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Calculations of the driving force of electromigration in hcp metals: Zn, Cd, Mg
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Using a pseudopotential, weak-scattering formalism we calculate the driving force for electromi-

gration by the vacancy mechanism in the hcp metals Zn, Cd, and Mg. The general formula is

evaluated in a succession of approximate models to illustrate the influence of different physical ef-
fects. The final results are compared both with the experimental data and with a previous evalua-

tion for Zn. Our form factors, which have been fit to low-temperature data and then scaled to ac-
count for volume changes near the melting point, yield an effective valence for the wind force of
about twice the experimental value and only in qualitative agreement with the observed anisotropy.
Possible resolutions are discussed.

I. INTRODUCTION

The calculations presented here are motivated by the
existence of experimental data for electromigration in the
anisotropic metals Zn, '~ Cd, and Mg." For the first two
cases the reported anisotropy in the driving force is
greater than a factor of 2 in favor of motion in the basal
plane, while for Mg the driving force is found to be nearly
isotropic. Since, as we show below, the driving force can
be viewed as an electronic transport property, it is in-
teresting to examine whether the models that have been
developed to explain anisotropic electrical resistivity in
these systems can also account for the driving force aniso-
tropies. We have specifically in mind the transport
models developed by Swihart and co-workers, ' which
allow for anisotropies in both the energies and eigenstates
of both the electrons and phonons in these crystals. The
adaptation of these theories to the driving force of elec-
tromigration is formally straightforward within a pseudo-
potential, weak-scattering approach. Essentially the same
ingredients are required, so comparison with the elec-
tromigration data is a useful further test of the theory.

A brief derivation of the necessary formulas is present-
ed in Sec. II, based on the independent-particle, linear-
response approach of Schaich. There we describe in gen-
eral terms the theoretical ingredients of the calculation
and possible approximations for them. Detailed expres-
sions are relegated to the Appendix. The formal theory,
although different in approach, leads in the end to results
similar to the theory presented by Genoni and Hun-
tington' (GH), which was developed from earlier work of
Huntington and co-workers. '" The GH theory has only
been applied to Zn and in order to obt tin (nearly) analytic
results, it introduces several simplifying approximations.
Our theory is computationally more ambitious and does
not need these approximations. Furthermore, we have
added some refinements to and corrected some errors in
GH's approach.

All of these various effects are illustrated numerically
in Sec. III. By calculating the driving force in models of
increasing sophistication, we show the qualitative influ-
ence of added effects and the quantitative uncertainty in

our results. In general terms, the computed driving force
is larger in magnitude and shows less anisotropy than the
experimental data. Possible resolutions of these disagree-
ments are discussed.

II. BASIC FORMULAS

There are many theoretical approaches to the driving
force of electromigration; see the following reviews. '

We feel that the linear-response formalism, first applied
to this problem by Kumar and Sorbello, ' offers the most
powerful methods. In particular, it provides unambiguous
and tractable ways to go beyond the study of an isolated
impurity in jellium. This is important for our work since
anisotropic effects require a detailed accounting of the
discrete atomic structure washed out in jellium models.

In recent ye'us, two distinct ways to include such ef-
fects have been evolving from the linear-response ap-
proach. The first is the one we use here. ' ' It retains all
scattering sites but assumes pseudopotentials and weak
scattering. The second has a reversed emphasis. ' ' It
can treat arbitrarily strong scatterers within a muffin-tin-
potential model but omits some of the possible scattering
events' ' or sites. ' ' This is most obvious in the
finite-cluster models, ' ' which retain only a small array
of atoms around the moving atom of concern. Since Zn,
Cd, and Mg can be reasonably treated as nearly free-
electron systems, we shall not pursue the muffin-tin ap-
proach.

