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Molecular-dynamics (MD) and Monte Carlo (MC) calculations of the mean-square displacement

(MSD) have been carried out for a fcc nearest-neighbor Lennard-Jones model for a wide range of
temperatures and lattice spacings. The lattice-dynamics (LD) calculations of the harmonic and the

lowest-order anharmonic (cubic and quartic) contributions to the mean-square displacement were

performed for the same potential model as in the MD and MC calculations. The dependence of
MSD on sample size ( N) has been examined in detail in MC calculations and the results are present-

ed for a 256-atom sample as well as the extrapolated sample of the infinite size. The MD results are

given only for the 256-atom sample size. The LD results for the harmonic and quartic contributions

to MSD were obtained for almost completely converged Brillouin-zone (BZ) sums, whereas the cubic

BZ sums were uncertain by 2%%uo. It is estimated that the %=256 sample size used in MD calcula-

tions produces a result which is somewhere between 10% and 20%% smaller than the value converged

with respect to N. However, the general temperature dependence of MSD is the same in MD, MC,
and LD results for all temperatures at the highest lattice spacings examined, while at higher

volumes and high temperatures the results differ. This indicates the importance of higher-order

(e.g., A, ) perturbation-theory contributions in these cases. These results represent the best picture

yet obtained for the MSD from the first such calculation for a rare-gas crystal by the MD, MC, and

LD methods.

I. INTRODUCTION

A knowledge of the average square atomic displace-
ment (u ~) in a crystal is fundamental in determining the
Debye-Wailer factor which appears in the intensity of x-

ray and neutron scattering and in the Mossbauer fraction.
It also plays a role in theories of melting, through the Lin-
demann criterion, and is a guide to the magnitude of the
convergence para|neter k, of anharmonic perturbation
theory. The experimental determination of (u ) is diffi-
cult in the most favorable cases, and for the rare-gas
solids the only recent results of which we are aware are
those of Windecker' on krypton, which are limited to a
related quantity 8st (derived from the temperature depen-
dence of the x-ray intensities).

In a recent publication~ one of us has calculated (u )
for Li and Rb employing the lowest order (A, ) lattice-
dynamics anharmonic perturbation theory and the
molecular-dynamics (MD) method. The latter procedure
presumably give the exact numerical answer for (u ) for
a given potential function whereas the lattice-dyntunical
calculation is a term-by-term calculation of the contribu-
tions to (u ) from the expanded potential function ( V).
To 0 (A,2) there are four anharmonic contributions to the
Debye-Wailer factor. Two of these are of O(T ) and the
other two of O(T ), the latter contributions being just
about negligible. Then to O(A, ) and O(T ), which in-

cludes the contributions from the cubic and quartic terms
in the Taylor-series expansion of V, the agreement be-

tween the MD and lattice-dynamical results for (u ) was

quite good for all the temperatures in the interval

8n & T & T, indicating the adequacy of the anharmonic
calculation in the lowest order of perturbation theory.

For the rare-gas solids, the earliest calculation was by
Goldman, who estimated the average anhartnonic correc-
tion to quasiharmonic lattice-dynamics results. Kanney
made a calculation using the ISC correction to the self
consistent phonon theory value. The accuracy of her
values was limited by the coarse meshes used in the
Brillouin-zone sums. One of us used a cell-cluster tech-
nique to obtain a fairly similar set of results, but this
method is less suited to the calculation of this property
than to other thermodynamic quantities because the long-
wavelength modes are not well described. An interesting
feature of these results is that the successive estimates of
(u ) are all larger than the preceding values, and this
trend is continued in the results given here.

A full calculation of all of the terms arising in anhar-
monic perturbation theory has not been performed, and
we wished to compare such a calculation with the two
simulation techniques, the Monte Carlo and molecular-
dynamics methods. Each of these is in principle exact for
a given potential, but the molecular-dynamics method in-
volves the calculation of a time average while in the
Monte Carlo method an ensemble average is formed.

