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A variational study of ground states of the orbitally nondegenerate Anderson lattice model, using
a wave function with one variational parameter per Bloch state k, has been extended to deal with
essentially metallic systems having a nonintegral number of electrons per site. Quasiparticle excita-
tions are obtained by direct appeal to Landau’s original definition for interacting Fermi liquids,
& op(k,0)=8Eqia1/8nqp(k,0). This approach provides a simple and explicit realization of the Lut-
tinger picture of a periodic Fermi liquid. A close correspondence is maintained between the “in-
teracting” (U = o) system and the corresponding “noninteracting” (U =0) case, i.e., ordinary band
theory; the result can be described as a renormalized band or renormalized hybridization theory.
The occupation-number distribution for the conduction orbitals displays a finite discontinuity at the
Fermi surface. If the d-f hybridization is nonzero throughout the Brillouin zone, the quasiparticle
spectrum will always exhibit a gap, although this gap becomes exponentially small (i.e., of order Tx)
in the Kondo-lattice regime. In the “ionic” case with precisely two electrons per site, such a system
may therefore exhibit an insulating (semiconducting) gap. The quasiparticle state density exhibits a
prominent spike on each side of the spectral gap, just as in the elementary hybridization model (the
U =0 case). For the metallic case, with a nonintegral number of electrons per site, the Fermi level
falls within one of the two sharp density peaks. The effective mass at the Fermi surface tends to be
very large; enhancements by a factor > 107 are quite feasible. The foregoing variational theory has
also been refined by means of a trial wave function having fwo variational parameters per Bloch
state k. The above qualitative features are all retained, with some quantitative differences, but there
are also some qualitatively new features. The most interesting of these is the appearance, within the
Kondo regime, of a significant quasiparticle contribution to the f spectral weight in the vicinity of
¢r. The present “one-parameter” and “two-parameter” versions can be viewed as lattice generaliza-
tions of the first two approximations of the (1/Ny)-expansion school, although our treatment of lat-
tice aspects departs from strict 1/N; methodology. The two versions have Wilson ratios =1 and
=1, respectively, consistent with (1/Ny)-expansion studies of the single-impurity model, and a num-
ber of other features likewise show good correspondence with (1/Ny)-expansion results. Implications
are presented for the finite-temperature behaviors of several properties, especially the specific heat
and electrical resistivity. Comparison with experiment then leads to some inferences about the band
structures of heavy-fermion materials. A new mechanism is presented for breakup of the coherent
Fermi-liquid behavior, as temperature is increased. There are two main approximations: (a) Neglect
of the “site exclusion” problem, i.e., within cluster-expansion terms we ignore the requirement that
interacting sites must all be distinct. (b) Assumption of a low density of excited quasiparticles (those
excited from the “far” side of the hybridization gap) limits the present treatment to very low tem-
peratures, T << Ty. Electron-number conservation is treated precisely throughout.

1 JANUARY 1986

I. INTRODUCTION

Fermi-liquid aspects of valence-fluctuation (VF) sys-
tems have long been recognized. At first, this connection
was based on the Pauli susceptibility and the linear specif-
ic heat at low temperatures, and on the similarity of the
large effective state densities derived from these two
sources. Single-impurity models have generally been em-
ployed to describe this level of phenomenology.l‘3 Later,
the observation of insulating gaps in SmBg¢ (Refs. 4 and 5)
and TmSe (Ref. 6), and of a sharp Fermi surface in CeSn;
(Ref. 7), demonstrated that the coherence within a period-
ic array of “active” sites is very significant. The Lut-
tinger® characterization of a periodic Fermi liquid is
therefore particularly relevant here, because this focuses
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on features which are sensitive to periodicity and to the
number of electrons per site. All Fermi liquids® are
characterized by a one-to-one correspondence between
their quasiparticle excitation modes and the one-electron
excitations of a suitable independent-particle model. The
Luttinger picture also includes'® (1) a Fermi surface de-
fined by a discontinuity in the distribution of conduction-
state occupation numbers n;,, (2) infinite lifetimes (at
T =0) for quasiparticles just on this Fermi surface, and
(3) identity between the total number of electrons and the
number of quasiparticle states enclosed by the Fermi sur-
face (the Luttinger sum rule). The latter feature strongly
suggests an insulating (or semiconducting) gap for those
materials where the corresponding independent-particle
model (ordinary band theory) has such a gap. The impor-
tant conclusion that the Luttinger picture applies to VF
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materials is due to Martin and Allen.!!