Starting with the Born-Oppenheimer approximation,
we consider the force on an ion in the presence of an ap-
plied field when all the atoms are (momentarily) held sta-
tionary. Call F the part of the force that is linear in E,
the macroscopic, uniform, applied electric field. We
separate F conceptually into two parts. The first part,—Z&eE, is called the direct force on the ion. Here e &0
is the electronic charge and Z~ is the ionic valence. For
the systems of this paper, Zq ——2 since we assume that
two electrons leave each atom to enter the conduction
bands while the other electrons remain tightly bound in an
ion core and simply act to screen out part (Z —2) of the
nuclear charge. ~2
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The second part of F is due to the linear response of
the conduction electrons. We call it the indirect (or wind)
force and denote it by F . Within an independent-
electron model and in the weak-net-scattering limit, ' it
may be vrritten as

where n i(k) is the linear (in E) disturbance in the distri-
bution of electronic states and the matrix element is the
expectation value of the force operator between an elec-
tron and the screened ion. One can write

mally yield the exact result, at least within the
orthogonalized-plane-wave (OPW) formalism. ' How-
ever, the nonlocal semiempirical pseudopotentials with
which we calculate are not strictly derived from OPW
theory; so their application in (1) as well as for the
electron-phonon interaction is an approximation.

Outweighing the above uncertainties is the advantage
that with pseudopotentials we can determine the I gq & by
perturbation theory:

Combining this expansion with the symmetries
F= —BH/BR, (2)

n, (k)= n—, ( k—),
where H is the adiabatic (ions fixed} Hamiltonian for the
electrons and R locates the ion. The spin dependence of
H is negligible, s so the only accounting for spin in (1) is
the prefactor 2. The independent-particle states

I
gq+ & are

scattered-wave states, formed from Bloch waves scattering
off the defect complex surrounding an electromigrating
ion. We assume the ion moves by a vacancy mechanism;
so in midjump the defect complex has a displaced ion plus
lattice vacancies at both ends of its jump path and possi-
bly further distortions in other atoms' locations. We con-
sider only an isolated defect and denote its modification
of the crystal's potential energy by U; therefore

where Hp is the perfect-crystal Hamiltonian, whose eigen-
states are the Bloch waves

I gq & of energy «.
A key feature of our approach is that each electron-ion

interaction energy is represented by a pseudopotential.
We assume that every atom rigidly carries the same,
spherically symmetric, screened interaction energy ip cen-
tered on its nuclear position. Thus, H and U are com-
pletely specified once ip and all the ion locations are
given. We remark that GH formally allowed the w's to
vary among ions and to lack spherical symmetry, due to
differences in screening. However, in their calculations
this generalization is suppressed. It is not clear how large
an effect is thereby being omitted. In muffin-tin
models' ' even more drastic approximations to the
form of the interaction energy are necessary. Another
technical point worth noting is that the use of pseudopo-
tentials and pseudo-wave-functions to evaluate {1)can for-

&0'~l o Iki & =&4-vl o 14-i&=&4~ I
o 14~&'

where 0 is either U or F, we can rewrite (1) as

F =—4m gni(k}5(« —«)

(«)

xI (&4, I
U 14, &&6 IF I 4,&) .

Here Im denotes "imaginary part of" and F is clearly
real.

We assume ni is determined by a constant-relaxation-
tine approximation

Bnp
ni(k)= geE . (8)

Bnp =vq5(« —e~}, (9)

where eF is the Fermi energy and v~ is the group. velocity
of Bloch state k. Incorporating (8) and (9) into (7) yields

where A' is Planck's constant over 2n and np(k) is the
electron-distribution function in equilibrium. We have
written (8) in a form appropriate to an hcp symmetry: E
is the part of E along (or orthogonal to) the c axis for a
equal to II (or J.). Studies of the resistivity show that
this form of ni is reasonable at the high temperatures of
the electromigration experiments. On the other hand the
temperature broadening of Bn p/Bk is still negligible so we

~+e+X5{«—ei }X5(« —e~)1~(&ki, I
U

I fi &&4'i; IF I P~&)v~ E =f(R).E,
a ) t (10)

which gives the indirect driving force on a migrating ion
at R in terms of a pair of integrals over the Fermi sur-

face. Equation (10) defines 7(R).
The P in (10}are determined by fitting to the experi-

mental resistivities. Using (8) and (9) the induced-current
density is

J=—g evzni(k)
2
0
2e g 5(« eF )vg g T vg E— '
0

— me~ g&XE=+a E „
a a
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where 0 is the system volume, n the average conduction-
electron density, m the free-electron mass, and o~ a con-
ductivity component. We calculate the X defined impli-

citly above as a single integral over the Fermi surface.
Then we use them and the measured o and n to fix the

