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Electronic and vibrational spectra of two-dimensional quasicrystals
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The tight-binding electronic structure of two-dimensional quasicrystals is studied numerically for
three patterns of Penrose tiling with up to 426 vertices. According to the range of interactions, three

different models are considered. For the simplest model, two different interactions are assigned to

long and short edges of the Penrose tile. Energy spectra show several significant gaps whose width

and position depend on the relative strength of the interactions. The cumulative density of states is

linear in energy at the band edge, indicating the existence of the Van Hove singularities. The energy

spectra for other models show similar band gaps and singularities, though the density of states is

asymmetric. Participation ratios are examined. %hen the relative strength of interactions becomes

small, significant numbers of states become localized. Lattice vibration perpendicular to the plane is

studied in the harmonic approximation for the simplest model. The vibrational spectra show gaps

and singularities similar to the electronic spectra.

I. INTRODUCTION

Recently, quasicrystals, nonperiodic lattices with a
long-range bond-orientational order, have attracted wide
interest as a new class of ordered condensed state. Rapid-
ly quenched alloys of Al with Mn, Fe, or Cr are conjec-
tured to be such systems in three dimensions with
icosahedral point-group symmetry, ' which is incon-
sistent with long-range translational symmetry. The sta-
bility of this structure has also been studied on the basis
of the Landau theory of phase transitions. 6 Bak argued
that the structure could be classified as an incommensu-
rate structure with one length scale and is not a funda-
mentally new state. Since the quasicrystal structure is si-
tuated between regular crystals and completely disordered
systems, the fundamental physical properties of quasicrys-
tais are expected to have very interesting features. In this

paper, we study the electronic and vibrational properties
of two-dimensional q~~~icrystals.

An example of two-dimensional quasicrystals is the ver-
tices of the Penrose tiling. ' In the Penrose tiling, two
tiles, the so-called kite and dart, fill the two-dimensional
space only nonperiodically. Each tile consists of two long
and short edges, the ratio of the length of the long and
short edges being r=(V 5+1)/2=1.61803..., the golden
ratio. There are an infinite number of Penrose tilings,
each of which is made up of kites and darts in the ratio
v".1. The tiling has various amazing properties. For ex-
ample, any finite-size region in any tiling is contained
somewhere inside every tiling (Penroses local isomor-
phism theorem), and a circular region of diameter d is
never more than 21 away from an exactly identical region
(Conway's town theorem). Most of the tiles belong to
local-pentagonally symmetric regions. Among the infinite
number of tilings, two tilings we will investigate are very
attractive, since they have a fivefold rotational symmetry
axis. The existence of a fivefold rotational symmetry axis

II. MODEL AND DEFINITIONS

%e consider the tightbinding Hamiltonian

H=g )i)tJ(j ~, (2.1)

axis indicates an absence of translational symmetry.
In this paper, we investigate numerically the properties

of the electronic states of a tight-binding Hamiltonian and
vibrational states in the harinonic approximation in finite
Penrose tilings. We study three different tilings, with up
to 426 vertices. The essential features of the conclusions
drawn in the following should be independent of the
choice of tiling. We obtain the spectra of the tight-
binding Hamiltonian and the lattice vibration by comput-
er simulation, assigning different interactions to different
bonds. Among interesting questions to be asked are: (1)
Is there any band gap, like in a binary-bond system in reg-
ular crystals? (2) Does the Van Hove singularity appear
in the spectra? (Note that the existence of the singularities
in periodic crystals was first proved on the basis of the to-
pology of the energy band in the reciprocal-lattice
space. ") (3) Are the eigenfunctions extended?

Similar spectra for one-dimensional quasicrystals has
been studied recently. ' The one-dimensional spectra
show a lot of band gaps and Van Hove singularities as
well.

