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A variational study of ground states of the orbitally nondegenerate Anderson lattice model, using

a wave function with one variational parameter per Bloch state k, has been extended to deal with

essentially metallic systems having a nonintegral number of electrons per site. Quasiparticle excita-

tions are obtained by direct appeal to Landau's original definition for interacting Fermi liquids,

8'~{k,o) =5E„t@/5n~p{k,o). This approach provides a simple and explicit realization of the Lut-

tinger picture of a periodic Fermi liquid. A close correspondence is maintained between the "in-

teracting" ( U = 00) system and the corresponding "noninteracting" (U =0) case, i.e., ordinary band

theory; the result can be described as a renormalized band or renormalized hybridization theory.

The occupation-number distribution for the conduction orbitals displays a finite discontinuity at the

Fermi surface. If the d-f hybridization is nonzero throughout the Brillouin zone, the quasiparticle

spectrum will always exhibit a gap, although this gap becomes exponentially small (i.e., of order T~)

in the Kondo-lattice regime. In the "ionic" case with precisely two electrons per site, such a system

may therefore exhibit an insulating (semiconducting) gap. The quasiparticle state density exhibits a

prominent spike on each side of the spectral gap, just as in the elementary hybridization model (the

U =0 case). For the metallic case, with a nonintegral number of electrons per site, the Fermi level

falls within one of the two sharp density peaks. The effective mass at the Fermi surface tends to be

very large; enhancements by a factor & 102 are quite feasible. The foregoing variational theory has

a1so been refined by means of a tria1 wave function having tue variational parameters per Bloch

state k. The above qualitative features are all retained, with some quantitative differences, but there

are also some qualitatively new features. The most interesting of these is the appearance, within the

Kondo regime, of a significant quasiparticle contribution to the f spectral weight in the vicinity of
cy. The present "one-parameter" and "two-parameter" versions can be viewed as lattice generaliza-

tions of the first two approximations of the (1/Nf)-expansion school, although our treatment of lat-

tice aspects departs from strict 1/Nf methodology. The two versions have Wilson ratios =1 and

&1, respectively, consistent with {1/Nf)-expansion studies of the single-impurity model, and a num-

ber of other features likewise show good correspondence with (1/Nf)-expansion results. Implications

are presented for the finite-temperature behaviors of several properties, especia11y the specific heat

and electrical resistivity. Comparison with experiment then leads to some inferences about the band

structures of heavy-fermion materials. A new mechanism is presented for breakup of the coherent

Fermi-liquid behavior, as temperature is increased. There are two main approximations: (a) Neglect

of the "site exclusion" problem, i.e., within cluster-expansion terms we ignore the requirement that

interacting sites must all be distinct. (b) Assumption of a low density of excited quasiparticles {those

excited from the "far" side of the hybridization gap) limits the present treatment to very low tem-

peratures, T && Tf. Electron-number conservation is treated precisely throughout.

I. INTRODUCTION

Fermi-liquid aspects of valence-fluctuation (VF} sys-

tems have long been recognized. At first, this connection
was based on the Pauli susceptibility and the linear specif-
ic heat at low temperatures, and on the similarity of the
large effective state densities derivixl from these two
sources. Single-impurity models have generally been ezn-

ployed to describe this level of phenomenology. ' Later,
the observation of insulating gaps in Sm86 (Refs. 4 and 5)
and TmSe (Ref. 6), and of a sharp Fermi surface in CeSni
(Ref. 7), demonstrated that the coherence within a period-
ic array of "active" sites is very significant. The Lut-
tinger characterization of a periodic Fermi liquid is
therefore particularly relevant here, because this focuses

on features which are sensitive to periodicity and to the
number of electrons per site. All Fermi liquids are
characterized by a one-to-one correspondence between
their quasiparticle excitation modes and the one-electron
excitations of a suitable independent-particle model. The
Luttinger picture also includes' (1} a Fermi surface de-
fined by a discontinuity in the distribution of conduction-
state occupation numbers nk, (2) infinite lifetimes (at
T =0) for quasiparticles just on this Fermi surface, and
(3) identity between the total number of electrons and the
number of quasiparticle states enclosed by the Fermi sur-
face (the Luttinger sum rule). The latter feature strongly
suggests an insulating (or semiconducting) gap for those
materials where the corresponding independent-particle
model (ordinary band theory) has such a gap. The impor-
tant conclusion that the Luttinger picture applies to VF
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materials is due to Martin and Allen. "
In recent years, remarkable progress has been achieved

on single-impurity models, both via exact "benchmark"
results from the renormalization group' and Bethe an-
satz' ' methods, and via reasonably simple yet accurate
approximations based on the "(1/Nf )-expansion"
idea. ' (Nf ——2J+1 is the effective ionic-ground-state
degeneracy. ) The latter approach offers the prospect of
extending the single-impurity results to more realistic sys-
tems for which the exact results do not apply. Unfor-
tunately, however, it has appeared that a strict 1/Nf ex-
pansion would describe a lattice as built up from a single-
impurity term (-Nf), followed by a two-impurity term
( Nf

' }, a three-impurity term ( —Nf ), etc. It
seems very unlikely that such an approach can ever ade-
quately explain the specifically periodic features (Fermi
surface and insulating gap}, since these features are prob-
ably associated with asymptotically high orders of the
multisite expansion. To be practical, a treatment of the
periodic features must therefore sum the entire multisite
expansion and deal with this in a closed form. Thus, a
different approach to the lattice problem should be
sought.

Previous work on the lattice problem has included a
variety of Green's-function treatments, functional in-
tegration, 'i real-space renormalization group,
perturbation ex ansion in U, and the variational
method. ' However„none of these efforts have
provided an adequate treatment of hotIi the insulating gap
and Fermi-surface aspects. s

We have now found a viable treatment of the periodic
aspects, by elaborating a previous variational ap-
proach + ' s for ground states of Anderson lattice sys-
tems. Actually, two different levels of approximation
have been developed. The first, the "one-parameter" ver-
sion, has one variational parameter per Bloch state k. Its
algebra is so simple and transparent that a number of use-
ful results can be obtained analytically. The second ap-
proximation, the "two-parameter" version, has two varia-
tional parameters per Bloch k. This should be more accu-
rate, and it introduces some qualitatively new features, but
the algebra is now tedious and numerical methods are re-
quired throughout. Nevertheless, even for the latter ver-
sion the mathematical apparatus is simple enough that in-
clusion of a number of the complex details of real systems
(orbital degeneracy, spin-orbit coupling, crystal-field split-
ting, band structure, etc., as well as finite temperature)
should be feasible.

A close correspondence between these two versions and
the first two stages of the 1/Nf expansion is immediately
evident, although our treatment of the lattice aspect does
not follow 1/Nf methodology. The lattice features and
the Fermi-liquid features are incorporated in a transparent
manner from the outset. The result (in either version) is
an explicit realization of the Luttinger picture of a period-
ic Fermi liquid. A one-to-one connection between the
strong-interaction ( U= oo ) results and the simple U=0
case (ordinary band theory) is clearly displayed. The
overall result can, therefore, also be characterized as a "re-
normalized band" or "renormalized hybridization"
theory.

%e do not claim to have proven that the Luttinger
(periodic Fermi liquid) description is correct for these sys-
tems. Indeed, Luttinger has commented that the only
unassailable proof would be an exact solution. In com-
mon with most of the other theoretical literature on
Fermi-liquid systems, we merely assume that this descrip-
tion is correct, and then proceed to work out the conse-
quences. In practical terms, the important question is
whether some other type of phase could have a lower free
energy; the main competitors here are an ordinary mag-
netic phase [with moments at least partially unquenched,
and Ruderman-Kittel-Kasuya- Yosida (RKKY) cou-

pling], ' ' ' and a superconducting phase. We have
not pursued this issue. The justification for the present
work must rest on the results obtained, namely, the
overall consistency with (exact) single-impurity results,
and also the similarity to known experimental behaviors.