In an isotropic jellium model, f(R) in (10) is a diagonal
tensor characterized by a single, R-independent number,

W'

f(R}=—Z el . (12)

where the G are reciprocal-lattice vectors. The number of
terms in this expansion that one retains in the calculation
either of e~, v~, and the Fermi surface, or of the matrix
elements of (10}determine the magnitude of the task and
the accuracy, at least within the model, of the results.

Before describing these we wish to comment on further
influences of temperature. In order to enhance the ionic
mobility, electromigration measurements are done close to
the melting temperature. We account for this elevated
temperature in the calculation of the band structure in
several ways. The most obvious is to use the high-

Our general result (10) is clearly more complex. Since
both U and F depend on R we have not been able to
prove that F~(R} is a conservative force unless only sin-

gle plane waves are used for the Bloch pseudo-wave-
functions. Indeed our calculations show that the work
done by F (R) is path dependent. However, as discussed
further in the Appendix, the quantitative variations are
not significant so we will be able to apply the usual theory
of driven diffusion in Sec. III. Toward this end we now
assume that

R2
Z~' e R —R, ; 13

R, a

i.e., that the work done by the indirect induced force on
an ion as it moves (in a straight line} from one lattice site
Ri to another R2 is the same as if it were in a constant
force field —g Z"' eE . Here the wind contribution to
the effective valence Z~r' depends on both the orientation
of E, as described by a, and the type of jump, as described
by y. For motion by the vacancy mechanism in hcp crys-
tals, there are two possible values of y. In each case the
atom jumps to a nearest neighbor site. For y=8 the
jump lies within the basal plane while for y =A it goes to
one of the planes adjacent to the basal plane. Thus we
have three values of effective valence: Z ', Z~'~~, and
Z~' .27 The need for an independent Z~' is ignored by
GH, although only for an isotropic system does Z~'
equal Z~'~~. The complication of (13) compared to (12)
has not been acknowledged before, and in Sec. III we
show how to relate these anisotropy parameters to the ex-
perimental anisotropies in driving forces, diffusion con-
stants, and resistivities. Here we emphasize that (13) is a
simplification of the content of (10}.

In general terms the computational task is now clear.
We expand the Bloch pseudo-wave-functions in a plane-
wave expansion

III. RESULTS AND DISCUSSION

We begin by showing in Fig. 1 the form factors,
w (k', k), used in the calculations. Since the pseudopoten-
tials we employ are nonlocal, one must specify more than
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FIG. 1. Pseudopotential form factor m versus wave-vector
transfer q. The lengths of k, and k' are specified in the text.
The w have been scaled to the temperatures of Table I and are
labeled as in the Appendix: Zn (SOMP), ; Zn (AWSF),
--; Cd (AWSF), ——;Mg (AWSF), ———.

temperature lattice constants. A second modification is
less straightforward and involves a rescaling of the
screened pseudopotential form factors, which have been
fit to low-temperature data, in order to account for the re-
duced electron density at high temperature. The detailed
procedure is described later. These first two modifica-
tions produce only small corrections and are of no qualita-
tive importance.

A third modification is potentially more interesting. It
involves using the Debye-Wailer factor (DWF) to reduce
pseudopotential form factors. In a nearly free-electron
system, the inclusion of such factors is the dominant
modification of the band structure, and we include it as
do GH. One might be tempted to go further to multiply
the matrix elements of U and F in (10) by DWF's. This
extension makes a non-negligible contribution to the an-

isotropy since, e.g., in Zn the mean-square vibration am-
plitude is a factor of 3 greater along the c axis than in the
basal plane. However we feel that no DWF should mul-

tiply the form factor associated with the ion on which one
is computing the force. Our reasoning is based on the
Born-Oppenheimer approximation, which requires one to
hold all the ions stationary while finding the electronic
states. Within this viewpoint the inclusion of a DWF
with any ion accounts for the (static) uncertainty in its lo-
cation. Averaging the F„of (10) over the uncertainty of
the surrounding ions is correct, but an average over the lo-
cation of R should be accounted for only by the integral
(13). The numerical consequences of these remarks are il-
lustrated in Table V.
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TABLE I. Basic parameters. ap is the Bohr radius.