In Sec. II, we present model systems to be studied. As-
suming different interactions between vertices of the Pen-
rose tilings, we examine three different models. We also
discuss the distribution of the coordination number in Sec.
II. We show numerical results for the density of states
and the participation ratios in Secs. III and IV. Conclud-
ing remarks are given in Sec. V. In Sec. V, we also in-
clude the energy spectrum of a one-dimensional quasicrys-
tal, the Fibonacci chain, for comparison.
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where j ~
i ) I is assumed to be an orthonormal set and the

state
~
i ) is associated with the ith vertex of a Penrose til-

ing. Different specifications of the range of the transfer
integral lead to different models such as

Model I: t;l&0 when sites i and j are the end points of
an edge of tiles, and t,&

——0 otherwise. According to
whether it corresponds to a long or short edge, t;J takes
the value of either —tl, or —ts.

Model II: i;J+0 as in model I and also when site i and

j are the end points of the symmetric diagonal of a tile,
and t;J =0 otherwise. Note that the length of the sym-
metric diagonal of a kite is the same as that of the long
edge, and the length of the symmetric diagonal of a dart is
the same as that of the short edge.

Model III: t&1+0 when the distance between sites i and

j is shorter or eq||al to the length of the long edge of tiles.

For model I, ts( p 0) is chosen to be a scaling factor and
tl is continuously changed. For models II and III,

t;J = —ts exp[ —(r,z —rs)/rs]

is used where r;~ and rs are the distance between sites i
and j and the short edge of the tiles, respectively, and
ts ( )0) is the scale of energy.

For the lattice vibration, we consider a set of equations

(2.2)

where u; is the displacement of mass, m, placed at vertex
i of a Penrose tiling perpendicular to the plane and k,&

is
the force constant between vertices i and j. Assuming
u; =a;e ' ', Eq. (2.2) reduces to

(2.3)

We consider Model I for the lattice vibration with

k;1 =kl or ks.
Three Penrose tilings, T1 with 426 vertices, T2 with

381 vertices, and T3 with 391 vertices are studied in the
following (these are named the "Star," the "Sun,"and the
"Cartwheel, " respectively, in Ref. 9}. Tl and T2 have a
fivefold symmetry axis and they can be interchanged by
"inflation" or "defiation" transformations. T3 has ten-

V3

FIG. 1. T~o unit tiles (kite and dart) make seven different
vertices in the Penrose tiling. For example, the V1 vertex is
made of five kites and the V2 vertex is made of five darts. In
model I, interaction is introduced along the edge of tiles.
Dashed lines are the interactions included in model II for the
center vertex.

fold symmetry except for the central "cartwheel" and ten
radial spokes. Any vertex of Penrose tilings must be one
of seven types: Vl (consists of five kites), V2 (five
~rts), V3 (two kites and one dart), V4 (two kites and two
darts), V5 (three kites and two darts), V6 (four kites and
one dart), and V7 (two kites and three darts). Figure 1

shows these seven types together with the nonzero interac-
tions in model II. In model I, Vl, V2, V5, V6, and V7
have five neighbors, and V3 and V4 have three and four
neighbors, respectively. Table I shows the distribution of
the seven types of vertices for the tilings we studied,
where vertices in the outermost shell are not counted.

In the following sections, we diagonalize the Hamiltoni-
an matrix or the dynainical matrix and obtain eigenvalues
and eigenfunctions. We calculate the density of states
D(e) and the cumulative density of states N(e) which are
defined, respectively, by

(2.4)

where N is the total number of vertices and I e&I are the
eigenvalues, and by

TABLE I. Configuration of vertices in the Penrose tilings. The average coordination number is very close to 4 for these patterns.