The purpose of this paper is to provide an introduction
and overview, i.e., to present the basic concepts and some
illustrative results, without getting into much technical
detail. A key feature of the method is diagrammatic
analysis. This is based on a many-body (linked cluster)
perturbative formalism developed originally for problems
in nuclearsi and atomic and molecular physics 52 and still
generally unfamiliar to the solid-state physics communi-
ty. Also, our more refined variational approximation in-

volves considerable algebra. We therefore begin by em-

phasizing the simple features and main results, postpon-

ing these details for later publications.
We use the following form of Anderson lattice Hamil-

tonian,

H =g el, nl, ~+sf g n + Ug(1 n, )(1—n, )—

+ g (vs /go f&a+H. c. ) ~

k,J,O

where j is a site index. U is taken to be infinite. Orbital
degeneracy is ignored, as well as any intrinsic f-electron
bandwidth. The use of (1—n~, )(1 n~, ) rathe—r than
n~, nz„ in the Hubbard term, means that fluctuation takes
place between f ' and f configurations, instead of f,f '.
This form is more appropriate for Sm and Yb materials,
and, more importantly, it makes the diagrammatic
analysis more transparent. Results for the more familiar
form of H (with nj, n~, ) can easily be deduced, since these
two forms are simply related by particle-hole transforma-
tion.

In all of the numerical results presented we use the fol-
lowing Hamiltonian parameters: 8'=2 eV, the band-
width of the bare (s& ) conduction states, with a constant
(rectangular) density of states, and V = —(0.05)'~ eV, the
(k-independent) strength of the df hybridization in Bloch
representation,

Vi, N'~ ge 'Uq&—~—V, (2)
J

where N is the number of sites. The origin of the energy
scale is at cf, i.e., cf =—0, and the conduction-band limits
are D+ and —D for the top and bottom, respectively
(D++D = W; D &0 means ef above bottom of band).
Also, all cases shown have 2.4 electrons per site, making
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them intrinsically metallic as appropriate for intermetallic
compounds. Extension to the ionic (and possibly insulat-

ing) case, with just 2 electrons per site, will be obvious.
The use of a nonintegral electron number per site, 2.4,
may be viewed as a proxy for a somewhat more realistic
model with a five-fold degenerate "Sd" conduction band,
and 4 electrons per site.

To emphasize the connections with the noninteracting
( U =0) case, i.e., the Luttinger aspects, we shall discuss
three cases: The U=O case (in Sec. II), the interacting
( U= ac ) case with one variational parameter per Bloch
state k (Secs. III and IV), and the U = eo case with two
variational parameters per k state (Sec. V). Extensive dis-
cussion is presented in Sec. VI, followed by concluding re-
marks in Sec. VII. The discussion includes (a) implica-
tions for low-temperature phenomenology (specifi heat,
magnetic susceptibility, and electrical transport proper-
ties), (b) comparisons with previous single-impurity re-
sults, and (c) present simplifications and approximations
that deserve further effort. A brief report of this work
has been presented previously.

II. THE U=OCASE

The noninteracting ( U =0) case is just the elementary
problem of hybridization between two bands, one of
which has zero width. The result is shown in Fig. 1, for
D =1.3 eV. For each k there are two hybridized or
"quasiparticle" states, with energies

@k = i Iek+ef—+ [(ek ef) +4~kl (3)

If there were just 2 electrons per site, the Fermi level

0.5

There is a small gap, whose width 6 is, by second-order
perturbation theory,

V V

would obviously fall in this gap and produce an insulating
(semiconducting) state. With 2.4 electrons, however, the
Fermi level eF falls in the upper ( g'+) quasiparticle band.
[Note the distinction between e~ and ekF in Fig. 1, where

ekp—=ek(k =kz).] The band is quite flat near this EF, cor-
responding to a large effective mass (in this case, enhance-
ment by factor of 19.1=m', as compared to the "bare"

spectrum). As is intuitively obvious, the f-electron
content of a quasiparticle is largest where the band is
most flat. This will be shown in more detail in Sec. IV.

We note, for comparison below, that this case can be
vie~ed as a variational problem based on the trial wave
function

'P= g I+gukjnk. n,.
j,a k

~a,ef),

where

@f= 1I rlfkigfki ~

vacuum)
k

(8)

(9)

(Throughout this paper we use k&, k& to denote the

states k&kF, or more correctly, ek & ek~. )
0

This variational problem decomposes into a "direct
product" of elementary problems, one for each state ko.
The energy expectation value is easily seen to be

2
ek 3k+ 2 Vk Ak

k, cr k, cr l+~k

~

vacuum)
j

shows all 2N localized "j"orbitals initially occupied, and
4, is a simple Fermi sea containing 0.4N conduction
electrons. In 81och representation this becomes

g (1+~k9k 9fko) (7)
k, o

E(ev)

2 2(ek~k+Ik Ik~k)2 =
(1+2k)

thus the optimization condition is

s(a)
53k

I.O

O

—I,O

FIG. 1. Quasiparticle spectrum for U =0 case. Input pa-
rameters are 8'=2.0 eV, V= —(0.5)' ~ eV, D =1.3 eV,
ckF ———0.9 eV.0

p t r I

-0 -I.O ekF 05 D~

FIG. 2. Conduction-state occupation-number distributions.
Same input as Fig. 1.
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2 1/2
nJ =P(f )+ , P—(f')=(1—g)+ —,'g

1 ~k
Ak= — +

2 Vk
(12)

The occupation numbers for the conduction states are

nk A——k /(1+ Ak )

for k & kF, and unity for k & kF, as shown in Fig. 2.

(13)

III. ONE-PARAMETER THEORY

For the interacting ( U = 00 ) case, our "one-parameter"
trial wave function is

(19)

The results (16)—(IS) are so simple that the diagrain-
matic analysis is not really essential here; they can also be
obtained directly by a simple intuitive argument. + ' In
this approximation, the various sites j interact only via the
exclusion principle, namely, the fact that two sites cannot
simultaneously make use of the same Bloch orbital ko.
Thus, if site j has made the (virtual) transition jt~kt,
then the corresponding transition j'f~k) is blocked
(momentarily forbidden) for all of the other sites j'&j. It
follows that the kcr orbital occupation number can be
evaluated as a sum of quasi-independent one-site contribu-
tions

1+g ukj gko ljo
j kcr

(14)
N —1

1 — 71k~ (20)
I

Note that this form of %' prohibits any f configurations,
and it also conserves electron number. After transform-
ing to Bloch representation, there is seen to be just one
free parameter, Ak, for each Bloch state k. This state-
ment involves the assumption of complete site
equivalence, whereby

—ik R)
akj ——N ' Ake

Some prominent features of valence-fluctuation materi-
als follow almost immediately from this form of %. +b'

For exainple, the only way to admix magnetic configura-
tions (rjj ) with the nonmagnetic initial configura-
tion (

~
4,4f ) ), and gain ground-state binding energy by

doing so, is to have the magnetic configurations coupled
with conduction electrons (rjk ) so as to form a singlet.
This explains why the magnetic moments of most VF ma-
terials are quenched at low temperatures. Another impor-
tant qualitative feature is discussed below, following Eq.
(23).

By an approximate diagrammatic analysis (see discus-
sion in Sec. VI 6) we obtain the conduction-state occupa-
tion numbers

1, k &k~

Ak/(M~+Ak), k )kF
(16)

[compare with (13)], and the total-energy expectation
value,

k k+ k k
(17)

[compare with (10)], where & plays the role of a one-site
normalization factor. Actually,

Ak=1——g 2
——(nJ, nj, ) =1—g (18)

N k S'+Ak

is the true probability of f configurations. The parame-
ter g, the probability of f ' configurations, is our measure
of the average valence. It follows, then, from these con-
figuration probabilities, that

where 1 (N —l—)nk /N represents the probability that
ktr is not already occupied by an electron from some oth-
er site j'&j. Thus, nk is the product of an "attempt
probability, " & 'g.

