
PHYSICAL REVIEW 8 VOLUME 33, NUMBER 4

Complex dielectric response of metal-particle clusters
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We discuss the complex dielectric response of metal-particle clusters. A self-consistent theory is

introduced, which leads to a cubic equation for the cluster dielectric constant. The model is one in

which the particles form fractal clusters. Both the electric and magnetic dipole absorptions are
found to be enhanced by this fractal clustering. In the low-frequency and long-wave1ength limits,
analytic expressions for the enhancement factors are obtained. The model is applied to small parti-
cle composites, for which a red shift in the Mie resonance is obtained. For superconducting parti-
cles, the absorption in the superconducting state a, is found to be greater than that of the normal
state at frequencies slightly higher than the gap, provided the fractal dimension is so low that the
electric dipole absorption predominates. At very low frequencies, fractal clustering also leads to an

enhancement in the diamagnetic susceptibility of superconducting small-particle composites.

I. INTRODUCTION

The electromagnetic properties of small metal-particle
composites have attracted much attention in recent years. '

A particularly intriguing experimental observation is that
far-infrared absorption in such composites is vastly
enhanced over predictions based on the assumption that
the composites are random and can be treated with classi-
cal electromagnetic theory in the long-wavelength lim-
it. The unsuccessful theories treat the composite as a
homogeneous dielectric with an effective dielectric func-
tion usually calculated using either the Maxwell-Garnett
theory (MGT)s or the effective-medium approximation
(EMA).s A number of mechanisms have been proposed
for this anomalous enhancetnent, tuimely, eddy-current
losses in small metal particles, distribution of particle
sizes, absorption by oxide layers surrounding the parti-
cles, absorption due to size quantization of electronic en-
ergy levels in small metal particles, 'o and clustering of
small metal particles into clumps" to an extent vastly in
excess of what would be expected based on an uncorrelat-
ed distribution of small metal particles in the composite.

Recent experimental work' has made the clustering ex-
planation seem much more plausible than any other. A
concurrent theory' has shown that the anomalous absorp-
tion can be accounted for if certain quite general geome-
trical assumptions are made about clusters within the
composite. The purpose of this paper is to show that
another kind of cluster geometry, namely, fractal clusters,
can also produce enormous enhancement of far-infrared
absorption by small metal particles. Fractal clusters have
been reported in colloidal gold suspensions by Weitz and
collaborators. ' In addition, such clusters are the natural
results of many growth processes resulting from irreversi-
ble kinetic aggregation. ' While the particular small
metal-particle composites for which infrared studies have

been conducted do not show evidence of fractal clusters,
such clusters must exist in many experimental situations,
possibly including such exotic materials as interstellar
dust.

Qur model calculations are based on a differential effec-
tive medium approximation previously applied to the con-
ductivity of porous rocks. 's The complex dielectric func-
tion for the cluster in this approach is determined by a cu-
bic equation. The composite is constructed from the clus-
ter by embedding the fractal clusters in an insulating host,
and the absorption coefficient is determined by applying
the Mie theory to a suspension of such clusters. In the
low-frequency and long-wavelength limit, both electric
and magnetic dipole absorptions per unit volume of metal
are found to be enhanced relative to those of isolated par-

(5/2)(3-d )ticles. The enhancement factors are ( R /a) f and
(1/2)(1+df )(R/a) , respectively, where a is the particle ra-

dius, R the cluster radius, and df the fractal dimension of
the cluster. ' Isolated fractal clusters produce a strong
red shift in the Mie resontmce of the cluster relative to
that of isolated particles. This red shift is not experimen-
tally observed, but may be less important than meets the
eye, because only a few fractal clusters are needed to pro-
duce a huge far-infrared absorption relative to isolated
particles, while the spectral weight of the Mie resonance
may still be dominated by isolated particles.

Finally, we also obtain the intriguing result that clusters
with a fractal dimension less than —,

' are not dense enough
to exclude electromagnetic radiation —that is, their elec-
tromagnetic skin depth increases faster than their radius.

The same approach can also be applied to supercon-
ducting clusters. If the metal particles in the supercon-
ducting cluster are assumed to be described by the
Mattis-Bardeen dielectric function, then agreement with
experiment in the superconducting case implies that the
far-infrared absorption must be dominated by electric di
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pole absorption. Magnetic dipole absorption (i.e., eddy
current absorption) usually produces much enhancement
over electric dipole absorption in isolated particles, but
electric dipole absorption can exceed magnetic in large
clusters of low fractal dimension. Such clusters can there-
fore explain both the anomalous enhancement in the nor-
mal state and the relative magnitudes of superconducting
and normal absorption observed experimentally. Our con-
clusions are thus similar to those drawn by Curtin and
Ashcroft'~ for a distribution of nonfractal clusters whose
concentrations span the percolation threshold.