The purpose of this paper is to calculate the average
square of the atomic displacement (u ) for a Lennard-
Jones (LJ) rare-gas solid by three different methods: (a)
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the lowest order (A, ) anhaimonic perturbation theory (PT)
Q, is the Van Hove ordering parameter), (b) the molecular
dynamics (MD) method, and (c) the Monte Carlo (MC}
method. For a meaningful comparison of the numerical
results for (u ), we employ the same model potential
[nearest-neighbor (NN) LJ interaction] in all the three
methods. We believe it to be the first calculation of (u 3)
where such a comparison has been reported in the litera-
ture.

A comparison of the A, PT results for (u ) with those
of the MD and MC methods will indicate the importance
of the omitted contributions from the term-by-term calcu-
lation used in the A, PT. The first set of the amitted
te ~s from the A, PT are of 0 ()(, ). It has been noted be-
fore (in the context of the~~odynamic praperties of rare-
gas solids) that the A,

z )3erturbation theory breaks down6

beyond —,
'

Tsr and the A,
'

perturbation theory~ holds up to
40go of Tsr.

The layout of this paper is as follows. Section II con-
tains a summary of the lattice-dynamics calculations and

a discussion of the dependence on sample size of MC and
MD calculations is presented in Sec. III. The MC and
MD calculations are presented in Sec. IV, and finally the
results and discussion are presented in Sec. V.

II. A SUMMARY OF LAI LICE-DYNAMICS
CALCULATIONS

There are four contributions to (u ) in the lowest or-
der of perturbation theory. Three of these contributions
arise from the harmonic, cubic ( C), and quartic ( Q) terms
in the crystal Hamiltonian, respectively. The fourth con-
tribution arises from the thermal expansian effect af the
harinonic contribution. The harmonic and its thermal ex-
pansion effect can be evaluated as one single contribution
in the quasiharmonic (QH) approximation. Representing
these contributions to (u ) by appropriate subscripts, we
have the following expressions' in the classical high-
temperature limit ( T &OD), where O~n is the Debye tem-
perature:

kJiT
NM J oiz(q, j) '

(4T)' q(qi ji;—qi, ji;qz,jz, —qi,jz)
2N M q, q, J, J, o3 (qi,ji)co (qz,j2)

(ks T)
I +'(qi ji;qz jz;q3 j3) I

'
c=

3 ~(qi+q2+q3}
2N M q, q, q, J, J, J, O3 ('qi&J i )~ (qz&J2)~ ('q3&j3)

(2)

(3)

The various symbols in Eqs. (1)—(3) are as follows: I is the atomic mass, ks is the Boltzmann constant, T is the tem-
pcunture, N is the number of unit cells in the crystal, oi(q,j) is the phonon frequency for the wave vector q and branch
index j, and p's are the Fourier transforms defined by

—ig rI
%qi&Ji&qZ&JZ&'''&q&»J» ) agZ j g &N}aP . i&(l )ea(qi, J'i )ey(qz jz) X ' ' '

&&er(q&»J» }ff ( 1 —e )2M~ I p i=1
(4)

where the prime on the l summation indicates the omission of the origin point; a,P, . . . , y each take the value af x,y, z;
ri is the direct lattice vector [=—,ao(l)]; P ~. . .„ is the Cartesian tensor derivative of the two-body potential P(

~
ri

~
);

ea(q, j) are the a components of the eigenvector. The lL function in Eq. (3) is unity if q, +qz+q3 ——0 or ~ (reciprocal-
lattice vector) and zero otherwise.

Since the Debye-Wailer factor sums are the same as those arising in the above calculation of ( u ) [see Eqs. (9)—(11)of
Ref. 2], we will omit presenting here the details and simply summarize the final expressions used in the calculation of
(u')qH and (u')g, viz. ,

( ') = [S (0)+S (0)+S (0)],

(kn T)(u')II=, g' g y~,( ]l [)[s.~(0)—s.~(»][T„,(0}—T„,&l)],
N M I ~pyg

where S~(l) and T„s(l} are obtained from the following
general tensor I"~(l) when n =2 and n =4, respectively:

e (q,j)e&(q,j)I"p(l)=g „cos(q.ri) . (7)
q,J ~ (q&j)

The above hmsors can be calculated by reducing the a&hole
Brillouin zone (BZ) sum to that of the irreducible —,', th

portion of BZ. The necessary equations have been derived
previously, and are given in Shukla and Milk.