T range'
(K) {A) (A)

k,'
(Units of 1/ap)

E'p

{Units of e /ap) (Units of ap) (Units of ap)

Zn
Cd
Mg

639-673
488—563
773—853

650
530
810

2.67'
3.00'
3 25'

5.05
5.71
5.28

0.826
0.733
0.714

0.341
0.269
0.255

0.046
0.043'
0.101'

0.137
0.137
0.104

'Reference 12.
~Reference 30.
'Reference 31.
"Reference 29.
'Reference 32.
Reference 33.

the wave-vector change, q =k' —k, when describinp
w«' k)»»g. 1 we set

I

k'
I
=

I
k

I

=kF' for
I q I

(2k@,
where kg is the free-electron Fermi wave vector. This ar-
rangement dominates the calculation of the Z's. For

I q I
&2k+, we use in Fig. 1 a backscattering configur-

atio in which k and k' are antiparallel and
I
k

I
=k~

while
I

k'
I

=
I q I

kg. Th—is change of presentation at

I q I
=2k' is responsible for the discontinuous slope in w

in Fig. 1. For Zn we calculate for two different choices of
w. As described in the Appendix, these differ only away
from the important nonzero reciprocal-lattice vectors.
Hence they produce the same band structure, to within a
constant energy shift, but different Z 's. All the w's have
been determined at a temperature in the middle of the
range spanned by the electromigration experiments.
These temperature values are summarized in Table I alonII
with the lattice constants and free-electron parameters kF
and e~.0

The form factors are derived from fits to low-

temperature data, which are then scaled to near the melt-
ing point. To give some sense of their high-temperature
accuracy, we used them to calculate the resistivity of the
liquid metals. We employed the Ziman formulai4'i' and
our form factors scaled to just above the melting point.
They differ from those shown in Fig. 1 by less than a cou-
ple percent. The liquid-structure factor was approximated
by the hard-core Percus-Yevick solution with packing
fraction il =0.456.i6 Our results are collected in Table II
and suggest that w is somewhat too strong in Zn and Cd
but too weak in Mg. Small changes in the w's near
q-2k~ could remove the diserepaneies, but we shall not
attempt such (nonunique) tampering. Instead we stress
that the Z s, like the liquid-metal resistivities, depend
sensitively on the strength of the backscattering form fac-
tor.

In calculating the high-temperature band structures,
two local (only I q I

dependent) factors multiply the w's

in the secular determinant [see Eq. (A2)]. The first,
described in the Appendix, is the unit-cell structure factor
and the second is a DWF. The latter is defined for hcp
systems by

where the X~ are defined in (11)and (A5) and p~ =1/cr
are resistivity components. The X are determined by the
band structure alone, while the A"', more explicitly de-
fined in the Appendix, depend on the scattering from the
defect complex created by the electromigrating ion. Both
the X and A"'~ are calculated by numerical Monte Carlo
integrations. Since the X require only one such in-

tegral over the Fermi surface while the Ar require dou-
ble integrals, the former are essentially exact (through
three digits) while the latter are determined to within
+4%%uo, which is sufficient given the uncertainty in the
pseudopotentials.

The results are collected in Tables III (a)—III (c} for up
to seven different cases. These vary in sophistication of
treatment. In the first four cases a single plane wave
(PW) is used for each Bloch pseudo-wave-function that
appears in the matrix elements, while in the next two
cases a sum of two plane waves is used and in the last case
three plane waves. The resulting A"' appear to have
converged satisfactorily. The aG's used in these expan-
sions of the matrix elements are the largest ones from the
band-structure expansions, which are then scaled to insure
normalized I/i, ). In calculating the band structure we
use up to eight terms in the expansion (14}. These best
calculations appear in cases 4, 6, and 7. At the other ex-
treme, case 1 represents the free-electron limit. For cases
3 and 5 a t~o-plane-wave expansion is used to generate
the Fermi surface. The nonzero reciprocal-lattice vectors
are either (002) or (101), deIIiending on which Bragg plane
has the greater influence. ' '" Finally, in case 2 we re-

TABLE II. Resistivity of liquid metal (Ref. 37).