Type

VI
V2
V3
V4
V5
V6
V7

Coordination
number in

model I

Number of
long

edges
short
edges

T1
total 366 (%)

21 (5.74)
10 (2.73)

145 (39.62)
90 (24.59)
55 (15.03)
25 (6.83)
20 {5.46)

T2
total 301 (%)

25 (8.31)
6 (1.99)

115 {38.21)
70 {23.26)
40 {13.29)
25 (8.31)
20 (6.64)

T3
total 311 (%)

23 (7.40)
13 (4.18)

125 (40. 19)
65 (20.90)
45 (14.47)
25 (8.04)
15 (4.82)
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(2.6)

X(t)=f D(t )d't (2.5)

We also calculate the participation ratio, ' I'„, for each
eigenstate. The participation ratio is defined by

X IuP I

'
I'~ ——i' ~uI')' '

tL, ——ts exp[ —(rL rs—)/rs I

is assumed, where rL, is the length of a long edge of the
tile. The density of states is asymmetric and very similar
to that of the triangular lattice. Both spectra show clear
Van Hove singularities at the band edges and a nuiiiber of
small gaps which may persist in the infinite system.

where the eigenfunction
~
(u) of the tight-binding system

is expanded as

p)=pauli) . (2.7)

For the lattice vibration, aI' represents the displacement
of vertex i in the pth eigenmode. The participation ratio
takes the value 1/N when the eigenfunction is localized in
a single site, and it is unity when the eigenfunction is ex-
tended uniformly over the system.

III. ENERGY SPECTRA FOR THE TIGHT-BINDING
HAMILTONIAN

A. Model I

Changing the relative strength of the transfer energy

tL /ts continuously, we obtained energy eigenvaiues. »g-
ure 2 shows the energy eigenvalues in the tL /tz versus en-

ergy E/ts plane for (a) Tl, (b) T2, and (c) T3. A lot of
spectral gaps can be seen in Fig. 2, some of which are due
to the finiteness of the system size. Wider spectral gaps
do not seem to depend severely on the system size, indi-

cating they will persist in an infinite system. (See Sec. IV
for comparison of different system sizes. ) In the limit

tL, /ts =0, the system has some isolated clusters as well as
infinitely connected channels. A novel point to see is that
even when tL, ts, i.e., all ——the interactions along long
edges and short edges are common, spectral gaps appear
around E=0. The geometrical structure must be respon-
sible for these gaps.

In Figs. 3—5 we show the histograms of the density of
states and the cumulative density of states for three dif-
ferent values, tL, /ts 1.0, 0.6——, and 0.0. The density of
states for tt. /ts ——1 looks very similar to that of the
square lattice except for the spectral gaps around E =0.
The cumulative density of states is linear in E at the band
edge, suggesting that Van Hove singularities exist there.
The envelope of the density of states also suggests the
divergence of the density of states at E=O, which is
another Van Hove singularity in two dimensions.

In these figures, we also plotted the participation ratios
for all eigenstates. Although we do not see any clear mo-
bility edges nor any threshold for tl /tz, some of the
eigenstates look localized when tt /ts is small.

B. Models II and III

Figures 6 and 7 show the density of states together with
the participation ratios and the cu~ulative density of
states for model II and III, respectively. In model II,
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FIG. 2. Spectral gaps in the tight-binding electronic structure
for the Penrose tiling model of taro-dimensional quasicrystals,
model I: (a) T1 (426 sites), (1) T2 (381 sites), and (c) T3 (391
sites). A dot corresponds to an eigenenergy for a particular relate

tive strength tg /t g of the interactions. Smaller gaps may disap-
pear as the system size is increased, awhile larger gaps m11 persist
in the infinite system.
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FIG. S. Similar to Fig. 3 for T3.
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FIG. 6. Density of states D(E) and the cumulative density of
states X{E)for the tight-binding system in the finite Penrose
tiling, model II: (a) T1, (b) T2, (c) T3.
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IV. FREQUENCY SPECTRA
FOR THE LATTICE VIBRATION

In Fig. 8, we show the eigenfrequencies as functions of
the relative strength kL, /ks of the spring constants for
three different sizes of the T3 pattern. As the system size
is increased, some of the gaps become smaller, suggesting
the gaps are due to the finiteness of the system. However,
there are several gaps which become clearer as the system
size is increased. These gaps will persist in the infinite
system. Similar gapa have been observed in the spectra of
the T1 and T2 patterns.