The numerical values of the BZ sums depend on the
number of wave vectors used in the calculations. The
convergence with increasing number of wave vectors is
not very rapid for the S~(0)=s~(0)=s~(0) tensor al-
though the difference, S ii(0) —S ~(1) tensor arising in
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Eq. (6) converges rapidly. The convergence of the other
difference tensor Trs(0) —Trs(1) in Eq. (6) is not very
good even with increasing number of wave vectors in BZ.
The convergence can be improved by using a shifted mesh
of points rather than a simple cubic mesh. This is so, be-
cause the shifted mesh produces points closer to the origin
and that is where the weighting of the contributions from
different regions of q in BZ is heavy. The tensors 5 ~(l)
and T„s(l) were computed for a step length L as high as
100 and then the final numerical values were obtained by
graphical extrapolation. The calculation of (u )c was
performed by the scanning method which is described in
Ref. 2.

III. DEPENDENCE ON SAMPLE SIZE
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The mean-square displacement and hence the Debye-
Waller factor are much more dependent on the sample
size than are most thermodynamic quantities. This
dependence arises because long-wavelength vibrations of
the crystal make a disproportionately large contribution to
this particular property, and the presence of these modes
depends sensitively on the size of the crystal. Fortunately,
the dependence on sample size appears to show a universal
behavior so that results obtained using two or more sam-
ple sizes can be corrected to give rather accurate results
for the infinite sample. A simple approach to the evalua-
tion of the mean-square displacement using quasiharmon-
ic lattice dynamics is to carry out the single Brillouin zone
summation over a simple cubic mesh of wave vectors
whose components are integral multiples of 2n/(Lao),
where L is an integer, and omitting completely the wave
vector (0,0,0). If this is done, the calculated mean-square
displacement is found to vary very closely linearly with
1/L. This trend holds over values of L from 2 or 3 up to
100 or more, and, obviously, can be used to give an accu-
rate value extrapolated to 1/L equal to zero, correspond-
ing to the infinite crystal.

This procedure was employed in the calculation of
(u )qH and (u )~. For the calculation of (u )c it was
not practicable to use L values as high as 100 but we have
some estimate for the change of values in going from
L =5 (500 wave vectors) to L =10 (4000 wave vectors)
The values change by 7—8%. For our final runs we have
used L =10 in the calculation of (u )C. If one could ob-

tain a fully converged answer for (u )c we estimate it
will be larger than the L = 10 value by 2%.

Our Monte Carlo results obtained with samples of vari-
ous sizes show the same behavior. In Fig. 1 are shown a
typical set of values of the mean-square displacement for
systems of 32, 108, and 256 atoms, corresponding to L
values of 2, 3, and 4. The values are plotted as a function
of 1/I. and lie within the statistical uncertainties on a
straight line. Hence, we can deduce the value for an
infinite-sized system, or, for that matter, for any other
finite-sized system. Note that the correction is not small.
Even the 256-atom sample gives results which are too
small by approximately 17%.

A similar kind of analysis for MD was not carried out.
The results presented later are all for a system of 256 par-
ticles. However, we have some estimates of (u ) when

FIG. 1. Mean-square displacement as a function of the in-
verse of the linear sample size calculated for a reduced tempera-
ture of 0.5 by the Monte Carlo method. Statistical uncertainties
are smaller than the plotted circles.

the number of particles was increased from 256 to 500
(corresponding to L equal to 4 and 5, respectively). The
value of (u ) increased by 8.5%.

IV. MONTE CARLO AND MOLECULAR-DYNAMICS
CALCULATIONS

A. Monte Carlo method

In a recent paper' one of us gave values for a variety of
thermodynamic and elastic properties for the I.ennard-
Jones solid, calculated for six temperatures at volumes
which corresponded essentially to the zero-pressure equa-
tion of state. We have calculated the mean-square dis-
placement for the same six temperature-volume combina-
tions. The calculations were performed for 32- and 108-
atom systems at all temperatures, and at the highest tem-
perature an additional run was made for a 256-atom sam-
ple. The runs were made over 960000, 2160000, and
7 680000 configurations respectively for the 32-, 108-, and
256-atom samples. In each case the atoms were started
from their equilibrium positions and a preliminary run of
1000 attempted moves per atom was made before the
averaging was started.