Tmelt Pexpt

{pQcm)
Ptheor

(pQ cm)

over 20% and does so anisotropicly.
We have now assembled the ingredients for the major

microscopic calculations of this paper. To clarify the
dependence of the Z~r' of (13) we separate them as

(16)

D(q) =exp[ ——,
' (u, )q, ——,

' (u, )(q +q„)], (15)

vrhere the z direction is along the e axis. The mean-
sq~fe vibration amplitudes that we use are listed in Table
I. For large

I q I, the DWF reduces the form factor by

Zn {SOMP)
Zn {AWSF)
Cd (AWSF)
Mg {AVfSF)

693
693
594
923

37.4
37.4
33.7
27.4

47.9
49.3
51.5
16.4
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TABLE III. Results of microscopic calculations for (a) Zn (SOMP, A%SF), (b) Cd (A%SF), and (c) Mg (AWSF). The pair of
numbers in the A columns correspond to using the SOMP and AWSF pseudopotentials, respectively.

Case
Fermi
surface

Perfect sphere
Truncated sphere
2 P%'s
Many P%'s
2 P%'s
Many PW's
Many PW's

6p
(units of e /ao)

0.341
0.341
0.390
0.387
0.390
0.387
0.387

Matrix
elements

(a) Zn (SOMP, A%'SF)
1 P%' 1

1 P%' 0.676
1 P%' 0.623
1 PW 0.605
2 P%' 0.623
2 P% 0.605
3 P%' 0.605

1

0.459
0.461
0.399
0.461
0.399
0.399

(pQ cm)

149,165
48,53
62,68
66,72
61,66
62,67
—,66

g A, J.

(pQ cm)

149,165
36,41
47,53
47,53
48,53
47,52
—53

gB,l

(pQ cm)

134,150
36,40
49,55
49,54
44,48
42,47
—,46

Perfect sphere
Truncated sphere
2 PW's
Many P%'s
2 PW's

Many PW's

Many P%'s

0.269
0.269
0.316
0.313
0.316
0.313
0.313

(b) Cd (AWSF)
1PW 1

1 PW 0.663
1 PW 0591
1 PW 0551
2 PW 0.591
2 PW 0551
3 PW 0.551

1

0.471
0.489
0.427
0.489
0.427
0.427

211
53
83
86
73
72
71

211
41
72
72
63
66
65

191
40
72
75
62
65
62

Perfect sphere

Truncated sphere
2 P%'s
Many PW's
2 PW's
Many PW's
Many PW's

0.255

0.255
0.231
0.230
0.231
0.230
0.230

1 PW
1 P%'

1 PW
2 PW
2 PW
3 P%'

0.782
0.652
0.657
0.652
0.657
0.657

(c) Mg (A%'SF)
1PW 1

0.713
0.686
0.586
0.686
0.586
0.586

106

56
77
78
68
69
70

106

56
78
76
72
69
69

106

56
79
76
66
63
60

move the portions of the free-electron Fermi sphere in the
directions that have no Fermi surface in case 4. In the
directions where the Fermi surface remains, both the Fer-
mi wave vector and velocity are given their free-electron
valUes.

Thus between case 1 and 2 we account for the missing
solid angles in the true Fermi surface, without including
distortions. This effect significantly reduces both the XN

and A"'~ and is the dominant source of the anisotropies.
Going from case 2 to either case 3 or 4 slightly decreases
the X and increases the A"' . We view this as a conse-
quence of reductions in the velocity over the remaining,
now distorted, Fermi surface. From (A5) one has that
X ~u, while (A8) implies that 3" ~1/u, where u is a
typical Fermi-surface velocity. Improving the treatment
of the matrix elements in cases 5—7 only slightly reduces
the A i"N. Similarly the changes between cases 3 and 4 (or
between cases 5 and 6), are not large Hence a rea. sonable
estimate of both the X and 3"' can be made already at
the case-3 level: a two-plane-wave treatment of the Fermi
surface and single plane waves in the matrix elements. In
GH, analogues of cases 2, 3, and 5 for Zn alone were
treated.