In recent years, remarkable progress has been achieved
on single-impurity models, both via exact “benchmark”
results from the renormalization group'? and Bethe an-
satz!3~ 16 methods, and via reasonably simple yet accurate
approximations based on the “(1/Ny)-expansion”
idea.'’=2* (N;=2J +1 is the effective ionic-ground-state
degeneracy.) The latter approach offers the prospect of
extending the single-impurity results to more realistic sys-
tems. for which the exact results do not apply. Unfor-
tunately, however, it has appeared that a strict 1/N; ex-
pansion would describe a lattice as built up from a single-
impurity term (~N})), followed by a two-impurity term
(~N,‘1), a three-impurity term (~N;?), etc®™% It
seems very unlikely that such an approach can ever ade-
quately explain the specifically periodic features (Fermi
surface and insulating gap), since these features are prob-
ably associated with asymptotically high orders of the
multisite expansion. To be practical, a treatment of the
periodic features must therefore sum the entire multisite
expansion and deal with this in a closed form.”’ Thus, a
different approach to the lattice problem should be
sought.

Previous work on the lattice problem has included a
variety of Green’s-function treatments,’*~3’ functional in-
tegration,?”3%3% real-space renormalization group,*~*
perturbation expansion in U,** and the variational
method.3®®»4~47 However,, none of these efforts have
provided an adequate treatment of hoth the insulating gap
and Fermi-surface aspects.*®4°

We have now found a viable treatment of the periodic
aspects, by elaborating a previous variational ap-
proach®*®»# for ground states of Anderson lattice sys-
tems. Actually, two different levels of approximation
have been developed. The first, the “one-parameter” ver-
sion, has one variational parameter per Bloch state k. Its
algebra is so simple and transparent that a number of use-
ful results can be obtained analytically. The second ap-
proximation, the “two-parameter’ version, has two varia-
tional parameters per Bloch k. This should be more accu-
rate, and it introduces some qualitatively new features, but
the algebra is now tedious and numerical methods are re-
quired throughout. Nevertheless, even for the latter ver-
sion the mathematical apparatus is simple enough that in-
clusion of a number of the complex details of real systems
(orbital degeneracy, spin-orbit coupling, crystal-field split-
ting, band structure, etc., as well as finite temperature)
should be feasible.

A close correspondence between these two versions and
the first two stages of the 1/N; expansion is immediately
evident, although our treatment of the lattice aspect does
not follow 1/N; methodology. The lattice features and
the Fermi-liquid features are incorporated in a transparent
manner from the outset. The result (in either version) is
an explicit realization of the Luttinger picture of a period-
ic Fermi liquid. A one-to-one connection between the
strong-interaction (U = « ) results and the simple U =0
case (ordinary band theory) is clearly displayed. The
overall result can, therefore, also be characterized as a “re-
normalized band” or ‘“renormalized hybridization”
theory.

We do not claim to have proven that the Luttinger
(periodic Fermi liquid) description is correct for these sys-
tems. Indeed, Luttinger® has commented that the only
unassailable proof would be an exact solution. In com-
mon with most of the other theoretical literature on
Fermi-liquid systems, we merely assume that this descrip-
tion is correct, and then proceed to work out the conse-
quences. In practical terms, the important question is
whether some other type of phase could have a lower free
energy; the main competitors here are an ordinary mag-
netic phase [with moments at least partially unquenched,
and Ruderman-Kittel-Kasuya-Yosida (RKKY) cou-
pling],3®4%41:50 and a superconducting phase. We have
not pursued this issue. The justification for the present
work must rest on the results obtained, namely, the
overall consistency with (exact) single-impurity results,
and also the similarity to known experimental behaviors.

The purpose of this paper is to provide an introduction
and overview, i.e., to present the basic concepts and some
illustrative results, without getting into much technical
detail. A key feature of the method is diagrammatic
analysis. This is based on a many-body (linked cluster)
perturbative formalism developed originally for problems
in nuclear®! and atomic and molecular physics,*? and still
generally unfamiliar to the solid-state physics communi-
ty.>® Also, our more refined variational approximation in-
volves considerable algebra. We therefore begin by em-
phasizing the simple features and main results, postpon-
ing these details for later publications.

We use the following form of Anderson lattice Hamil-
tonian,

H =2 Ekﬁka+€f2ﬁja+ Uz(l'—ﬁjt)(l—ﬁﬂ)
ko j J

A4

+ 3 (vkjnlonja-}—H.c.) , (1)
k,j,o

where j is a site index. U is taken to be infinite. Orbital
degeneracy is ignored, as well as any intrinsic f-electron
bandwidth. The use of (1—#;)(1—#;,) rather than
fij4A},, in the Hubbard term, means that fluctuation takes
place between f! and f? configurations, instead of f°,f!.
This form is more appropriate for Sm and Yb materials,
and, more importantly, it makes the diagrammatic
analysis more transparent. Results for the more familiar
form of H (with 7;,7;,) can easily be deduced, since these
two forms are simply related by particle-hole transforma-
tion.