~
at j ~, and a "success probability"

or blocking factor, [1—(N —1)nk /N] For la. rge N this
simplifies to

nk (Ak/——&)(1—nk )=Ak/(&+Ak), (21)

(22)

Note that the states k ~ kz do not contribute here. They
are effectively inert because they are already fully occu-
pied, from 4, . When (22) is reexpressed in the form (18),
the last equality (which gives g as a function of the Ak's)
follows as a direct consequence of electron-number con-
servation. The derivation of the (H) expression (17) is
completed by associating a blocking factor (1—nk ) with
each of the hybridization terms, thus

( v) = g (vjt, ttkj+H. c.)(1—nko) .
k,j,cr

(23)

It will be shown in a future paper that the diagrams we
retain and sum have precisely the physical interpretation
just given.

This elementary argument has the virtue of demonstrat-
ing that the dominant interaction between the active sites
(the exclusion-principle blocking effect) is effectively a
destructive interference. The destructive or repulsive char-
acter of this interaction serves to explain why there is no
collective phase transition in most VF materials, as they
are cooled to low temperatures. We consider this result to
be an essential ingredient (together with the arguments for
Fermi-liquid behavior of a single impurity ) for under-
standing why the paramagnetic Fermi-liquid picture ap-
plies to most VF materials, or in other words, why there is
generally no order parameter.

in view of (15). Similarly, the normalization denominator
1s

Ak&&= 1+ g ~ akj ~
( 1 nko) = 1—+—g
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The optimization condition is now a bit more compli-
cated than in Sec. II,

S(H& a(H) a(H) Su
5~,

=
a~„ + a~ S~,

4~k
Ak(&+22)'

Fk —p +1 —Ap ——0,
~k

Ak =&' [yk+(y +1)' ]=—&' A

where

yk =~'"(Ek I )/2V—k

(25)

(26)

Using &=(1—g), we see that the "basic parame-
ters, " which characterize the Ak and nk distributions,
can be chosen as g and p, . Both of these involve integra-
tions over k (subject to k &k~) of functions of Ak, and
are therefore themselves functions of g and p. With con-
stant density of states (po —W ') and constant V
( Vk~ V) the integrals are elementary, and we then have
two equations to solve numerically. These equations are

1 ~k 2[V[
2

(A —A+ ), (27)wN'"

p= g 2
= — [1n(A /A+ )] . (28)

k, cr ~+~k

The subscript + ( —) represents the value of A at the top
(bottom) of the initially empty part of the conduction
band, corresponding to Ek D+(Ek ——Ekz——). [Observe that

y &y+ and A &A+ &0, because we are assuming
V &0. The latter is convenient because, in order that the
hybridization energy (23) be attractive, Ak must then be
positive. ] The resulting g and p are shown in Fig. 3, as
functions of D . From comparison of (28} with (23) and
(21), we note that

p=(U)/2N .

This result facilitates comparison with other formal-
isms. For completeness, we also note (see Appendix)
that

(H& 2V
X

= g Ek+p — (1—g)(y A —y+A+) . (29)

Before discussing ground-state properties, we note that
there are three different regimes to consider. %%en cf
lies below the bottom of the initially empty part of the
conduction baIld ( Ef & Ekp, or D & 0.4 eV here), only
"virtual" transitions jo~k &

o. are possible. These transi-
tions are well described by perturbation to second order in
V (provided Ekz —Ef &

~
V

~
), hence we call this the per-

turbative regime. The probability of simultaneous

jt~k& t and j&~k'& l transitions is inherently so small

(24)

where p, a "pseudo chemical potential, " arises from the
dependence of & upon Ak. (Details concerning the p pa-
rameter are presented in the Appendix. } It is convenient
to express the solution as

here that U should have little effect. When Ef lies above

EkF there is an obvious tendency for electrons to vacate
some of the f orbitals and fall into conduction orbitals
WIfh EkF & Ek & Ef. If V were absent, such f~d transfers
would continue until either the conduction-state Fermi
level rises to meet cf or until one electron has been
removed from each of the f sites and U will then not per-
mit any further transfers. The former case
(Ekz&Ef &ekF+ —,

'
W, or 0.4&D &1.4 eV) defines the

valence-fluctuation or mixed-valent regime, and the latter
case (Ef & EkF+ —,

'
W, or D & 1.4 eV) defines the Kondo-

lattice regime. These regimes are indicated at the bottom
of Fig. 3.

The V-interaction energy ((H)/N minus correspond-
ing energy for V=O) is shown as a function of D in
Fig. 3. Note the strongly contrasting behaviors in the
three regimes, and the smooth crossovers between these
regimes. In the perturbative regime (H );„,/N agrees with
second-order perturbation in V, falling asymptotically as

~

D —0.4 eV
~

'. g and )LI are both small, as expected.
In the VF regime (H );„/N reaches its maximum but still
varies rather slowly with D, while g varies linearly with
D . (Compare with go in Fig. 3, which shows the
behavior of g for the case V =0, U = eo.) In the Kondo-
lattice regime, however, (H );„,/N shows a rapid exponen-
tial falloff with increasing D

N '(H );„,= —DKexp[ —(Ef —EF)8'/2V ], (30)

where EF=Ekz+ —,
'

W is the Fermi level for the corre-

sponding V=O, U=(x system, and Dz ——D+ —cF is the

energy difference between the top of the band and EF.
(The inclusion of Ef in the exponent is only for the sake of
clarity, since we are using cf —=O. Note also that Dz de-

pends on electron number, i.e., on ckF, but not on the posi-
tion of E/. ) Also 1 —g varies with the same rapid exponen-
tial factor,

i.Q

-0,2
E(eV)

-0.5

-0.4

FICx. 3. Results of one-parameter and t~o-parameter models:
solid and dashed lines, respectively. (0 is valence parameter for
V=0, U = 00. Same input as Fig. 1. Note the three different
regimes, shown at bottom.
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, —(H),„, ,2V' &

whereas

p- —(ey —sF) ——,
' W(l —g) .

(31)
moved from their k &,cr sums. Fortunately, however, it is
not necessary to resolve the equations for g and p, because
(H) is stationary with respect to small [here W(X ')]
changes in the Ak's. The net change in total energy is
therefore

Note from Fig. 3 that 0&)& 1 and p &0 hold every-
where. In general, p is small (of order V2/W) until reach-
ing the Kondo regime, where it quickly approaches

(Ef sp). A moment's refiection shows that this p
behavior is necessary for electron-number conservation,
since ek =p defines the point at which nk —,'.——We see
from (18) and (26) that Vk is effectively renormalized
down to Vk(1 —g)'~, thus the nk distribution is both
sharpened (by 1 —g) and shifted downwards in energy (by
p, ), as shown in Fig. 2. These effects are most dramatic in
the Kondo regime, where the nk distribution rapidly ap-
proaches the form of a step function, with the jump
pinned at eF. In this case the system appears to have two
Fermi levels: the true one at ek ekF, wi——th a very small
but finite jump in nk~, and a "pseudo Fermi level" at
ek ——p=s~, where naive ( V=O) arguments would place
e~, with nk actually continuous here but falling very rap-
idly.

For all three regimes, the above qualitative features can
all be obtained analytically, from (27)—(29), by exploiting
the asymptotic approximations

2y+(2y) ', y»i3 =y+(y + I)'~~~', (33)
(2 ly I

} '
y « —1 .

'rhese approximations have a wide range of validity, be-
cause

~

V
~

/W is generally quite small. They fail to ap-
ply only in the crossover regimes, where either

~ y ~

&1
or

~ y+ ~

& 1. This is the motivation for expressions (25)
and (26). The analytical behaviors in the various regimes
will be discussed more fully in a future paper.