From Table III (a) we see that the two form factors for
Zn yield the same Fermi surface and X, but A"' that
differ by about 10%. Comparing between tables, the re-
sults indicate slightly stronger scattering in Cd than Zn.

This is not obvious from Fig. 1, until one notes that the
Fermi energy in Cd is significantly smaller than that in
Zn and that the ratio of iu/e~ is a better measure of
scattering strength. Figure 1 does shaw that in Mg the
scattering is weaker than in either Zn or Cd and as a
consequence the anisotropies in X~ and A"'~ in Table
III(c) are less. The X for Mg are larger for cases 2—7
because there is no longer a large hole in the Fermi sur-
face around the I I. direction. s' This extra Fermi-surface
area also counters the reduced scattering strength so that
the A r in Mg have roughly the same magnitude as those
in Cd.

Turning now to a comparison with experiment, we
must do more than the simple calculation of (16). The
necessary analysis requires some diffusion theory,
of which we only present the key formulas. The carrelat-
ed motion of atoms by the vacancy mechanism in hcp sys-
tems is described by the diffusion constants

(17)

(18)

~here p is the probability that an atom has a vacancy in a
nearest-neighbor site, I „are jump frequencies for the two
possible kinds of jumps, and f„are correlation factors. In
an applied field the directed motion is not correlated and
is described by
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The contribution of 5 is omitted by GH. We find that
0(b, (0.5.

In Table IV we collect the numbers needed to evaluate
(21)—(23). The DN and p~, as well as a2/ei from Table
I, are taken from experimental data, while the f„are from
Mullen's calculation. 39 We also list the measured values
of (Z'/f ) along with their uncertainties. The calculated
(Z'/f)N are each based on case 7 from the appropriate
Table IH. All the calculated (Z /f ) appe ir too large in
magnitude. Using the SOMP form factor of Zn makes
only a slight improvement. With respect to anisotropy,
Mg is certainly different from Zn and Cd but for none of
the metals does the ainount of anisotropy match well with
experiment.

As mentioned in Sec. II, one possible way to reduce
these disagreements is via the Debye-Wailer factor. This
is illustrated in Table V, which shows the effect of the
DWF on case-3 calculations for Zn (AWSF)—see Table
DI(a). We list the calculated Z~r' for possible forms of
the matrix elements. The general definition of 8 appears
in the Appendix, and in Table V we modify its single
plane-wave form (A16). In the first row no DWF ap-
pears; in the second the correct formula is used; and in the
third every form factor is multiplied by a DWF. The
third prescription yields significantly sinaller and more
amsotropic Z~r' . However, as argued before, the proper
calculation appears in the second line. The slight differ-
ence between the numbers in the second and first row sug-
gests that a better theory of thermal effects in the matrix
elements, such as is used in extended x-ray absorption fine
structure ' is not warranted here. For comparison, we
also list in the fourth row of Table V the results quoted by
GH for the same Z~r', with the caution that they used a
different intefpolation to obtain their form factor and dif-
ferent values of H taken from earlier calculations" rather
than fit to experiment Although their paper does not ex-
phcitly state how 0%'F s were included, T. C. Genoni has
informed us (private communication) that the prescription
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TABLE V. Effect of Debye-%'aller factor.

8 form

gA, /J

{pQcm)

g8,i

(pQ cm) ZB,l

z sin(q. R")
q.RT

2& sin(q. R")
q R"

2D2 1 —2
st(q. R~)

q.R"

68 54

39

7.2

7.2

5.4

5.0

8.0

8.2

6.8

6.7

of the first row was used. Still the Z"' in the fourth row
agree better with those in the third row than with those in
either the first or second row. We can not explain this
anomaly.