We turn now to the body of the paper. Section II
presents our model and describes some analytic results.
The model is applied to dilute metal-insulator composites
in Sec. III. A brief discussion follows in Sec. IV.

II. THE MODEL

All the essential results of our model flow from a pic-
ture of a metallic cluster whose conductivity is a mono-
tonically decreasing function of radius (or number of clus-
ter particles). The basis idea is to design a cluster which
is self-similar on the average, whose metallic portion is
connected at every stage of its evolution, and which there-
fore remains conducting no matter how small its metallic
volume fraction. One such cluster is shown schematically
in Fig. 1 at various stages in its development. It happens
to be two dimensional but a three-dimensional version can
easily be designed also. As illustrated, the cluster's linear
dimension and metallic mass at the nth stage are, respec-
tively,

R =2"a,

M =p(3/4) "R

where a is the radius of an elementary square and p is the
mass density of the metallic component. The fractal di-
mension is

df ——2+in —,
' /In2=1. 585 .

The conductivity of this cluster can be estimated using the
two-dimensional effective medium approximation repeat-
edly; the result is

5V=3AR 5R,
5M =p(3AR f (R)5R +AR f'(R)5R],

(8)

where f'(R) =df (R)/dR.
To make the theory self-consistent, we divide 5V into

two parts, 5Vi and 5V2. 5V, is chosen to contain all the
added metal, and to have the same metal concentration
f(R ) as the cluster to which it is being added:

where f= —,
' is the areal fraction of metal in the basic

cluster and cro is the conductivity of the metal component.
Thus the conductivity can be expressed as a power of the
radius,

cr =ao(R /a)

The power —1 is special to the fractal dimension of the
cluster and the amount by which the area is rescaled at
each iteration, but the variation of conductivity as an in-
verse power of the linear dimension is general for fractal
clusters. Within the effective medium approximation the
cluster conducts at any stage n, no matter how small the
areal fraction of metal.

Next we outline an apparently more exact procedure for
generating self-similar (or other) clusters, using a differen-
tial effective medium approach in three dimensions. Con-
sider a cluster of radius R, with volume fraction of metal

f ( R) and of insulator 1 —f(R). We start by adding metal
and insulator to the cluster in such a way that the radius
is increased by an amount 5R. With R', V', and M'
denoting the radius, volume, and metallic mass of the en-

larged cluster, we have

R'=R +5R,
V'=A (R +5R)

M'=pf (R +5R)V',

where p is the mass density of metal, and A is a constant
(4tr/3 for a sphere). For simplicity, we assume here that
the insulator is massless; the same result [Eq. (12)] is
found, however, if we consider a finite density for the in-
sulator. To first order in 5R, the change in volume 5V
and in mass 5M are thus

&=a'o(2f —I)"=cro( Y~) (3) =pf(R)= (3AR f(R)5R+AR f'(R)5R] .
5Vi Vi

~F//i'
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(12)

Equation (10) implies that the remaining volume 5V'2,

which contains only insulator, is given by

5V, = —f' 'AR'5R.f(R)

The uolume fraction of added insulator, rt, is given by

FIG. 1. Schematic diagram showing one possible way of
building up a fractal cluster. In each step, the linear dimension
is doubled and 4 of the new volume is filled by the clusters of
the previous step. u(R +5R)=cr(R)(1——,g) . (13)

An application of the EMA leads to a new conductivity of
the enlarged cluster,
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do(R) 3
R

f'(R)
dR 2 f(R) '

which can be integrated to give

cr(R) f(R)
o(RO) f(Ro)

(14)

(15)

If, in particular, a is taken to be the radius of a single
smail metal particle, then o(a) is the conductivity of such
a particle and f(a) is unity, whence

o(R)=o(a)[f(R)]' ' (16)

which gives the conductivity of a cluster of radius R.
At finite frequencies, the far-infrared absorption is

described by a complex cluster dielectric function e(R),
for which a differential equation similar to (14) can also
be derived. To first order in rl, one obtains the following
exact equation for the change in the dielectric function of
the cluster:

e; —e(R)
e(R +5R) e(R) =3' e—(R)

e;+2e R

where e(R) is the cluster dielectric function at radius R
and e; is the dielectric constant of the insulator. Substi-
tuting for il, we find a differential equation,

de(R) 3f'(R)
e(R)

dR f(R) e;+2e(R) ' (18)

which can be integrated to give
3

e(R) e; e(a)—
e(a) e; —e(R)

1

lf {R)1'
(19)

Equation (19) is a cubic equation for e(R}. Similar equa-
tions have been obtained in a differential effective medi-
um treatment of sedimentary rocks. ' Note that Eqs. (15}
and (19) do not depend on the validity of the MGT or
EMA at large rl, since rl is always small in this treatment.