IV. QUASIPARTICLE SPECTRA
AND STATE DENSITIES

To obtain the quasiparticle or elementary-excitation en-
ergies, we appeal directly to the original Fermi-liquid con-
cept, namely, the idea of a one-to-one correspondence be-
tween the interacting ( U = ao ) and noninteracting ( U =0)
systems. For the ground state we obviously have

(34)

where %s represents the "true" (actually variational)
ground state, 40——

~
4,4/) is the noninteracting reference

state, and the "wave operator" 0 is just a shorthand nota-
tion for the correlations and all of the details of our calcu-
lational procedure. We simply assume, now, that this re-
lation continues to hold for the elementary excited states.
Suppose we add one kf quasiparticle to the system, with
k &k~. We add the bare conduction electron kt to 4„
and use the same recipe for 0 as before. Examining the
equations for (H), &, g, and p, namely (17), (18), (27),
and (28), we see that this k 1 state is now to be treated "as
if" it were below kF. In other words, this k g is now to be
added to the k&,o sums in these expressions, and re-

gk Ak+2VgAk pAk+ 2.&+2k &+2k
(35)

Details are given in the Appendix. Now consider remov-

ing one of the k &kF states from 4, (with a= 1, say),
thereby changing its status from "k& t" to "k& t." We
find the same expression for the quasiparticle energy. We
now have the full spectrum for the upper (8'+) quasiparti-
cle band.

In effect, we are employing the original Landau defini-
tion of the quasiparticle energies,

8'qp(k, o}= (37}

where nqz(k, cr) is the "quasiparticle occupation number"
for state ko. We implement this formal defmition by
identifying the nq~ s with the orbital occupation numbers
for the 40 of (34). It is obvious, from the present con-
struction, that each quasiparticle contains exactly one
electron, i.e., addition (removal) of a quasiparticle must
raise (lower) the total electron number by unity.

The energies of the lower (8' ) subband require a more
subtle analysis. We consider the Bloch representation for
4/, Eq. (8), and remove an fk t state, assuming for now
that k & kF. By momentum conservation, this operation
is seen to delete k t from the k&,o sums in (,H ) and &,
thereby giving the second and third terms of Eq. (35).
But there is now a further effect to consider. Within both
& and (H), the virtual transitions jo'-+k'o are allowed
only when jt and jl are both initially occupied. Removal
of fk t has left the j t of 4/ unoccupied by the fractional
amount E ', and therefore all virtual jock'o processes
are suppressed by this amount. The consequences are
analyzed in the Appendix. The net result is to shift all of
the 8'k energies downwards by the amount p, (recall
p &0), thus

VkAk
gk = +P. (38)

By continuity, we find the same result for k & kF.
By direct substitution, using (25) and (26), one finds

that the resulting spectra have exactly the same form (3)
as in the elementary hybridization model, but with renor-
rnalized parameters,

Ef~Ef—Cf +P (39)

Vk~Vk = Vk(1 —4)'" . (40)

The first two terms come from the obvious changes in
(H ) [see (17)], while the last term comes from the corre-
sponding change in N, (8 (H ) /8& )5&. Using (24), the
stationary condition for Ak, this simplifies to

VkAk
+k ek
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+~.k = = 1 —nk~,&+2k
(41)

The resulting "renormalized-band" or "renormalized-
hybridization" aspect is discussed further below and in

Sec. VI.
It follows that there is a spectral gap similar to that of

the U =0 case, Eq. (4), but reduced, now, by the factor
1 —g. This reduction of gap width is most significant in

the Kondo regime. The location of the gap is shifted
downwards by p. In the Kondo regime, (32) shows that
this places the gap near eF, a finite distance below sf.
The outer band limits (top of 8'+ and bottom of 8' )

remain, however, essentially unaffected by p, .
The Luttinger condition that the interaction U does not

alter the number of quasiparticle states inside the Fermi
surface is obviously satisfied by the present construction.
It follows that if the system would have exactly 2 elec-
trons per site (the "ionic" case), the Fermi level eF would
fall precisely in this gap and produce an insulating (semi-
conducting) ground state. [It can be seen, from (27) and
(28), that the magnitude of the gap depends only weakly
on the number of electrons per site.] Turning now to a
quite different regime, D &0, the connection with the
U =0 case leads us to expect a gap somewhat larger than

~

D ~. This is indeed found, as shown in Fig. 3. This
result is relevant for the insulating gap of the "black"
(low-pressure) phase of SmS.

The spectral gap was obtained under the condition that
Vk&0 for all k's. It is now clear that this gap must van-
ish if Vk vanishes both for some sk ~ sf +p, and for some

ek & ef +p. (In an actual band structure, there can be
more than one type of symmetry point at which Vk van-

ishes. ) It is also plausible (although not yet convincingly
demonstrated) that a finite dispersion for the f band

(efk&ef ) can contribute to gap closure. " ~"

In the metallic case with more than 2 electrons per site,
the geometric construction in Fig. 1 still applies and
shows that eF still falls just above the upper gap edge, in a
region of high state density. (The analog of Fig. 1 for the
present case is so similar that this is not shown separate-
ly. ) The renormalization of Vk by (1—g)'~ leads to a
more flat lower part of 8'+, and thus to an increased ef-
fective mass at eF (m' raised from 19.1 to 37.9, for the

parameters of Fig. 1). This mass enhancement effect is
obviously strongest in the Kondo regime, where extreme
enhancements ( & 10 } may be attained. This can be seen

in Fig. 3.
The "f weight" of each quasiparticle, as appropriate

for valence-photoemission spectroscopy and bremsstrah-
lung isochromat spectroscopy (BIS), is given by the square
of the appropriate f-transition amplitude,

%+1 y g(qik'
I nfk I

+g') or &'p, k', -~ I i}fk I
'I'g ) (&, denotes

electron number). Conduction-electron weights are de-
fined similarly. By diagrammatic analysis we find these
weights to be

Mfk ——(1 f—)P,+k, (43)

where the superscripts (+ ) refer to the quasiparticle states
8'i-. These weights can be combined with the energies
8'k [as shown explicitly in Ref. 30(b)] to obtain the spec-
troscopic conduction-electron and f-electron state densi-
ties (per spin, per site),

p, (&)=

p (E)= (45)

within the 8'+-band limits, and zero elsewhere. The f
spectral density is therefore concentrated around E=p, ,
and consists of two sharp peaks separated by a gap. These
results are quite similar to those of the "Hubbard I"
Green's-function approximation. The corresponding
Green's-function expressions can be obtained from those
of Ref. 30(b) by making the replacements sf~sf and

nj =1——,g~l —g.
1

From (41)—(43) we see that Mfk+ Mfk ——1 —g, so the
"total" f spectral intensity contributed by the quasiparti-
cles is strongly diminished in the Kondo regime. Also
in the Kondo regime the f peak is narrowed, by 1 —g, and
it is centered near eF rather than ef. Apart from the gap
near its center, this peak therefore has all of the qualita-
tive features of the so-called Kondo peak (or Abrikosov-
Suhl resonance) found near the Fermi level in Green's-
function treatments of single-impurity models and also
in experiments on Ce and its compounds. In addition,
however, and in agreement with the Ce data and these
single-impurity studies, there is also a nonquasiparticle
contribution to the f spectral intensity. This arises be-
cause the sudden addition or removal of an f electron can
break up the delicate correlations which produce the
quasiparticles. This "continuum contribution" can be
treated by the resolvent technique of Gunnarsson and
Schonhammer, ' with some simple modifications indicat-
ed by diagrammatic analysis. Formal similarity to the
single-impurity case indicates that in the Kondo regime
this contribution should produce a broad peak centered
near the bare f level sf. This will require detailed numeri-
cal study, and will be reported elsewhere.