The atoms were moved individually, and no attempt
was made to hold the center of mass (c.m. ) of the system
fixed. Therefore, in order to compute the mean-square
displacement from equilibrium, a running value was
maintained for the displacements x, , y, , and z, of
the center of mass, and the quantities actually averaged
were (x —x, ) etc. The averages for the three Carte-
sian components always agreed within their statistical un-
certainties, and the three were added to give a total mean-
square displacement with an uncertainty typically of
0.4%. As indicated earlier, the results for the different
values of L could be extrapolated to correspond either to
the infinite crystal or, for comparison with MD, to the
256-atom sample.
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B. Molecular-dynamics m,ethod

The MD calculations were done for N =256 particles
(l. =4ao) except for one run using N =500(L =5ao). In-
itiaoy, the particles were placed in a cube containing
4X4X4 fcc unit cells and given random velocities.
Periodic boundary conditions were employed to minimize
surface effects. The time step was b, t =0.001'
(~=ao(M/e)' ] and the integrations were carried out for
6000 times steps employing Beeman algorithm given in
Refs. 11 and 12 to integrate the equations of motion.
This produced energy fluctuations of the order of 10 ppm

(parts per million) and an average loss of energy of 2 ppm
per time step.

The reliabihty of MD results depends on three parame-
ters: the time increment ht, the number of integration
steps, n, and the number of simulated particles, N T.he
influence of the first two (ht and n) can be easily deter-
mined by comparing runs with different parameter set-
tings but the Xdependence is much harder to assess.

The effect of n and b, t was explored in several runs us-

ing 0.01, 0.005, and 0.002 for ht and up to 6000 integra-
tion steps (n). The results are as follows:

Final (u')
n required for stable (ui)
Stability of (ui)
Energy loss per 1000

time steps

C„estimate

0.0234

0.6%

2.5

0.005

0.0232

2000—3000

Never stabilized

0.01

0.0224

1000—2000

2.5%

It can be seen that with the longer time steps the energy
loss is drastically increased compared to the case
ht =0.002. Moreover, the C„estimate never stabilized
near a value of 3 during the whole simulation. From
these tests it was concluded that the choices Et=0.002
and n =3000 would produce results converged to about
1% with respect to n and probably 1—2% with respect to
ht. The former conclusion was confirmed when compar-
ing results of subsequent runs, where the final configur-
atio of one simulation was taken as the initial configura-
tion for the next run. The results generally differed by
less than l%%uo.

The errors quoted above in the summary of the MD re-
sults are estimated from the fluctuations during the last
1000 time steps. They do not reflect the error introduced
by the choices of b, t and N 5000 to 600.0 time steps were
required to stabilize the MSD results to less than 1% for
the chosen time increment ht =0.002. The convergence
with respect to ht is estimated to be within 2—4%.

The dependence of the simulation results on N can be
investigated in two ways. Simulations can be run using
different numbers of particles, and the MD results can be
compared with LD for lower temperatures, where the
higher order PT contributions are exceedingly small. The
first possibility is far more complicated and time consum-
ing than the aforementioned comparisons between dif-
ferent b,t and n values. This is because a simulation using
a different number of particles must always start from
scratch, while ht and n can be changed during the simula-
tion. For this reason, only one such comparison was
made. The MSD calculation for r =ro, the minimum of
the central force potential V, kiiT/@=0 48 was done fo.r
N =256 and for N =500. The results in reduced units

MSD/T =0.07030 for n =256 and MSD/T
=0.07628 for N =500, the latter being about 8.5%
larger. This indicates that the converged result (with
respect to p/) would be at least 10% higher than the value
for N =256.