In all of the numerical results presented we use the fol-
lowing Hamiltonian parameters: W =2 eV, the band-
width of the bare (g;) conduction states, with a constant
(rectangular) density of states, and ¥V = —(0.05)!/ 2 eV, the
(k-independent) strength of the df hybridization in Bloch
representation,

Vk=N"1/22e'k'ijkj—>V, (2)

J
where N is the number of sites. The origin of the energy
scale is at €y, i.e., £,=0, and the conduction-band limits
are D, and —D_ for the top and bottom, respectively
(D4 +D_=W; D_>0 means g5 above bottom of band).
Also, all cases shown have 2.4 electrons per site, making



33 THEORY OF VALENCE FLUCTUATIONS 217

them intrinsically metallic as appropriate for intermetallic
compounds. Extension to the ionic (and possibly insulat-
ing) case, with just 2 electrons per site, will be obvious.
The use of a nonintegral electron number per site, 2.4,
may be viewed as a proxy for a somewhat more realistic
model with a five-fold degenerate “5d” conduction band,
and 4 electrons per site.

To emphasize the connections with the noninteracting
(U =0) case, i.e., the Luttinger aspects, we shall discuss
three cases: The U =0 case (in Sec. II), the interacting
(U= o) case with one variational parameter per Bloch
state k (Secs. III and IV), and the U =« case with two
variational parameters per k state (Sec. V). Extensive dis-
cussion is presented in Sec. VI, followed by concluding re-
marks in Sec. VII. The discussion includes (a) implica-
tions for low-temperature phenomenology (specific heat,
magnetic susceptibility, and electrical transport proper-
ties), (b) comparisons with previous single-impurity re-
sults, and (c) present simplifications and approximations
that deserve further effort. A brief report of this work
has been presented previously.**

II. THE U =0 CASE

The noninteracting (U =0) case is just the elementary
problem of hybridization between two bands, one of
which has zero width. The result is shown in Fig. 1, for
D_=1.3 eV. For each k there are two hybridized or
“quasiparticle” states, with energies

Bi=17{ex+ept[(ex—ep)?+4VF12 . (3)

There is a small gap, whose width A is, by second-order
perturbation theory,
v:ov?
Ae—+—.
D_ + D, 4)

If there were just 2 electrons per site, the Fermi level

F—»k

FIG. 1. Quasiparticle spectrum for U =0 case. Input pa-
rameters are W =2.0 eV, V=—(0.5)"2 eV, D_=1.3 eV,
ehr=—0.9eV.

would obviously fall in this gap and produce an insulating
(semiconducting) state. With 2.4 electrons, however, the
Fermi level & falls in the upper (&) quasiparticle band.
[Note the distinction between ey and ey in Fig. 1, where
evr=¢x(k =kg).] The band is quite flat near this &g, cor-
responding to a large effective mass (in this case, enhance-
ment by factor of 19.1=m*, as compared to the “bare”
€, spectrum). As is intuitively obvious, the f-electron
content of a quasiparticle is largest where the band is
most flat. This will be shown in more detail in Sec. IV.

We note, for comparison below, that this case can be
viewed as a variational problem based on the trial wave
function

V= H 1+zakj77;a77ja | (Dc(bf) ) (5)
Jo k
where
@;= | [ njm}, | | vacuum) (6)
J

shows all 2N localized “f orbitals initially occupied, and
@, is a simple Fermi sea containing 0.4N conduction
electrons. In Bloch representation this becomes

V= | JT 0+ Aenkompo) | | 9 @f) @)
k>,a
@7 = | T 7xnfws | | vacuum) (8)
k
Ak=N‘1/22eik'Rfakj . 9)
j

(Throughout this paper we use k,,k_ to denote the
states k 2 kg, or more correctly, £ 2 ea5.)

This variational problem decomposes into a ‘‘direct
product” of elementary problems, one for each state ko.
The energy expectation value is easily seen to be
E€x A ]3 + 2 Vk A k

, (10)
. 14+A47

(H)= 2 €+
k..o ko,

thus the optimization condition is
H) _ 4

(ex Ak + Vi — Vi A})=0, (11)

84 (1+47)7

0.5
|- Parometer

2-Parameter

fo) N R |
o

Lo Lo '
-0.5ev €t 05 D+

FIG. 2. Conduction-state occupation-number distributions.
Same input as Fig. 1.
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and
2 172
=l ] ) 1
The occupation numbers for the conduction states are
Nio=AE/(1+AF) (13)

for k > kp, and unity for k < kg, as shown in Fig. 2.