Although we have emphasized that dramatic changes
can occur when U =0 is replaced by U = oo, particularly
in the Kondo regime, the opposite viewpoint should not
be overlooked. By substituting p=O, &=1 (and thus
/=0} in all of the spectral formulas, (36)—(45), we obtain
the corresponding results for the simple U=0 case. In
this sense the effect of U on spectral properties is relative-
ly gentle. (This is another aspect of the analytic continui-
ty which underlies the Luttinger picture. ) We consider
this to be the reason for the rather good agreement be-
tween most of the observed de Haas —van Alphen frequen-
cies of CeSn3 and the results of a conventional band calcu-
lation.

&+3k
V. T%'0-PARAMETER THEORY

Our "two-parameter" trial wave function is
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1 +g bjk' Qj cr )k'o
k'

0.5)—

0.05
I i i f

+g~kj Ik I,.
k

This form is motivated by the following line of reasoning:
Suppose for conceptual simplicity that eI lies in the per-
turbative regime. Then Vk will induce some weak virtual
transitions jcr~ko with k &kF. Due to the resulting
partial emptiness of jar, other transitions k o~jo will

now be possible for k'&kF. These steps lead to an nk

distribution with 0& nk & 1 everywhere. At this stage it
becomes appropriate to drop the k & k~, k' & kz restric-
tions for all subsequent transitions involving j'&j. For
each k there is now a new variational parameter 8k, in

addition to Ak, whereby the outcome of all the competing
"filling" and "emptying" processes can be optimized.

Formulas for all of the required expectation values are
determined by a straightforward extension of the previous
approximate diagrammatic analysis. For each k there are
now two coupled equations for the optimuum Ak and 8k.
These equations involve four "basic parameters" (analogs
of g and p, ), which are themselves integrals over functions
of the other A's and 8's. The formulas are rather compli-
cated, and numerical methods are required throughout.
The details will be presented elsewhere.

Ground-state properties of this version are compared
with the one-parameter version in Figs. 2 and 3. Barely
visible in Fig. 2 is a slight (1—2%) emptying of the con-
duction states k & kF. The energy is everywhere lower, as
expected for a more flexible %. Also, the falloff rate in
the Kondo regime is noticeably slower for both (H);„,
and 1 —g. The latter features are consistent with exact
Beth-ansatz results for the single-impurity Anderson
model, as discussed further in Sec. VI F.

The quasiparticle spectrum for D =1.SS eV (in the
Kondo regime) is shown in Fig. 4. The effective mass is
now considerably larger than for the one-parameter case
(m'=79. S, as compared to the previous 37.9, for the
same parameters as Fig. 1). A prominent new feature is
the strong downward shift of the high-k part of 8'q+.

This is understandable on physical grounds, since an "ex-
tra" electron placed in a high-energy e~ orbital now has
the opportunity to lower its energy by transfer into f orbi-
tals via 8k. But since the resulting 8'k 's are still far
above eF, there is probably very little effect on thermo-
dynamic properties. Another interesting result of this
new "8k channel" is that the f transition probability
X I+k is strikingly enhanced for the upper part of the g'i+,

spectrum. The function P"j++, is plotted at the bottom of
Fig. 4; it is obviously quite different from the correspond-
ing one-parameter result (43). This enhancement is signi-
ficant only in the Kondo regime. This combination of
8'k flattening and X P» enhancement, in the Kondo re-
gime, now leads to a significant quasiparticle contribution
to the f spectral weight near e~. The present quasiparticle
f spectral intensity is too singular to plot directly, so in-
stead we present in Fig. 4 the subband cummulative
weights

Ec

-0.5

O. l

&tF

005

= k

FIG. 4. Quasiparticle spectrum for two-parameter model, in
Kondo regime ( D = 1.55 eV). Left-hand scale is for ck and
the 8"s; right-hand scale is for the P s.

E
My (E)=J py (E')dE'. (47)

There is also a "continuum contribution" to the f spectral
intensity, giving a broad s~ peak (not shown), as in the
preceeding one-parameter case. This has not yet been ade-
quately studied.

This finding of two f-intensity regions, near e~ and e&,
raises the question of whether the "two-peak" valence x-

ray photoemission spectroscopy (XPS) structures of Ce
and its compounds might be satisfactorily explained in
this manner. This is presently unclear. There is now a
strong indication that the finiteness of U (i.e., U& oo)
will be significant here, and it is also possible that a
one-site 4f -Sd Coulomb term UIq may strongly affect the
spectrum.

VI. DISCUSSION

A. Periodic-Fermi-liquid features

An explicit realization of the I.uttinger picture of a
periodic Fermi liquid has been presented. There is a
sharp Fermi surface, characterized by a discontinuity in
the distribution of conduction-state occupation numbers
nk . The condition of infinite quasiparticle lifetime at the
Fermi surface is satisfied trivially, because quasiparticle
lifetime effects have not been considered (see Sec. VIG).
The one-to-one correspondence between the interacting
( U = oo ) and noninteracting ( U =0) quasiparticle states
is enforced by construction. This automatically preserves
the Luttinger sum rule: The number of states inside the
Fermi surface is identical to the total number of electrons.
All of these features follow from the assumption of ana-
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lytic continuity when the interaction U is gradually (adia-

batically} "switched on, " as shown in detail by Luttinger.
Moreover, in the ground states of both of our variational
models the true conduction-state occupation-number dis-

tribution n» is built up out of separate contributions
from each of the occupied quasiparticle states. Here, too,
there is an obvious correspondence with the elementary
U =0 case. A significant difference from the U =0 case,
however, is that the details of each quasiparticle now de-

pend on the quasiparticle occupation numbers of all of the
quasiparticle states. This dependence is carried by the
"basic parameters;" in the one-parameter version the
latter are g and p. This aspect is discussed further in
several of the following subsections.

B. Sand-theoretic aspects, hybridization gap

This "adiabatic correspondence" carries over into the
form of the quasiparticle excitation spectrum, which can
therefore be characterized as a renormalized band theory.
In the one-parameter version this renormalization aspect
is quite simple and straightforward; after the replace-
ments (39) and (40), one is left again with the elementary
band-theoretic result (3). [The quasiparticle contribution
to the f spectral density is, however, reduced by a factor
of 1 —g, as compared to ordinary band theory. The renor-
malization (40) and a shift similar to (39) have also been

obtained by the functional-integral method. ] This is ap-
parently the reason for the considerable success of band
theory in accounting for the de Hass —van Alphen fre-
quencies seen in CeSn3. ' In the two-parameter version
the band renormalization cannot be characterized as sim-

ply as in (39) and (40}; note the prominent distortion of
the upper part of the I'+ band in Fig. 4.

The spectrum typically contains a hybridization gap,
just as in the U=0 case. In the ionic case, with just 2
electrons per site (as appropriate for Sm86, SmS, and

YbBiz), the above sum-rule feature forces the Fermi level

to fall precisely in this gap. In real materials, however,
there may not always be a true gap. (This appears to be
the case for "gold" SmS.) The gap will close if V» ——0 at
suitable points within the Brillouin zone, and it is often
speculated that a finite dispersion within the f-band mani-

fold can also contribute to gap closure. Orbital degenera-
cies (both d and fl also complicate the situation, and can
eliminate the gap, but crystal-field splitting and band
structure can sometimes have the effect of removing these
degeneracies, and thus restore the simplicity of the present
orbitally nondegenerate model. " The "renormalized
band" or "renormalized hybridization" interpretation also
becomes more subtle when Hund's-rule coupling and
crystal-field splittings are taken into account. This is
because these ionic features eliminate or strongly modify
many of the band-theoretic channels for f-conduction hy-
bridization. For the present purposes, therefore, it is con-
venient to think of these ionic features as already incor-
porated within the "U =0" reference Hamiltonian.

C. Lowest-temperature properties: y and +0

Up to this point, only zero-temperature properties have
been considered. However, the procedure for deriving the

n'kt'i
y= p(sF),

3
(48)

where p(sF) is now the total (spin-summed) quasiparticle
density of states at sF.