This observation is confirmed by the comparisons with
LD. At the lowest temperature ( kz T/@=0. 12) the
anhannonic contribution to MSD at r =ra is only 2.5%
of the harmonic value. It is safe to assume that any
anhartnonic contributions of 0(A,") would be much less
than 1%. The LD value should, therefore, be within less
than 1% of the fully converged answer. However, the
MD result in this case differs from the LD value by 16%.
This discrepancy can be explained as the effect of the fin-
ite value of N and it can serve as an estimate of the total
error of the MD calculations.

TABLE I. Mean-square displacement results.

Temperature
(&/kg) MD(256)

(u ) (cr /1000)
MC(256) MC( ~ ) LD

0.125
0.225
0.3
0.375
0.45
0.5

2.67
5.40
8.07

11.7
17.1
22.7

2.67
5.40
8.06

11.3
15.7
19.2

3.15
6.38
9.69

13.7
19.2
23.2

3.15
6.34
9.44

12.5
16.4
19.3

V. RESULTS AND DISCUSSION

In Table I are listed the values of (u ) calculated by
the three methods described above, for the six tempera-
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FIG. 2. Mean-square displacement as a function of tempera-
ture: solid line by lattice dynamics, ~@shed line by molecular

dynamics, and dotted lines by Monte Carlo for 256-atom (lower)

and infinite-atom (upper) samples.

tures at which our earlier MC calculations were per-
formed. The temperatures are expressed in units of e/ks„
where e is the well depth of the Lennard-Jones potential,
and (u ) is given in units of cr2/1000, where o is the po-
sition of the zero of the potential. In each case the calcu-
lation was carried out at, or interpolated to, the lattice

spacing used earlier, which corresponds to zero pressure.

The second and third columns list the values obtained by
MD using 256 atoms, and by MC extrapolated to 256
atoms. There is excellent agreement at low temperatures,
gradually worsening to 15%%uo at the highest temperature.
This is much greater than the combined statistical uncer-
tainties of the two calculations, and we are presently un-
able to account for this discrepancy. In the fourth and
fifth columns, the MC results extrapolated to the infinite
crystal are compared with the lattice-dynamics (LD) re-
sults. Again, the low-temperature agreement is excellent,
gradually worsening to about 16%%uo at the highest tempera-
ture. Presumably this disagreement indicates the lack of
convergence of the A, perturbation theory. If the MD re-
sults were corrected to finite sample size, the disagreement
with LD would be even worse. Our earlier cell-cluster re-
sults are not listed but are very similar to the LD results
and hence slightly lower than the extrapolated MC values.

While the difference between the MD and MC values at
high temperatures does remain a problem, we nevertheless
believe that these results represent the best picture yet ob-
tained for the mean square displacement in a rare-gas
crystal. The overall pictures of (u ) given by the above
three methods are very similar as can be seen in Fig. 2.

ACKNOWLEDGMENT

Ramesh C. Shukla would like to acknowledge the sup-
port of the Natural Sciences and Engineering Research
Council of Canada.

R. C. Windecker, Ph.D. thesis, University of Illinois, Urbana,
Ilhnois, 1970.

~R. C. Shukla and R. D. Mountain, Phys. Rev. B 25, 3649
(1982).

3V. V. Goldman, Phys. Rev. 174, 1041 {1968).
4L. B. Kanney, J. Low Temp. Phys. 12, 239 (1973).
5E. R. Cowley and H. Nur, Can. J. Phys. 53, 1449 (1975).
M. L. Klein, G. K. Horton, and J. L. Feldman, Phys. Rev. 184,

968 {1969).
7R. C. Shukla and E. R. Cowley, Phys. Rev. B 31, 372 (1985).
A. A. Maradudin and P. A. Flinn, Phys. Rev. 129, 2529 (1963).

9R. C. Shukla and L. Wilk, Phys. Rev. B 10, 3660 (1974).
oE. R. Cowley, Phys. Rev. B 28, 3160 (1983).

' M. J. L. Sangster and M. Dixon, Adv. Phys. 25, 247 (1976).
'2P. Schofield, Comput. Phys. Commun. 5, 17 (1973).