We now specialize this treatment to composites in
which the metal particles are distributed in fractal clus-
ters. For a fractal cluster of radius R and fractal dimen-
sion df, the volume V and mass M are given (in three di-
mensions) by

y gR 3 ~ gR f (20)

Equation {13) is an exact expression to order rl for the
change in conductivity due to an infinitesimal addition of
insulator, so long as the conductivity of the cluster is iso-
tropic before and after the addition {it does not assume
that the insulator in 5' is added in the form of spheres,
or any other particular shape}.

Substitution of (12} into (13) results in a differential
equation for o(R),

—(3/2)(3 —df )

o(R) =o(a) R
0

'3
e(R) e; —e(a}
e(a) e; —e(R)

' 3(3—df )

R
a

(23)

Equation (22) shows how the conductivity of a cluster de-
creases with increasing radius. It is this decrease in con-
ductivity which leads to an enhancement of electric dipole
absorption. The magnetic dipole absorption is enhanced
because of the increase of radius of the cluster relative to
that of single particles. The remaining Eq. (23) deter-
mines e(R } and can easily be solved numerically.

We now consider several results following from Eq.
(22}. First, in the low-frequency and long-wavelength
limit, the electric dipole absorption of the cluster per unit
Uolume is proportional to to~, where co is the frequency,
and inversely proportional to the conductivity. The elec-
tric dipole absorption a, of the composite per unit mass
of metal is given to within a proportionality constant by

' (5/2)(3 —df )

N R
o(a) a

I

(3/2)(3 —df ) 3 df
2

Q
o(a)

(24)

which shows that a, is increased by a factor of
(5/2)(3 —d )(R/a) relative to the unclustered absorption

when the particles form fractal clusters in a composite
material. This factor can be enormous for a large cluster
or small df.

Similar considerations in the same hmit for the magnet-
ic dipole absorption a per unit mass of metal give

' (1/2)(1+df )

a~-co o(R)R R ~-co a o(a)
3—d 2 2 R

(25}
(1/2)(1+d )

The enhancement by a factor of (R/a) results
from clustering of particles. In all cases, the increase in
cluster radius more than compensates for the decrease in
cluster conductivity {which tends to reduce magnetic di-
pole absorption}.

Finally, the electromagnetic skin depth 5(R) of the
cluster is inversely proportional to the square root of the
conductivity o(R). If 5(a) is the skin depth of a fractal
cluster of radius R, then it follows from Eq. (22) that

5(R)/R =5(a)/a (R/a)

which implies that if df & —,, the cluster is not sufficiently
dense to screen out an applied electromagnetic field:
5(R)/R ~ 00 as R —+ Do. In Eq. (26) 5(a) is the skin depth
of a single metallic particle of frequency cu.

where A and B are constants. The volume fraction fr, {R}
of metal in the cluster is thus

' df —3

ft, (R)= R
(21)

from which, using Eqs. (15) and (19),

III. APPLICATION TO COMPOSITES

To illustrate the effects just described, we model a com-
posite by embedding fractal metallic clusters in an insulat-
ing host. For simplicity, we take the dielectric constant of
the insulator to be unity. Equation (23}can then be solved
for the cluster dielectric constant in terms of R and df.
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FIG. 2. Absorption coefficient in the presence of fractal clustering. In (a) both electric and magnetic dipole absorption are includ-
ed and in (b} only the electric dipole absorption is included. Curves (i): no clustering. Curves (ii): R =10a and d/=2. 5. Curves (iii):
8 = lpga and df ——2.0. 8 is the radius of the cluster and df is the fractal dimension; a is the radius of a single metal particle.

The extinction coefficient can be calculated from the Mie
theory. Iff,i is the concentration by volume of clusters in
the composite, and the clusters are assumed all identical
and spherical, then the extinction coefficient a,~ is given

by the optical theorem

a„,= ReS (0},4rr
{27)

(29)

S(0)= —,
' g(21+1)(a)+bi), (28)

1=1
where S(0) is the forward scattering amplitude and a&

and bi are the electric and magnetic multipole coefficients
describing scattering from the clusters. These are ex-
pressed in terms of spherical Bessel functions (exact ex-
pressions may be found, for example, in Ref. 7). While
the extinction is due to both absorption and scattering, for
the particles of greatest interest (typically of radius 100 A
or so ) the extinction is entirely due to absorption in the
lang-wavelength limit.