The logic for the zero-temperature magnetic suscepti-
bility is very similar, except that k&T is replaced by the
magnetic energy piiA . Assuming g =2 for both the con-
duction and localized orbitals, there is no change in

e» —ef . The changes 5A» are therefore due only to the
changes 5( and 5p, , which are driven by the altered in-
tegration limits arising from g» 6($'» —g), the ener-

gies 8'» being shifted by —(+ )peA for o = t(t). (8 is
the step function, and g is the chemical potential. ) It fol-
lows that 5(, 5p, and therefore the 5A»'s, are all of order
(piiA ) . These 5A»'s alter (H) only in order (pic% ),
and can thus be neglected. We therefore again obtain the
standard band-theoretic result,

XO=PsP(EF) .2

It follows that the Wilson ratio,

m kg 70
Rg ——

3pg

is just unity.

(49)

quasiparticle spectrum amounts to altering the quasiparti-
cle occupation number, nq~&(k, o'), of one state at a time
[see Eq. (37)]. In the ground state these n q~(k, o )'s are all

either zero or unity. (This contrasts with the true
conduction-state occupation numbers, where in general
0& n»~&1, as is fully manifested in the two-parameter
theory. ) The path to nonzero temperature for this theory
(either version} therefore seems clear. It appears that one
must simply populate the various quasiparticle states with
n~(k, a)'s given by Fermi functions of the correspond-
ing g'»~'s, and then recalculate everything self-
consistently. A problem arises at higher temperatures (see
Sec. VI H}, but for very low temperatures, where only 8'»
excitations are significant, this procedure is correct. At
the lowest temperatures, T~O, two properties are of par-
ticular interest: y, the linear spe:ific-heat coefficient, and
Xo, the T =0 limit of the magnetic susceptibility. These
will now be discussed.

Consider the formulas for g and p, , (27) and (28). At
finite T, each k o term should be weighted by
[1 f(S'» )—], where f is the Fermi function. The func-
tions being weighted are smooth, so there is no change in

g or p to first order in T. It follows that 5(, 5p, and
therefore the 5A»'s, are all of order T . Thanks to the
stationarity of (,H ) with respect to each A», the changes
5A» —T alter (H) only in order T . One can therefore
use the zero-temperature A»'s, ignoring these 5A»'s, be-
cause y is determined by the change of (H ) in order Ti.
We now note that each addition of a quasiparticle ko
above sF increases (,H ) by 8'~~, and likewise each remo-
val of a k'o' quasiparticle decreases (H) by 8'»+ . The
net change in (,H ) (from its T =0 value) is therefore re-
lated to the 8'+ spectrum in the same manner as in ele-
mentary band theory. We thus recover the standard
band-theoretic formula
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D. The effective mass

In Secs. II and IV the effective mass m ' was defined as
the relative enhancement with respect to the sk spectrum,
thus

d 8'k+

s'k ='s

The quasiparticle density of states is therefore

(51)

The corresponding results for the two-parameter ver-
sion are somewhat different. The logic for y is essentially
the same, except that g and p are replaced by a set offour
"basic parameters" which determine all of the Ak's and
Bk's. We again obtain the simple formula (48). [It must
be noted, however, that p(sF) is now quantitatively dif-
ferent; this can be seen from the rn' results in Fig. 3.] In
contrast, the calculation of Xo is now far more complicat-
ed, and the result is not expected to agree with (49). The
Wilson ratio is therefore not unity, and is instead expected
to be a function of D or g.

materials have focused on an effective fluctuation tem-
perature Tf (generally loosely defined), as a scaling tem-
perature relevant for comparing VF compounds. In view
of (48)—(56), the definition

ks Tf = I/p(eF) (57)

seems appropriate. We note that in the Kondo regime
this definition leads to

for the one-parameter model, and thus Tf agrees with a
reasonable definition for T», the Kondo temperature, as
discussed further in Sec. VIH. Several other definitions
of a characteristic temperature are reviewed in Refs. 13,
14, and 67. To summarize briefly: Wilson has defined a
low-temperature scale parameter To via

&o= pa/'tea To
2

related to his high-temperature scale T» (his "Kondo
temperature") via T» 4n X0.——1027To. We are effectively
using

p(sF)= m
2

(52)
Xo=&wpa/ktt Tf,2

The asymptotic forms (33) can be used to obtain a sig-
nificant analytical relation connecting g to m', and thus
to y and +0. By expressing N'k in terms of y, from (25),
(26), and (36), and performing the differentiation (51), one
finds

m'=2(y +1)'~ A (53)

in the notation of (27) and (28). Throughout the VF and
Kondo regimes (i.e., for ef above the perturbative-VF
crossover region) one has y »1, and thus from (33)

m' =(2y )

Turning now to (27), we express this as

(54)

(55)

again using (33). We thereby obtain

IV2 g2

2V 1 —g
' (56)

which relates y and 70 to the average valence. This rela-
tion was derived previously, for a single impurity.

In spite of the approximations involved in phen-
omenological applications (mainly, constant Vk and con-
stant po ——IV ', independent of the material), this relation
is qualitatively well satisfied by a series of interinetallic
Yb compounds. It is noteworthy that within this series
Xo varies by 2 orders of magnitude. The lesson is that g,
or equivalently cf or D, is just as important here
as the more obvious "resonance-width" parameter
I =vrV po(ep)=n V /W (also denoted by 5), or the ratio
F/I . In more refined single-impurity studies, and ap-
parently also in the two-parameter version, m ' is found
to be even more singular than (56) as (~1. This is dis-
cussed in Sec. VI F.

Many previous phenomenological discussions of VF

where we presume Rg ——2.0 in the Kondo regime, thus

Tf ——2n. TO ——4.87Tg. However, it is important to recog-
nize that these statements all presume a very simple
model with constant Vk and constant po. In Secs. VIE
and VIH we argue that the use of a single characteristic
temperature should typically be inadequate when compar-
ing the low-temperature properties of different materials.

We now summarize the present reasons for large values
of rn', as are typically encountered in VF materials, and
the extremely large values ( & 10 ) which are occasionally
found —the latter leading to the designation "heavy-
fermion" materials. ' Consider first the U=O case
shown in Fig. 1. Hybridization alone produces bands
with extensive flattened regions, and can easily account
for a mass enhancement of, say, 1 order of magnitude.
Using (54) with &=1,@=0gives m'=(D' /V), where
D' = —ckF is the separation between cf and the bottom
of the "active" (k & ) part of the conduction band. How-
ever, electron conservation implies that D' = Wg/2 in
the VF regime (this is exact for V =0), whereby
m'=(Wg/2V) . Then, in the one-parameter model, V
is effectively reduced by the factor 1 —g, from (40), thus
giving (56). A value $-0.9, say, therefore provides
another order-of-magnitude enhancement. Finally, we
turn to the two-parameter model, and observe from Fig. 3
a further enhancement, by a factor which is rapidly in-

creasing in the Kondo regime, and which can amount,
there, to another order of magnitude. We conclude that
very large m' values are, formally, quite easy to explain.
It might thus appear that arbitrarily large values are pos-
sible. In reality, however, there is some physical upper
limit because, as g approaches unity in the Kondo regime,
(H);„, becomes smaller than the interaction energy that
the system can achieve by transforming to a phase with
RKKY coupling between magnetic moments which are at
least partially unquenched. 3 '~' '

The physical origin of the "heaviness" can be under-
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stood as follows: In the ground state, the k & kF occupied
orbitals of 4, constitute a simple metallic state of "non-
binding"' electrons. The remaining k & kF conduction or-
bitals are partially occupied by electrons originating from
C&f, these are "binding and screening" electrons. [There is
exactly one screening and binding electron for each f'
configuration, thus the number of such electrons per site
is g; see (14) and Fig. 2.] Now consider the
k ( & kr )~k'( & kF ) promotion of an "unbound" electron.
The binding and screening component now finds k' re-
placed by a lower lying-state k, which thus increases the
total binding energy. The heaviness arises because of a
near cancellation between the bare excitation energy,
ek —ck, and this binding-energy increase. This interpreta-
tion follows directly from (35).