Returning to the comparison with experiment, it is not
clear where to find a resolution; i.e., whether the dom-
inant error lies in experiment, or in the formal or practical
theory. By "practical theory" we mean the task of calcu-
lating our basic formula, (10). One can significantly "im-
prove" the answers for the Z~~' by modifying the most
crucial ingredients, the form factors; but this would be
unsatisfactory since the empirical pseudopotentials we use
have already been fit to other data. A second alternative
is that our basic formula is wrong. The key assumption
in its derivation is that a perturbative treatment of an
undistorted defect complex is valid. To either prove or
disprove this ansatz is a difficult task. One could study
the effect of lattice distortions without much extra effort,
but to go beyond perturbation theory in a systematic,
quantitative way is beyond present theoretical capabilities.
Finally we raise the possibility that the experiments may
be in error. For each metal the measurements were only
done once and all by the same technique. The data for
Mg are the inost suspect to us, since the experiinental
description notes special difficulties. Renewed experimen-
tal study should focus first on Mg.
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APPENDIX

Here we develop more explicit expressions from the
general formulas of Sec. II snd also make note of various
technical details. We will begin with the calculation of
the band structure. From the expansion (14) one is led to
the secular equation

yuo {k}{&k+G
I
~0

I
k+G'& —&G,G&F)=0

Gt

with the matrix elements

(k'
~
~o

~
k) = 5i,,/+w(k', k)S(G)D(G)&i,

Aki

(Al)

(A3)

as the way we approximate m at high temperatures. In
(A3), Qo is the volume/atom, ez is the Lindhard function,
q=k' —k and kF is the free-electron wave vector. Typi-
cal plots of w's are shown in Fig. l.

%'e choose the origin to lie on the midpoint of the line
connecting the two atoms in the conventional unit cell.
Then

S(G)=cos(G d/2),

where d is the vector connecting the pair of atoms; it is
also a jump vector for the type-A jumps. Only this choice
of origin insures that all S's are real, which in turn im-
plies that the a's in (Al) may be taken as real. While this

(A2}

Here w(k', k} is the pseudopotential form factor of a sin-

gle ion, S(G) is the structure factor of a unit cell, and
D(G) is a Debye-Wailer factor [see (15)). Our w's are
nonlocal and derive from fits to low-temperature de
Haas —van Alphen data. ' Since for the evaluation of
(10) we also need w(k', k) for general k', k, we use an in-
terpolation procedure to move away from the points
k' —k=G and to match on to the form factors suggested
by Shaw or by Appapillai and Williams. 9 These are
denoted, respectively, by the initials SOMP (Shaw optim-
ized model potential) and AWSF (Appapillai, Williams,
Stark, and Falicov). Up to this point we have followed
earlier work; differences arise when we try to account
for the elevated temperature. Since w represents a
screened interaction, we imagine it to have the form
w-w' '/e, where w' ' is the "bare" interaction which we
assume is independent of the temperature, T. The dielec-
tric constant e is presumed to be the Lindhard function at
the appropriate free-electron density. Finally, accounting
for the direct scaling of w with atomic density leads to

w{k',k;T}=w(k', k;T =0) Qo{0) er (q, kp(0) )

Qp & ei (q, kF(T))



33 CALCULATIONS OF THE DRIVING FORCE OF. . . 2177

doesn't matter for the calculation of eq and vq, it will

prove useful in (Al 1) below.
The Fermi surface is described in the extended-zone

scheme by the length of k~ versus the spherical polar an-

gles 8 and P with 8=0 the c axis and /=0 connecting
nearest neighbors in the basal plane. By symmetry one
only needs the solution for 0&cos8&1 and 0&/(n/6,
although to produce the correct a's for other sectors of
the Fermi surface requires careful attention to the allowed
symmetry operations of the hcp system. ~5 The value of
the Fermi energy is adjusted until the k-space volume en-

closed by the Fermi surface (or first Brillouin-zone boun-

dary if there is no solution at e~ for a range of 8,$) equals
4w n(T). Once the Fermi surface is determined, the v&

I

X = +5(eq —eF)(vq. x )
nQ

m dS a2
Fs (vg x )

aft
(A5)

where 2 is a unit vector along 8=0 for ~ =
~ ~

or 8=m'/2
for a =I and Uq ——

~
vq

~

. The integral over the Fermi sur-
face (FS) is performed by the same Monte Carlo methods
described in earlier work. '

Finally we examine the A "'~ defined in (16)

are found by numerical differentiation, with no allowance
for a possible energy dependence of the pseudopotential.