III. ONE-PARAMETER THEORY

For the interacting (U = « ) case, our “one-parameter”
trial wave function is>

IT

Jj

+
V= 14+ 3 axiMiojo | | | P Ps) . (14)
ko

Note that this form of ¥ prohibits any f° configurations,
and it also conserves electron number. After transform-
ing to Bloch representation, there is seen to be just one
free parameter, Ay, for each Bloch state k. This state-

ment involves the assumption of complete site
equivalence,*® whereby
—ik-R;
a=N~""24e”" . (15)

Some prominent features of valence-fluctuation materi-
als follow almost immediately from this form of W.3%®»45
For example, the only way to admix magnetic configura-
tions (7;,) with the nonmagnetic initial configura-
tion (| ®.®Pf)), and gain ground-state binding energy by
doing so, is to have the magnetic configurations coupled
with conduction electrons (771,,) so as to form a singlet.
This explains why the magnetic moments of most VF ma-
terials are quenched at low temperatures. Another impor-
tant qualitative feature is discussed below, following Eq.
(23).

By an approximate diagrammatic analysis (see discus-
sion in Sec. VIG) we obtain the conduction-state occupa-
tion numbers

1, k <kgp

"o =\ A2/ D+ AD), k>kp (16)

[compare with (13)], and the total-energy expectation
value,

ex AR +2V, A
(H)=3 &+ 3 kT TET R Tk

(17)
s  D+A;

k. ,o k.,

[compare with (10)], where & plays the role of a one-site
normalization factor. Actually,

1

g=__2

,@+A2 =(fpf;)=1-§  (18)

is the true probability of f? configurations. The parame-
ter &, the probability of f! configurations, is our measure
of the average valence. It follows, then, from these con-
figuration probabilities, that

=P(fH)4+5P(fH=(1—-£)+ &
—1E. (19)

The results (16)—(18) are so simple that the diagram-
matic analysis is not really essential here; they can also be
obtained directly by a simple intuitive argument.>*®»45 In
this approximation, the various sites j interact only via the
exclusion principle, namely, the fact that two sites cannot
simultaneously make use of the same Bloch orbital ko.
Thus, if site j has made the (virtual) transition j1—k1,
then the corresponding transition j't—k1 is blocked
(momentarily forbidden) for all of the other sites j's4j. It
follows that the ko orbital occupation number can be
evaluated as a sum of quasi-independent one-site contribu-
tions

1~-N_1 n
N ko

) (20)

z lakj

where 1—(N —1)n;,/N represents the probability that
ko is not already occupied by an electron from some oth-
er site j'#j. Thus, n, is the product of an “attempt
probability,” 2 ~'Y, |a;; | % and a “success probability”
or blocking factor, [1—(N —1)n;,/N]. For large N this
simplifies to

wo=A2/D )1 —ny)=A} /(D + A}) , @21
in view of (15). Similarly, the normalization denominator
is

D=1+ 2 |ak1| (l—nka

k.o

(22)

Note that the states k < kr do not contribute here. They
are effectively inert because they are already fully occu-
pied, from ®_.. When (22) is reexpressed in the form (18),
the last equality (which gives £ as a function of the A4;’s)
follows as a direct consequence of electron-number con-
servation. The derivation of the (H ) expression (17) is
completed by associating a blocking factor (1— ng,) with
each of the hybridization terms, thus

(v)= 3 (pagy+H.c)1—n,) . (23)
k,.jo

It will be shown in a future paper that the diagrams we
retain and sum have precisely the physical interpretation
just given.

This elementary argument has the virtue of demonstrat-
ing that the dominant interaction between the active sites
(the exclusion-principle blocking effect) is effectively a
destructive interference. The destructive or repulsive char-
acter of this interaction serves to explain why there is no
collective phase transition in most VF materials, as they
are cooled to low temperatures. We consider this result to
be an essential ingredient (together with the arguments for
Fermi-liquid behavior of a single impurity’’) for under-
standing why the paramagnetic Fermi-liquid picture ap-
plies to most VF materials, or in other words, why there is
generally no order parameter.
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The optimization condition is now a bit more compli-
cated than in Sec. II,

5(H) 0o(H) A o(H) 8
84, ~ 0Ag 3T 84,
4Vk Ex—HU 2
=—F 19 |4 +1|—42 =0,
(D + A2 I ,
(24)

where u, a “pseudo chemical potential,” arises from the
dependence of Z upon A,. (Details concerning the 1 pa-
rameter are presented in the Appendix.) It is convenient
to express the solution as

=D+ + D=2 4, , (25)
where
Y= e —p)/2Vy . (26)

Using & =(1—§)7!, we see that the “basic parame-
ters,” which characterize the A4, and n., distributions,
can be chosen as £ and pu. Both of these involve integra-
tions over k (subject to k >kp) of functions of A4;, and
are therefore themselves functions of & and u. With con-
stant density of states (pJ=W~!) and constant V
(Vi — V) the integrals are elementary, and we then have
two equations to solve numerically. These equations are

g=L A _ 2V o 4
N, 2 aral wgiaA-TAY, @
17 Vide 217
= = In(4_/4 28
u= N, 9+Ak [n( /AL)] . (28)

The subscript + (—) represents the value of A4 at the top
(bottom) of the initially empty part of the conduction
band, correspondmg to g —-—D+(Ek-—-8k1-‘) [Observe that
y_>y, and a_ >A+>0 because we are assuming
V <0. The latter is convenient because, in order that the
hybridization energy (23) be attractive, A; must then be
positive.] The resulting £ and p are shown in Fig. 3, as
functions of D_. From comparison of (28) with (23) and
(21), we note that

u=(v)/2N .