L Specific heat

%e start with the simple constant-po, constant- Vk
model used above. This gives a total state density,

p(E) =d(number of quasiparticle states)/dE,

of the form

2 V
p(E) = 1+

(E —sf)'

in the notation of (39}and (40). It follows that

(58)

E. Low-temperature properties and coherence

In cantrast to the strict T~O limit treated above, we
now consider the qualitative T dependence of various
properties at small but finite temperature, T & Tf. The
behaviors of some of these properties ("y" equal to specif-
ic heat divided by temperature, electrical resistivity, and
thermopower) have been cited as evidence for periodic
coherence, ' ' i.e., breakdown of the independent-site pic-
ture which has been sa successful at higher temperatures.
(The Luttinger properties —insulating gap or sharp Fermi
surface —are, of course, also strong evidence for coher-
ence. ) Viewed from the low-temperature standpoint, there
is evidently a breakup of coherence with increasing tem-
perature. One of the goals of this discussion is to identify
the mechanism responsible for this breakup of the Fermi-
liquid coherence.

It is well known that for the "ionic" compaunds (Sm86,
SmS, YbBi2, TmSe), there is considerable phenomenologi-
cal evidence for simple hybridization models of the
present type. " ' There is also some evidence suggest-
ing a similar model for intermetallic compounds, where
the electron number necessarily keeps the Fermi level er
away from the hybridization gap (or pseudogap). The fol-
lowing discussion is directed towards intermetallic com-
pounds. We focus on the "heavy-fermion" (very low Tf)
materials, because their gap-related behaviors are least
likely to be overlapped by anomalies due to crystal-field
excitations, or by phonon effects. Our procedure is to be-
gin with simple assumptions, coxnpare their consequences
with available data, and then attempt to draw some useful
conclusions about the roles of complicating aspects in real
materials.

2

p"( eF) =
dE E=Er

It therefore seems obvious that "y"= C/T should initially
rise quadratically, before leveling off and decreasing with
increasing T. This behavior has been observed, ' but so
far only in heavy-fermion systems (CeAli, CeCu6, and
some CeCu2Siz, samples) corresponding to very low Tf.
(The peak temperatures are extremely low, only 0.27—0.5
K.} In such cases p(E) has extremely sharp spikes, and it
should therefore be very sensitive to smearing by alloying.
The nonmonotonic behavior of C/T was indeed found to
be easily destroyed by alloying. '

At "high" temperatures, T»T/, the present p(E)
predicts a rapid decrease of C/T towards an asymptoti-
cally constant background, from the p, of (44), together
with the rising phonon contribution. For heavy-fermion
materials, much of the available C/T data correspands
to this T »Tf regime, and is consistent with the present
expectation.

In the crossover temperature range, T-Tf, one might
expect that a gap should lead to an initial decrease of
C/T followed by a second peak, or at least a shoulder,
arising from the peak in the 8' contribution at the far
side of the gap. A simple estimate (see below) suggests
that the second peak should be found at up to an order-
of-magnitude higher temperature than the first peak. The
available data ' do show at least hints of "second"
features, gentle peaks in C whose center positions range
from 2 to 4 K, for the heavy-fermion materials CeAli,
CeCuzSi2, CeCu6, and UBeii. (There is no "first" peak in
UBeii, presumably because this is cut off by the supercon-
ducting transition. ) These second features show up much
more clearly in C than in C/T; in the latter they are no
more than faint shoulders. (It is not clear to us whether a
faint shoulder in C of CeAlq, at 4 K, is due entirely to a
magnetic impurity. }

Additional information may perhaps be obtainable
from measurements of the effect of a magnetic field on
C/T. ' ' For T«Tf the effect of a magnetic field is
very simple; this just produces a rigid splitting of 2@A
between the t and t state densities, where this p, is the ef-
fective moment of the (presumed) crystal-field ground-
state doublet. The split-band picture indicates that A
should reduce the height of the first peak. This is the case
for all three materials (CeAli, CeCuzSiz, and CeCu6) in
which this first peak has been seen. In the "high-T"
( T »Tf) regime, it would seem reasonable to replace
p(E} by a single peak of Lorentzian form. The effect of

should then be to broaden this peak, and thus to now
increase C/T This, too, is. consistent with all of the
available data, except for the "paramagnon" (T lnT
specific heat) material UPt3. A split-band model has al-
ready been used to analyze some of this data, but the as-
sumed p(E) form did not include a gap.

Some simple estimates can be made, based on the p(E)
of (58). In the Kondo regime one finds

eF —p =2V (1—g)/IV =kg Tf,
8'+,„—p -V (1—g') /(D +p ) =kg Tf /(1+ n ( ),
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}Li.—O',„=V (1 g—)/(D+ p—)=kBTf/(1 —n ),
(62)

where 8'+;„and g' are the gap edges, and
n &

——2N&/N is the number of "metallic" electrons per
site contained in the 4, of (14). (N& is the number of
k (kF states. ) It follows that the gap width,
8'+;„—8' », is roughly 2k+ Tf, and that the position of
the "first peak" in C/T is determined by

e~ —8'~+;„=kii Tfn & /( 1+n & ) . (63)

On might naively expect that the second-peak/first-peak
temperature ratio should be roughly

eF I max

++min

1+(1 n& )—

n &/(1+n, )
(64)

From this standpoint the observed peak ratios (ranging
from 4 to 8} seem reasonable. On the other hand, the
comparison with y, via (48} and (57), presents a problem.
The Tf corresponding to y=1.0 JlmoleK is 27.4 K,
thus the empirical Tf's are very much larger than the ob-

'

served first-peak positions.
We have carried out a series of simple model calcula-

tions in order to test these ideas more quantitatively. ~
For the above constant-pp, collstant- Vk model (58), there
were two significant results. The temperature of the first
peak (in C/T} is Uery low, only around 10% of
(s~ —8'm;„)/kii. (Compare with the Schottky anomaly ra-
tio of 0.42.) Together with (63), this may be adequate to
resolve the "large- Tf, small first-peak temperature*' prob-
lem just noted. On the other hand, the height of the C/T
peak was very small, exceeding the T =0 value by only a
few percent of the latter, in contrast to the several tens of
percent seen experimentally.

We have tried to remove this discrepancy by adding
more realistic features to the model. We substituted a
semielliptic conduction-state density,

pp(e)=(8/irW)[l —(2e/W) ]' ' .

This rounded off the tips of the sharp spikes in p(E), but
it also pushed e~ a bit farther from the gap edge, leaving
the specific heat almost unchanged. [The sign change for
p" was extremely close to the gap edge, from which we
infer that (59) should usually remain valid. ] We also con-
sidered the temperature dependence of the parameters g
and p, which make the quasiparticle energies temperature
dependent. At low temperatures, the temperature depen-
dence of the chemical potential g (which plays a major
role in the specific-heat calculation) was altered by just
the same amount as that of the N'i+, 's near sF. This left
the important differences, 5'k —g, which enter in the Fer-
mi function, essentially unchanged. (This must obviously
be so, at least for T~O, to conserve the number of elec-
trons. ) The resulting change in specific heat was insignifi-
cant. We then turned to the k dependence of Vk, consid-
ering various plausible assumptions. Since d and f orbi-
tals have opposite parity, we first tried
Vk-sin(mklkm»), as compared to sk-cos(irk/km»),
whereby Vk-[1 —(2ek/W) ]' . This allowed the gap to
collapse. There were still two rounded peaks in p(E), but

this p now vanished only at the point E=Yf, leaving only
a pseudogap. The first peak in C/T disappeared com-
pletely.