Next consider the calculation of the X . From (11)

, g@ ~— )g@ ~
— ) f " I (&O. IUIO'&&(() IF"*'l0 &)( "* )/"""

ne I
I R~

where 'R" is a unit vector along the jump direction. If the Bloch pseudo-wave-functions are replaced with plane waves,
then one can prove that the A"' are independent of the direction of 2 in the basal plane. z We checked that within our
numerical accuracy this independence also holds when the Bloch states are written as the sum of two plane waves. The
A"' do depend in general on a (see Table III), which implies that the driving force is not parallel to 8 for jumps be-
tween adjacent planes.

With the definition

B(k,k') = f ™&P~ [ U [ Py) &P~ [ F [ P~) ),Q dR'

0 R~
(A7)

I~

we can rewrite (A6) as

S S'
16wn e

For the calculations of this paper we ignore lattice-distortion effects and write

&k'~ U(R')
~

k)=w(k', k)[e '~' —e 'D(q) —e 'D(q)],

(A8)

(A9)

where Ri and R2 denote the vacancy positions at the ends of the jump path and q=k' —k. As discussed in Sec. II, a
DWF does not multiply the term associated with the moving atom. Using

F(R') =—8U/BR',

we can easily find matrix elements of F, too. Then with the expansion (14) we obtain

B(k',k) = g (k+ H —k' —H')aG(k)ao (k')aH (k')aH(k)Sw (k+ G,k+ G')w(k'+ H', k+ H),
G,G'
H, H'

(A10)

(A 1 1)

where the sums are over reciprocal-httice vectors. The quantity S, which we call the averaged structure factor, may be
written as

sin(M R")
k k, , sin(Q R")—sin(M R")+sin[(Q+M) R"]

M R" Q R"
I

1 —cos(M.R"), , 1 —cos(q.R")—cos(M.R")+cos[Q+M).Rr]
M R" Q.R" (A12)

Q=k'+H' —k —H,
M =G' —G —(H' —H),
R~=Rz —R, =x~~~ .

(A13)

(A14)

(A15)

An important point in obtaining (Al 1) is the fact that for
our choice of origin the a's are real. In contrast, GH
choose the origin at a lattice site, but then ignore the fact
that their a's are in general complex. The numerical
consequences of this mistake may not be large since to the
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extent that the Bloch pseudo-wave-function is well ap-
proximated by a single plane wave (as we assume in cases
1—4 of Table III) then ao(k)=1 is real and all other a' s
vanish. In this single-plane-wave limit (Al 1) reduces to

T

8(k', k) = —qw (k', k)w(k, k') 1 —2D(q)
q-R"

(A16)
where q=k' —k.

The pair of Fermi-surface integrals in (A8) are done by
the Monte Carlo methods developed before. ' A useful
check on these is possible in the free-electron limit (case 1)
in which the two integrals can be reduced analytically to a
single integral over the wave-vector transfer 0 (q (2k'.
The fourfold sum in (All) consumes a lot of time when

several plane waves are allowed in
~ Pl, ). The cgs units of

A" are seconds, which we converted to pQcm in Table
III.52

For all the calculations reported there, the R' integral
in (A6) runs along the straight line xr. One can prove
that in the first four cases the answer must be independent
of the path followed; i.e., VXF~=0. When more than
one term is kept in the plane-wave expansion of the Bloch
pseudo-wave-function in the matrix elements, this result
no longer holds. We found for several case-5 calculations
a slight path dependence of the work done by F . How-
ever, the deviations of the diffusion path from a straight
line reasonably possible in a close packed system do not
allow for much variation. The resulting uncertainty in
our answers is much less than that due to b, in (23).
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