatz method' ' in the classical limit and
with the extended ideal-gas phenomenology. ' We have
demonstrated how the breather gas yields the free energy
of a classical phonon and found that the average number
of breathers is half the total number of degrees of freedom
if contributions from solitons and antisolitons can be
neglected.

Recently, Maki solved the coupled integral equations
(30) and (31) analytically in the case of p, =p-, =}M,s ——0
within a "harmonic-phonon" approximation to give mul-
tisoliton contribution to the free energy. The same
analysis can be performed with finite chemical potentials,
details of which will be reported in a separate paper. The
analytical evaluation of "anharmonic" corrections in this
formulation (or the Bethe-ansatz formulation} remains to
be done.

It is interesting to note that the formulas (29)—(31) can
be applied to the one-dimensional gas of hard rods (see
Appendix D), which yields the exact equation of state2i

P=nT/(1 na), —

where P is the pressure, n is the density of particles, and a
is the length of the rod. The analogy between the soliton
gas and the hard-rod gas was pointed out by Sasaki.

APPENDIX A: VOLUME ELEMENT
OF THE PHASE SPACE

Integration over phase space in the classical statistical
mechanics is defined as the quasiclassical limit of summa-
tion over quantum states. Therefore dr(IP)

~
N, Ns) in

Eq. (19) may be determined as follows.
For simplicity we consider a case of Nit ——0. Then the

quantum state is described by a set of momenta of soli-
tons, [Pi,P2, . . . , P~I. The allowed values of the mo-
menta may be determined by the periodic boundary condi-
tion for the wave function of N-soliton state. There is no
reflection wave in the soliton-soliton scattering for a spe-
cial value of the coupling constant g =8m/n (n is an in-
teger}. In this case the periodic boundary condition can
be expressed in terms of the two-body phase
shifti is is z&»7 5 (a.. ) asSf lJ

N

PL+ g'5 (aj ) =2mn;, i=1,2, . . . , N
)=1

(A 1)

where a,j ——a; —aj, P& Msinha;, and n; is an integer
The prime on g denotes that the term j =i is not in-
volved. Here we do not need an explicit form of 5~(a;J ),
but we note that 5~(a;J)= —5~(aj, ) and that in the
quasiclassical limit (n -+ 00 ) we have the relation's

—85„(at~ )/BP; =h„(a;;a)), (A2)

where b is the position shift of soliton given by Eq (12).
in the text. In this limit the summation over quantum
states determined by (Al) goes to the integration over mo-
menta as

f dP, f dP, fdP„"'"' ''"" =L"f dr„ f dr„ f dr»z(IPI ~N, 0),
ll I N2 N~ 1~ 2» N

(A3)

where d I, and R are defined by Eqs. (22) and (24) in the
text. We have used Eq. (A2) to derive the last equality.

The above discussion is easily extended to the case of
Xz&0. The breather has two quotum numbers; the
momentum Pz and the internal variable 8. The way of
counting momentum states is the same as above. The
quasielassical quantum theory' ' shows that 8 takes
discrete values 8=jg /16 (j=1,2, . . . &8n/g; g~0).
Therefore the summation over the internal variable of
breather is performed as

We thus obtain the phase volume element [Eq. (21)] with
Eqs. (22)—(26) in the text, which is appropriate for the
classical statistical mechanics.

APPENDIX 8: DERIVATION OF EQS. (29)—(31)

We want to perform the summation in Eq. (27). For
simplicity let us consider a system consisting of solitons
and antisolitons only (Ns ——0). Then we have

(A4)
X=O

(Bl)
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where "0——1 and

N

f Q dy; R( IP I i N, O), N & 1

i=1

dy, =d r„gexp[ PE—,(a, )] .

(82)

(83)

=I. g f dy YN(a), (84)

where we have introduced the functions Yjy(a) defined by
F0 ——1,

Y&(a)= —f dy&h(l, a),

Y2(a) = —,
' f dy) b,(l,a}

g

+ y1 y2 12 2 a

etc. The functions YN(a) may be represented diagram-
matically as shown in Fig. 2, where the tails of lines
without dots represent a dependence of Y~(a }.