This result facilitates comparison with other formal-

isms.** For completeness, we also note (see Appendix)

that

(H) 21?2 ~ -

—= ——(1-— A_—y A.). (29
N k205k+# (16 A_—y, d,). 29

<?

Before discussing ground-state properties, we note that
there are three different regimes to consider.*” When ¢ f
lies below the bottom of the initially empty part of the
conduction band (sf<egp, or D_ <0.4 eV here), only

“virtual” transitions jo—k , o are possible. These transi-
tions are well descnbed by perturbation to second order in
V (provided Ekp—a r> |V |), hence we call this the per-
turbative regime. The probability of simultaneous
Jjt—k_t and jl—k', | transitions is inherently so small

here that U should have little effect. When €, lies above
€9 there is an obvious tendency for electrons to vacate
some of the f orbitals and fall into conduction orbitals
with ebF <€ <€ r. If V were absent, such f—d transfers
would continue until either the conduction-state Fermi
level rises to meet €, or until one electron has been
removed from each of the f sites and U will then not per-
mit any further transfers. The former case
(e%F < Ef <edr+ % W, or 0.4<D_ <1.4 eV) defines the
valence-fluctuation or mixed-valent regime, and the latter
case (g7 > 52F+%W, or D_ > 1.4 eV) defines the Kondo-
lattice regime. These regimes are indicated at the bottom
of Fig. 3.

The V-interaction energy ({(H)/N minus correspond-
ing energy for ¥V =0) is shown as a function of D _
Fig. 3. Note the strongly contrasting behaviors in the
three regimes, and the smooth crossovers between these
regimes. In the perturbative regime ( H )i, /N agrees with
second-order perturbation in V, falling asymptotically as
| D_—0.4eV|~! £ and u are both small, as expected.
In the VF regime (H );, /N reaches its maximum but still
varies rather slowly with D _, while £ varies linearly with
D_. (Compare with &, in Fig. 3, which shows the
behavior of £ for the case V=0, U = .) In the Kondo-
lattice regime, however, ( H );,,/N shows a rapid exponen-
tial falloff with increasing D _,

N~ H )iy~ —Dgexp[ — (e, —p)W/2V?], (30)

where 8p=¢egp++ W is the Fermi level for the corre-
sponding ¥ =0, U =« system, and Dx =D —%F is the
energy difference between the top of the band and Ef.
(The inclusion of &7 in the exponent is only for the sake of
clarity, since we are using £, =0. Note also that Dg de-
pends on electron number, i.e., on €9r, but not on the posi-
tion of €7.) Also 1 —£ varies with the same rapid exponen-
tial factor,

-0.2
E(ev)
-03+

-1 /
N <H>lmJ

H

Pert } VF f— K —

FIG. 3. Results of one-parameter and two-parameter models:
solid and dashed lines, respectively. £, is valence parameter for
V=0, U=c. Same input as Fig. 1. Note the three different
regimes, shown at bottom.
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14 1
— o~ 4 | . in y 31
—f=~ 75 | 3 H i (31)
whereas
p=—(ep—2p)— 3T W(1—§). (32)

Note from Fig. 3 that 0<£ <1 and u <0 hold every-
where. In general, y is small (of order ¥2/W) until reach-
ing the Kondo regime, where it quickly approaches
—(e;—%r). A moment’s reflection shows that this p
behavior is necessary for electron-number conservation,
since €, =p defines the point at which n;,=5. We see
from (18) and (26) that V} is effectively renormalized
down to Vi (1—§£)'2, thus the ny, distribution is both
sharpened (by 1—§) and shifted downwards in energy (by
1), as shown in Fig. 2. These effects are most dramatic in
the Kondo regime, where the n;, distribution rapidly ap-
proaches the form of a step function, with the jump
pinned at €. In this case the system appears to have two
Fermi levels: the true one at e, =¢pr, with a very small
but finite jump in ng,, and a “pseudo Fermi level” at
€x =U ~Ep, where naive (¥ =0) arguments would place
€F, With ny, actually continuous here but falling very rap-
idly.

For all three regimes, the above qualitative features can
all be obtained analytically, from (27)—(29), by exploiting
the asymptotic approximations

2y +(2p)7Y, y>>1

2y y<—1. (33)

A=y +(p*+ 1)
These approximations have a wide range of validity, be-
cause | V| /W is generally quite small. They fail to ap-
ply only in the crossover regimes, where either |y_ | <1
or |y, | <1. This is the motivation for expressions (25)
and (26). The analytical behaviors in the various regimes
will be discussed more fully in a future paper.