Figure 9 shows the density of states D(co2) together
with the participation ratios and the cumulative density of
states for the relative strength of the force constant
k~/ks ——1.0, 0.4, 0.0. We see clear Van Hove singulari-
ties at the band edge except for the lower band edge when

kL /ks ——0, since the cumulative density of states is linear
in co there. The lower band edge for kL/ks ——0 also
seems to be linear in co if the degenerate modes due to
isolated clusters are removed. Although another type of
the Van Hove singularity in two-dimensions cannot be
seen clearly in these figures, the density of states for
kr /ks ——1 and 0.4 have a rather sharp peak in D(co ),
showing that the singularity may exist.

Participation ratios again indicate some of the eigen-
modes are localized when kL, /ks is small. The number of
localized modes becomes significant when kr. /ks & 0.4.

V. CONCLUDING REMARKS

We have obtained numerically the energy and frequency
spectra of a tight-binding system and of the lattice vibra-
tion in two-dimensional quasicrystals. The density of

N
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FIG. 8. System size dependence of the spectral gaps in the vi-

brational spectra for T3, model I. (a) 251 sites, (b) 311 sites, (c)
391 sites.

states for different patterns of Penrose tiling appear to be
very similar. This is probably due to the local isomor-
phism of the Penrose tiling. The spectra show several
gaps even when the interactions are uniform. Near the
band edge Van Hove singularities seem to exist. Namely,
the electronic spectrum near the lower band edge has the
same singularity as the free-electron spectrum. These
properties of the spectra should be carried over to the in-
finite system. We studied the nature of the eigenfunctions
with the participation ratio. Our data for model I suggest
that localized states exist when the relative strength of the
interactions is small, and the number of localized states
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cipation ratio of each eigenstaie.

ABAABABAABAAB. . . .

%e assign interaction —tz to A and —t~ to

becomes significant when the ratio of the interactions
(tt /ts or kt, /ks) is below 0.4. The situation for tL, (or
kL ) =0 is very interesting, since the system now consists
of only the short edges of Penrose tiles. The short edges
form infinite paths as well as isolated decagons. The
eigenvalues for an isolated decagon are given by
E/tr 2, +~, +(r ——1),—2, whe—re the states E/ts +w-—
and +(~—1) are doubly degenerate (r is the golden ratio).
The present results show that some eigenstates are local-
ized, while some are extended within the length scale ob-
served. The localization of eigenstates is caused probably
by the irregularity of the infinite channel, the same reason
that the quantum percolation threshold is different from
the classical one. ' Spectral gaps around the central peak
have been observed in the quantum percolation model,
too."

The density of states of a tight-binding system is sym-
metric for model I and asymmetric for models II and III
with respect to E =0. This is because the number of ver-
tices along any path which starts a vertex and returns to
the vertex passing vertices connected by a nonzero
transfer energy is always even for model I and can be odd
for models II and III.

Recently, the spectra of one-dimensional quasicrystals
have been studied extensively. ' ' o %e present here
some results for the tight-binding system in the Fibonacci
chain, where the chain consists of taro basic units A and
B, in the order of
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8 (tz, ts &0). Changing rz/ts and ts/t„between 0 and
1, we obtained the energy spectra for the Fibonacci chain
with 988 sites. Figure 10 shows the structure of the spec-
tral gaps. Figure 10(b) resembles very closely Fig. 9(b) of
Ref. 12. Note that when tz/rs ——0 the system consists of
isolated sites and two-site clusters and when ts/t„=0, the
system consists of two- and three-site clusters. Also note
that when tz Its ——1 the chain is regular. In Fig. 11 the
density of states with the participation ratios and the cu-
mulative density of states are plotted for tz /ts ——0.9 and
0.4. The cumulative density of states shows self-similarity
as observed before. ' Within the length scale studied there

seems to be a mobility edge near the upper band edge, and
most of the states become localized when tz/ts &0.4.
Further studies are needed to conclude if these properties
exist in the infinite chain.
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