Model calculations based on this approach are shown in
Fig. 2. The metallic component is assumed to be
described by a Drude dielectric function

COp
a(co) = 1—

r0(co+i/r) '

where ai~ is the plasma frequency and r is a characteristic
relaxation time. We use parameters roar= 100 and

co~a /c = 1, where c is the speed of light. The latter condi-
tion would correspond to approximately 100-A Al parti-
cles; however, such particles would probably have relaxa-
tion times somewhat shorter than that assumed by

roar = 100 because of surface scattering from the boundary
of the small metal particles. The results presented are
based on the Mie expansion [Eqs. (27} and (28)] including
both ai and bi in the full Bessel-function form. In all
calculations, the concentration by volume of metal in the
composite is 0.01.

Figure 2(a) shows the absorption due to a, and b„
while for comparison, Fig. 2(b) shows the absorption due
to a, , i.e., electric dipole, only. The curve labeled (i)
denotes no clustering, while (ii) and (iii) correspond to dif-
ferent fractal dimensions. For the fractal dimensions
shown, absorption is dominated by the magnetic dipole
coefficient bi, as would be predicted from the asymptotic
formulas (24) and (25). The enhancement factors obtained
numerically at very low frequencies indeed correspond to
those calculated analytically.

The low-frequency limit requires that the electromag-
netic skin depth be large in comparison with particle size.
This requirement is not always satisfied as the frequency
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increases, and the magnitude of the enhancement there-

fore varies from that predicted by Eqs. (24}and (25). This
deviation from asymptotic behavior can be clearly seen in
the figures.

Figure 3 shows the behavior of the imaginary part of
the composite dielectric constant at higher frequencies.
Here, we choose the parameters such that the "quasistatic
limit" is valid (we assume cour= 100 and co~a/c && 1), and
consider the effects of fractal clustering in this hmit. All
the curves in the figure describe a composite of 1% by
volume of metal particles. Curve (a} is the simple
Maxwell-Garnett approximation, equivalent to assuming
no clustering. Curve (b) shows the effect of fractal clus-

tering in which df ——2.5 and the radius of the cluster is
R =10a. We calculate the dielectric constant of the clus-

ters by solving Eq. (23) and then calculate the composite
dielectric constant in the Maxwell-Garnett approximation.
For comparison, in curve (c), we show a similar calcula-
tion in which the EMA is used to calculate the cluster
dielectric constant, while the MGT is used to compute the
composite dielectric constant from that of the cluster.

The most striking feature of Fig. 3 is the strong red
shift in the Mie resonance of the fractal cluster, relative to
that calculated from the Maxwell-Garnett approximation
(appropriate to isolated metal particles in an insulating
host). As noted in the Introduction, such a strong red
shift has not been detected in any reported experiments,

though small red shifts have been described. But if the
metal in the composite is largely present as isolated parti-
cles, then most of the oscillator strength of the Mie reso-
nance will not be red shifted, while the few metal particles
that are grouped into fractal clusters wiH predominate in
the absorption at far-infrared frequencies. Note also that
a range of fractal dimensions and cluster radii will further
broaden that part of the Mie peak due to clusters. If the
clusters are not in the form of fractals, then curve (c) of
Fig. 3 showers that the Mie resonance due to such clusters
is much broadened even without considering distributions
of cluster sizes.

It is of interest to contrast the absorption of fractal
clusters in the superconducting (S) and normal (N)
states. ' Experiments show a striking difference in far-
infrared absorption between N and S particles of Sn. This
difference evidently depends on the method of prepara-
tion. To treat this absorption, we model the S particles by
a Mattis-Bardeen form of the conductivity,

iGO
0,(co)= +a,'(oi),

N
(30)

Go=o„ (31)

in which rJ„is the conductivity of the S particles in their
normal state, b, is the superconducting energy gap, and

o,'(c0) is a complex function whose real part vanishes
below Rco=2b, . (An analytic expression is quoted in Ref.
20.}

The ratio of the absorption of a cluster in the supercon-
ducting state to that in the normal state, a, /a„,is shown
in Fig. 4. In all calculations, we use a„=100 'cm

IO': (o)

g
=1.2,R=20a

3

10~
0.8—

g =2.5, R= 10a

g =1.5,R=IQa

0.6—
cA
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104
0 0.2 0.4 0.6 0 8 1.0 1.2

QJ /QJp

FIG. 3. Imagiinujj part of the composite dielectric constant:
(a) Maxwell-Garnett approximation with no clustering; (b) frac-
tal clustering with 8 =1Gu and df ——2.5 with differential EMA
for the cluster dielectric constant; and (c) nonfractal clustering
with EMA for the dielectric constant. In both (b) and (c) the

—(3—d )
concentration of metal in each cluster is 10 f =0.316; the
difference between the curves arises from the different ways the
metal is distributed within the clusters.