IV. QUASIPARTICLE SPECTRA
AND STATE DENSITIES

To obtain the quasiparticle or elementary-excitation en-
ergies, we appeal directly to the original Fermi-liquid con-
cept,’ namely, the idea of a one-to-one correspondence be-
tween the interacting ( U = oo ) and noninteracting ( U =0)
systems. For the ground state we obviously have

‘I/g = Qq’o 3 (34)

where W, represents the “true” (actually variational)
ground state, ®o= | ®. P, ) is the noninteracting reference
state, and the “wave operator” (1 is just a shorthand nota-
tion for the correlations and all of the details of our calcu-
lational procedure. We simply assume, now, that this re-
lation continues to hold for the elementary excited states.
Suppose we add one k1t quasiparticle to the system, with
k >kp. We add the bare conduction electron k1t to @,
and use the same recipe for (1 as before. Examining the
equations for (H), &, £, and u, namely (17), (18), (27),
and (28), we see that this k1t state is now to be treated “as
if”’ it were below kr. In other words, this k1 is now to be
added to the k _,o0 sums in these expressions, and re-

moved from their k , ,0 sums. Fortunately, however, it is
not necessary to resolve the equations for § and u, because
(H) is stationary with respect to small [here Z(N ~1)]
changes in the A;’s. The net change in total energy is
therefore

pAQ
DyAE

EkA]3+2VkAk
D+ A}

& ;: =€ — (35)
The first two terms come from the obvious changes in
(H ) [see (17)], while the last term comes from the corre-
sponding change in &, (3(H ) /3.2 )8% . Using (24), the
stationary condition for A4, this simplifies to

Vi Ay
g

Details are given in the Appendix. Now consider remov-
ing one of the k <k states from ®, (with o=1, say),
thereby changing its status from “k _1” to “k,1.” We
find the same expression for the quasiparticle energy. We
now have the full spectrum for the upper (€ *) quasiparti-
cle band.

In effect, we are employing the original Landau defini-
tion® of the quasiparticle energies,

S8E total

=l 37
Falko) =5 ooy (37)

g;: =&k — (36)

where ng,(k,0) is the “quasiparticle occupation number”
for state ko. We implement this formal definition by
identifying the ng,’s with the orbital occupation numbers
for the &, of (34). It is obvious, from the present con-
struction, that each quasiparticle contains exactly one
electron, i.e., addition (removal) of a quasiparticle must
raise (lower) the total electron number by unity.

The energies of the lower (€ ~) subband require a more
subtle analysis. We consider the Bloch representation for
@, Eq. (8), and remove an fk1 state, assuming for now
that k > kr. By momentum conservation, this operation
is seen to delete k1 from the k, ,0 sums in (H) and &,
thereby giving the second and third terms of Eq. (35).
But there is now a further effect to consider. Within both
& and (H ), the virtual transitions jo—k'c are allowed
only when jt and j! are both initially occupied. Removal
of fk1 has left the jt of ®; unoccupied by the fractional
amount N ~!, and therefore all virtual Jjo—k'c processes
are suppressed by this amount. The consequences are
analyzed in the Appendix. The net result is to shift all of
the & energies downwards by the amount u (recall
u <0), thus

Vi A
g

By continuity, we find the same result for k < k.

By direct substitution, using (25) and (26), one finds
that the resulting spectra have exactly the same form (3)
as in the elementary hybridization model, but with renor-
malized parameters,

&=

(38)

Ef——;fff:Ef-}—[l. , (39)

Vio Ve =Vi(1-£)1/2 . (40)
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The resulting “renormalized-band” or “renormalized-
hybridization” aspect is discussed further below and in
Sec. VL.

It follows that there is a spectral gap similar to that of
the U =0 case, Eq. (4), but reduced, now, by the factor
1—£. This reduction of gap width is most significant in
the Kondo regime. The location of the gap is shifted
downwards by u. In the Kondo regime, (32) shows that
this places the gap near €, a finite distance below &;.
The outer band limits (top of &% and bottom of &™)
remain, however, essentially unaffected by .

The Luttinger condition that the interaction U does not
alter the number of quasiparticle states inside the Fermi
surface is obviously satisfied by the present construction.
It follows that if the system would have exactly 2 elec-
trons per site (the “ionic” case), the Fermi level e would
fall precisely in this gap and produce an insulating (semi-
conducting) ground state. [It can be seen, from (27) and
(28), that the magnitude of the gap depends only weakly
on the number of electrons per site.] Turning now to a
quite different regime, D_ <O, the connection with the
U =0 case leads us to expect a gap somewhat larger than
| D_|. This is indeed found, as shown in Fig. 3. This
result is relevant for the insulating gap of the “black”
(low-pressure) phase of SmS.