The summation in Eq. (84) can be carried out again in
the same way as before. The result is expressed in terms
of YN as

The function R(IP) iN, O) is expressed in terms of the
position shift of soliton h(ij )=b—,~(a;;aj ), Eqs.
(24)—(26). If we represent h(i,j ) by a line with an arrow
running from a point j to i, :-~ may be represented di-
agrammatically as shown in Fig. 1, where the dot denotes
the integration f dy. There eppeer "connectai" end
"disconnected" diagrams. The summation of Eq. (81)
can be carried out diagrammatically, resulting in

ln==(sum all over connected diagrams)

FIG. 2. Diagrammatic representation of YN(a).

~eat= J dy'tt(a', at g ye(a') . (87)

By substituting Eq. (86) into the right-hand side of (87),
e(a }is found to satisfy the integral equation

Pe(a)= f dy'b(a', a)exp[ —Pe(a')] .

From Eqs. (84), (86), and (87) we obtain

In" =L yexp —e a (89)

A set of equations (BS) and (89) describes thermodynam-
ics of a simple soliton gas.

The above analysis is easily extended to the soliton-
breather gas, Eq. (27), and one obtains Eqs. (29)—(31),
which are simple generalization of Eqs. (BS) and (89).

JY =0
Ytr(at= exp —J dy'tt(a', a) g ytr(a') (86)

It is convenient to introduce a qu mtity e(a) defined by

APPENDIX C: SOLVING Eg. (34)

It is convenient to introduce

r}(x)=(a ' exp[Pea(a, 8)], x =2M8/m

and rewrite Eq. (34) as

inrl(x )=Pmx cosha gy,a—
X eM/m

+2 yyq y +2@ yq 'y

(Cl)

~ ~ +

Ft = ~ ~ ~ + ~ = = — + p
0 + ~ ~

(C2)
Differentiating Eq. (C2) with respect to x, we have

eM/m
rl'/g =Pm cosha+2 f dy q '(y }, (C3}

where the prime denotes derivative mth respect to x.
Differentiation of (C3) yields

(C4)(g'/q)'= —2/g .
A general solution to the second-order differential equa-
tion (C4) is found to be

g(x)=A sinh2[A(x+8)] . (C5)

FIG. 1. Diagrammatic representation of:-~.

The integration constants A and 8 are determined so that
Eq. (C5) satisfies the original integral equation (C2}. Sub-
stituting Eq. (C5) into (C3) and noting that we are con-
cerned with the weak-coupling limit (M/m —+tto), we
have
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A = —,Pm cosha .1

Substitution of Eq. (C5) into Eq. (C2) yields

in[A ' sinh(AB)] = ——,
' Ppe,

from which we have

(C7)
—PQ=PP=b(P, p), (D3)

where P is the pressure of the gas and the function b(p, p)
is defined by

where E(p) =p /2m (m is the mass) is the kinetic energy
of the rod. From these equations we readily obtain

8= exp( ——,
'

pp, g }=gg ' (C8) b(P, ls) =(P/a)[e(p) —&(p)] . (D4)

APPENDIX D: ONE-DIMENSIONAL GAS
OP HARD RODS

Let us consider a classical gas consisting of N hard rods
of length a in a one-dimensional box of size L. The posi-
tion shift in two-body collision is simply given by a.
Therefore a set of equations (29)—(31) in the text can be
applied to this system in the following form:

PQ—=e» P e
2m

pe(p)=pE(p)+e» I a e2'

(Dl)

for Prn ~&1. From Eqs. (Cl}, (C5), (C6), and (CS) we get
Eq. (35), the solution of Eq. (34).

From this definition and Eq. (D2), we have

be' =(m/2nP)'~ze»,

which gives b as a function of P and p, .
The density of rods n =N/I. is given by

t}Q 1 Bb b

Bls
& P t}ls

@
1+ah '

where we have used Eq. (D5} to derive the last equality.
Eliminating b from Eqs. (D3}and (D6), we have the equa-
tion of state

P =n T/(1 —na ),
which agrees with the exact result by Tonks. t3
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