51 2
I

0
'6~ /2b,

FIG. 4. The ratio of the absorption of a cluster in the super-
conducting state to that in the normal state, a, /a„,for different
values of fractal dimensions and cluster sizes. Curves (a) and (b)
are cases in which the magnetic dipole absorption is dominant.
Curve (c) corresponds to the case in which the fractal dimension
is so low that the electric dipole absorption predominates. In
case (c), aq becomes greater than a, at frequencies slightly
above 2h/A.
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Curves (a) and (b) correspond to the case in which the
magnetic dipole term is dominant. In curve (c), the frac-
tal dimension is so low that the electric dipole absorption
predominates. The behavior in curve (c) is in qualitative
agreement with experiment. ' lt is evident that the exper-
imentally observed difference between S and N can be ac-
counted for only if electric dipole absorption is dominant.
If this is the case, then the fractal cluster mechanism can
account for the result if the clusters have fractal dimen-
sion so low that the electric dipole mechanism is the dom-
inant chaimel. However, since the required fractal dimen-
sion is very low, it seems unlikely that this mechanism is
the explanation for the experimental results. The present
work should be thought of in the spirit of a model calcu-
lation which describes the electromagnetic response of
fractal clusters should they exist in any given composite.

Another intriguing signature of fractal clustering would
be an enhancement of diamagnetic susceptibility X in
the superconducting state. For frequencies much lower
than the superconducting gap 2b„the conductivity in the
superconducting state can be written as

cr = cr„, fico ((2b, .
iA
QP

(32)

The coefficient bi can be calculated in this low-frequency
limit as

1b)-—
45i

4rro„A

Q3
Z

(33)

The dependence on r of X is the same as that in the
magnetic dipole absorption. Hence, in the case of fractal
clustering, we expect an enhancement factor of
(R/a) ' + f' in the diamagnetic susceptibility. Such
an enhancement would be another experimental signal
that the superconducting particles are present in the form
of clusters, rather than as isolated entities.

IV. DISCUSSION

We have presented in this paper an analysis of the far-
infrared response of small metal particles on the assump-
tion that these particles are grouped into clusters of frac-
tal dimensionality. Application of a differential effective

for a particle of radius r. Hence, the contribution per unit
volume of the particle to the diamagnetic susceptibility

is given by

1 r
lP 2

medium approximation leads to the conclusion that such
clusters will have an effective conductivity which de-
creases as a power law in the radius, and which also de-
creases more rapidly for clusters of lower fractal dimen-
sion. Explicit calculations show in a simple way that such
clusters will have an enormously enhanced electric dipole
absorption coefficient per unit volume of metal, relative to
that of isolated particles. The magnetic dipole absorption
coefficient is also greatly enhanced by clustering. Ob-
served far-infrared absorption by both normal and super-
conducting small particles can both be explained only if it
is assumed that there exist a few clusters of low fractal
dimensionality, such that their absorption coefficients are
predominantly due to the electric dipole mechanism.

We have also shown that clustering will affect other
dynamical properties of small metal particles. In small
superconducting particles, for example, the diamagnetic
susceptibility is considerably enhanced by the grouping of
such particles into fractal clusters. If such an enhance-
ment were observed, that would be a strong signal that
clusters exist, and would tend to serve as corroboration of
the clustering theory of far-infrared absorption.

Finally, we consider the question of the existence of
clusters such as are assumed in this paper, and the possi-
ble application of our method to the properties of clusters
in other contexts. Ample experimental evidence now ex-
ists that fractal clusters can form in colloidal suspensions
of small metal particles. A large body of theoretical stud-
ies also shows that fractal clusters are the natural result of
many irreversible growth processes which might easily in-

fluence the development of small metal particles. The
fractal dimension of the resulting clusters depends on the
growth mechanism. As for other potential applications,
one can imagine various circumstances in atmospheric
physics or astrophysics in which absorption by clusters of
metal particles is of importance; the present work shows
that it will be necessary to have a clear picture of the
geometry of such clusters in order to calculate such ab-
sorption reliably.
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