The spectral gap was obtained under the condition that
Vi #0 for all k’s. It is now clear that this gap must van-
ish if Vj vanishes both for some €, > ey +u and for some
€k <€r+u. (In an actual band structure, there can be
more than one type of symmetry point at which ¥} van-
ishes.) It is also plausible (although not yet convincingly
demonstrated) that a finite dispersion for the f band
(e/x 7€) can contribute to gap closure.'**®

In the metallic case with more than 2 electrons per site,
the geometric construction in Fig. 1 still applies and
shows that e still falls just above the upper gap edge, in a
region of high state density. (The analog of Fig. 1 for the
present case is so similar that this is not shown separate-
ly.) The renormalization of ¥V, by (1—£)!/2 leads to a
more flat lower part of &, and thus to an increased ef-
fective mass at € (m* raised from 19.1 to 37.9, for the
parameters of Fig. 1). This mass enhancement effect is
obviously strongest in the Kondo regime, where extreme
enhancements ( > 10?) may be attained. This can be seen
in Fig. 3.

The “f weight” of each quasiparticle, as appropriate
for valence-photoemission spectroscopy and bremsstrah-
lung isochromat spectroscopy (BIS), is given by the square
of N }he appropriate f-transition amplitude,
<‘pk;+ ln}ka \ ‘I’:’> or (‘I’ﬁ'mlx | ko | Wg©) (N, denotes
electron number). Conduction-electron weights are de-
fined similarly. By diagrammatic analysis we find these
weights to be

g
W= =1 o (41)
*T D147 "k
_ A}
=" 2 ko>
ck g‘f"Alz k (42)

¥ =01k, (43)

where the superscripts ( +) refer to the quasiparticle states
&%. These weights can be combined with the energies
& i [as shown explicitly in Ref. 30(b)] to obtain the spec-
troscopic conduction-electron and f-electron state densi-
ties (per spin, per site),

1

pc(E)=—u7 , (44)
201 __£)2

p2E)= L U=E) (45)

4 W(E —p)

within the &* band limits, and zero elsewhere. The f
spectral density is therefore concentrated around E =g,
and consists of two sharp peaks separated by a gap. These
results are quite similar to those of the “Hubbard I”
Green’s-function approximation.®® The corresponding
Green’s-function expressions can be obtained from those
of Ref. 30(b) by making the replacements £,—%; and
njo=1—36—1-¢.

From (41)—(43) we see that ¥} + # 7. =1—§, so the
“total” f spectral intensity contributed by the quasiparti-
cles is strongly diminished in the Kondo regime.’® Also
in the Kondo regime the f peak is narrowed, by 1 —§&, and
it is centered near e rather than €. Apart from the gap
near its center, this peak therefore has all of the qualita-
tive features of the so-called Kondo peak (or Abrikosov-
Suhl resonance) found near the Fermi level in Green’s-
function treatments of single-impurity models*® and also
in experiments on Ce and its compounds.60 In addition,
however, and in agreement with the Ce data and these
single-impurity studies, there is also a nonquasiparticle
contribution to the f spectral intensity. This arises be-
cause the sudden addition or removal of an f electron can
break up the delicate correlations which produce the
quasiparticles. This ‘“continuum contribution” can be
treated by the resolvent technique of Gunnarsson and
Schonhammer,'® with some simple modifications indicat-
ed by diagrammatic analysis. Formal similarity to the
single-impurity case indicates that in the Kondo regime
this contribution should produce a broad peak centered
near the bare f level £,. This will require detailed numeri-
cal study, and will be reported elsewhere.

Although we have emphasized that dramatic changes
can occur when U =0 is replaced by U = «, particularly
in the Kondo regime, the opposite viewpoint should not
be overlooked. By substituting u=0, £ =1 (and thus
£=0) in all of the spectral formulas, (36)—(45), we obtain
the corresponding results for the simple U =0 case. In
this sense the effect of U on spectral properties is relative-
ly gentle. (This is another aspect of the analytic continui-
ty which underlies the Luttinger picture.) We consider
this to be the reason for the rather good agreement be-
tween most of the observed de Haas—van Alphen frequen-
cies of CeSnj and the results of a conventional band calcu-
lation. 5!

V. TWO-PARAMETER THEORY

Our “two-parameter” trial wave function is
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This form is motivated by the following line of reasoning:
Suppose for conceptual simplicity that €/ lies in the per-
turbative regime. Then ¥V will induce some weak virtual
transitions jo—ko with k >kgr. Due to the resulting
partial emptiness of jo, other transitions k'c—jo will
now be possible for k' <kp. These steps lead to an ny,
distribution with O < ng, <1 everywhere. At this stage it
becomes appropriate to drop the k >kfr, k' <kp restric-
tions for all subsequent transitions involving j's4j. For
each k there is now a new variational parameter By, in
addition to Ay, whereby the outcome of all the competing
“filling” and “emptying” processes can be optimized.

Formulas for all of the required expectation values are
determined by a straightforward extension of the previous
approximate diagrammatic analysis. For each k there are
now two coupled equations for the optimuum A; and By.
These equations involve four ‘“basic parameters” (analogs
of £ and u), which are themselves integrals over functions
of the other A’s and B’s. The formulas are rather compli-
cated, and numerical methods are required throughout.
The details will be presented elsewhere.

Ground-state properties of this version are compared
with the one-parameter version in Figs. 2 and 3. Barely
visible in Fig. 2 is a slight (1—2 %) emptying of the con-
duction states k <kp. The energy is everywhere lower, as
expected for a more flexible W. Also, the falloff rate in
the Kondo regime is noticeably slower for both {(H )i,
and 1—§. The latter features are consistent with exact
Beth-ansatz results for the single-impurity Anderson
model, as discussed further in Sec. VIF.

The quasiparticle spectrum for D_ =1.55 eV (in the
Kondo regime) is shown in Fig. 4. The effective mass is
now considerably larger than for the one-parameter case
(m*=79.5, as compared to the previous 37.9, for the
same parameters as Fig. 1). A prominent new feature is
the strong downward shift of the high-k part of &} .
This is understandable on physical grounds, since an ‘“‘ex-
tra” electron placed in a high-energy €, orbital now has
the opportunity to lower its energy by transfer into f orbi-
tals via B;. But since the resulting &’s are still far
above &f, there is probably very little effect on thermo-
dynamic properties. Another interesting result of this
new “B; channel” is that the f transition probability
» }'}c is strikingly enhanced for the upper part of the &}
spectrum. The function #~ ﬁ is plotted at the bottom of
Fig. 4; it is obviously quite different from the correspond-
ing one-parameter result (43). This enhancement is signi-
ficant only in the Kondo regime. This combination of
&1 flattening and # f; enhancement, in the Kondo re-
gime, now leads to a significant quasiparticle contribution
to the f spectral weight near €. The present quasiparticle
f spectral intensity is too singular to plot directly, so in-
stead we present in Fig. 4 the subband cummulative
weights

051

Eev) [ €, 005

0

FIG. 4. Quasiparticle spectrum for two-parameter model, in
Kondo regime (D_=1.55 eV). Left-hand scale is for g, and
the &’s; right-hand scale is for the #7s.
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There is also a “continuum contribution” to the f spectral
intensity, giving a broad £, peak (not shown), as in the
preceeding one-parameter case. This has not yet been ade-
quately studied.

This finding of two f-intensity regions, near e and &g,
raises the question of whether the “two-peak” valence x-
ray photoemission spectroscopy (XPS) structures of Ce
and its compounds® might be satisfactorily explained in
this manner. This is presently unclear. There is now a
strong indication that the finiteness of U (i.e,, U < wo)
will be significant here,®? and it is also possible that a
one-site 4f -5d Coulomb term Uy, may strongly affect the
spectrum.5

VI. DISCUSSION

A. Periodic-Fermi-liquid features

An explicit realization of the Luttinger picture of a
periodic Fermi liquid has been presented. There is a
sharp Fermi surface, characterized by a discontinuity in
the distribution of conduction-state occupation numbers
ni,. The condition of infinite quasiparticle lifetime at the
Fermi surface is satisfied trivially, because quasiparticle
lifetime effects have not been considered (see Sec. VIG).
The one-to-one correspondence between the interacting
(U = o0) and noninteracting (U =0) quasiparticle states
is enforced by construction. This automatically preserves
the Luttinger sum rule: The number of states inside the
Fermi surface is identical to the total number of electrons.
All of these features follow from the assumption of ana-
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lytic continuity when the interaction U is gradually (adla-
batically) “switched on,” as shown in detail by Luttinger.®
Moreover, in the ground states of both of our variational
models the true conduction-state occupation-number dis-
tribution ng, is built up out of separate contributions
from each of the occupied quasiparticle statés. Here, too,
there is an obvious correspondence with the elementary
U =0 case. A significant difference from the U =0 case,
however, is that the details of each quasiparticle now de-
pend on the quasiparticle occupation numbers of all of the
quasiparticle states. This dependence is carried by the
“basic parameters;” in the one-parameter version the
latter are £ and u. This aspect is discussed further in
several of the following subsections.

B. Band-theoretic aspects, hybridization gap

This “adiabatic correspondence” carries over into the
form of the quasiparticle excitation spectrum, which can
therefore be characterized as a renormalized band theory.
In the one-parameter version this renormalization aspect
is quite simple and straightforward; after the replace-
ments (39) and (40), one is left again with the elementary
band-theoretic result (3). [The quasiparticle contribution
to the f spectral density is, however, reduced by a 