We did manage to find a model which is useful in ex-
plaining the large magnitudes of the observed first peaks,
and yet remains plausibly consistent with the require-
ments of band theory .This is based on the explanation
for the insulating gap of Sm86." The present inodel has
a simple (negative) band dispersion, ek —+cos(nk/k, „),
but Vk-sin(irk/2k») is more subtle. Of course the
latter vanishes at k =0 (the I point), due to the opposite
parity of d and f orbitals, but this Vk now has its max-
imum magnitude at the zone boundary. The monotonic
increase of

~
Vk

~

causes the g'+ quasiparticle band to be-
come extremely flat near the zone boundary, and thus to
produce an extremely sharp spike in p(E}. For a given

kz, the contrast between the maximum p(E}, and p(eF),
can thus be larger than for the case of constant Vi, . This
leads to a more prominent first peak. The temperature of
this peak is also further reduced, as compared to (57).

Even with this mechanism, however, in order to obtain
a peak magnitude comparable to observation (20% rise
beyond the y at T =0 for CeCu6, 60% for CeAli, 90%
for CeCuiSii} we found it necessary to have kz rather
small, not more than —,

' of the zone-boundary value k,„.
A plausibility argument that such a feature should be
found in the materials with the "heaviest" fermions is
given in Ref. 64. The band-theoretic reason for the slower
k dependence of Vk (in SmB6) is also outlined there, to-
gether with the suggestion that this might be a rather
common phenomenon among rare-earth and actinide in-
termetallics. These speculations can and should be test-
ed by means of suitably modified band calculations, as ex-
plained in Ref. 64.

Although this model appears to be adequate for the
first peaks (in C/T), we find that it fails to explain the
second peaks (in C). (The sharpening of the 8'+ state
density is accompanied by a "dulling" of the 8' state
density. ) To explain both specific-heat features simultane-
ously, it appears necessary to assume a conduction-band
structure with more than one branch intersecting Vf and
the nearby Fermi level s~. This is of course very likely to
be true for the complicated materials we are dealing with.
We find that the simple renormalized hybridization pic-
ture becomes generalized in the obvious manner. [Regard-
less of the number of conduction branches, all of the Vk's

become renormalized by the same factor (1—g)' .] It is
therefore easily seen that any additional "bare" conduc-
tion branches will lead to new quasiparticle bands. The
latter will overlap the 8'+, 8' gap, and thus reduce it to a
pseudogap, but the assumed sharp spike in the 87+ densi-

ty need not be disturbed significantly. The new quasipar-
ticle bands should generally have Lorentzian-like peaks in
their state densities, centered near iM (i.e., near Ef), and
these p(E) peaks may well account for the second peak in
C. Data which supports this conjecture is described
below.

2. Resistivity

In the same spirit, we begin with a "simplest" assump-
tion for the electrical resistivity. We assume perfectly



33 THEORY GF VALENCE FLUCTUATIONS

periodic quasiparticles, and no interactions between these
quasiparticles. The resistance is then due entirely to im-

purities and crystal imperfections. In this ease we ean use
a well-known conductivity formula,

Phenomenologically, the first feature to notice about
(65) and (69) is that o tends to be very small. This is be-

cause m' tends to be large, or alternatively because I',
tends to be small. Next„we note that essentially all in-
termetallic VF materials show

o( T) =f a(E} — dE,B

BE
(65) p( T)= [a( T)] '=a+PT

where f is the Fermi function,

o(E)= ,
'

e —A,(E)vs, (E)p(E), (66)

(67)

where the effective-mass enhancement m' must now be
viewed as a function of 8'k+=E. Differentiating (36),
then using (36) again to obtain ek from N'k, we find

1 (E —p) (68)
m'(E) (E —p) + V (1—g)

assuming constant Vk. For initial orientation we neglect
the k (and thus the E = 8'k } dependence of the
conduction-band group velocity vs, . (b) The density-of-
states factor, p(E}, must be interpreted as the total state
density,

p(E) =d(number of quasiparticle states)/dE,

inultiplied by the conduction-orbital probability P, (E) for
the quasiparticles with 81'k E. This P, (E——) is given by
(68), as is obvious on physical grounds, and it is also equal
to M,+k, Eq. (41). The result of this recipe is just p, (E),
the renormalized conduction-state density (44) (now
summed over spin), whose main difference from the bare
state density po is the presence of the hybridization gap or
pseudogap. (c) In first Born approximation, the mean free
path A, is determined entirely by the conduction orbitals.
In higher approximations one must also consider the re-
normalization of the energy spectrum (ek~8'k ), and the
reduced conduction-orbital content of the quasiparticles,
P, (E). The result of the latter considerations is again to
replace p(E) by p, (E), within the calculation of A.. We
conclude that k should not have a very strong energy
dependence, and we therefore replace it by an "ordinary"
E-independent conduction-band value, A, (E)~A, The re-
sult of this analysis is therefore

eel,,vs, p, (E)
cr(E}= m'(E)

(69)

and e is the electron charge.
The present application is based on the fact that trans-

port and scattering of electrons must be attributed entirely
to the band or "conduction" orbitals. Although this state-
ment is quite obvious, its consequences must be examined
carefully: I ' (a) The localized orbitals have a major ef-

fect on the group velocity vs, . During the fraction of
time that an electron resides in a localized orbital, it ex-
periences no transport at all. The group velocities of
quasiparticle states near the hybridization gap, where the
localized-orbital character is strong, are therefore drasti-
cally reduced. The group velocity is

1 t)&k 1 ~ k ~@'t+

a ak oak a.,

at sufficiently low T, where P is positive and can be quite
large in the Kondo regime. This requires that
d tr(E)/dE be negative at eF. Unfortunately, this is not
so for the simplified model [(58) and (69)], where p, (E) is
a step function and the derivative at e~ is due entirely to
(68). For the latter, we note that (eF—p}&&V(1 —g)'r,
according to (60}, so the energy dependence is dominated

by the (E —p) factor in the numerator. The resulting
strong effect of m '(E) could not be overcome by our sub-

sequent refinements of p, (E), Vk, and vs, (zk)~vs, (E), in
the models described above for the specific heat; o "(e~)
remained positive in every case.

It appears to us that the resolution of this impasse will
require Baber scattering, as was already suggested for
CeA13 a decade ago. This process involves scattering be-
tween thermally excited quasiparticles, due to the effective
quasiparticle interaction. It also requires the existence of
at least two quasiparticle (qp) bands, and these must have
very different effective masses. ~ We have just argued,
however, that two or more branches of the conduction-
band manifold are indeed likely to intersect eF. Their
combined hybridization with the f orbitals would almost
certainly provide differing effective masses, the "extra"
qp bands typically having smaller masses at s~.

Another possibility emerges when one adds the o(E) ex-
pressions (69) for each of the extra qp bands just men-
tioned. With generally smaller m "s, these bands should
dominate the very-low-T conductivity. It remains to be
seen whether the corresponding o"( Fe)'s can be negative,
and sufficiently negative to resolve the discrepancy. We
consider this unlikely.

At somewhat higher temperatures, the Kondo-lattice
and heavy-fermion materials typically show a very steep
rise in resistivity, climbing to a peak many times greater
than the T =0 value, followed by a slow (ln T, Kondo-
like} decrease. (The occurrence of a further peak or
shoulder at higher T, in CeA13, UBe», and CeCuzSiz, can
plausibly or definitely be attributed to crystal-field excita-
tions. s' } lt seems very unlikely that this enormous rise
could be explained by means of o(E) or Baber scattering,
and for the heavy-fermion materials the energy scale is
clearly too small to be associated with crystal-field excita-
tions. The Kondo-like behavior (p-1nT) obviously can-
not be explained either, by any of these mechanisms. We
therefore turn to the ultimate limitation of the
renormalized-band or renormalized-hybridization
model —a mechanism which we believe is responsible for
the crossover from the low- T Fermi-liquid behavior to the
higher-T "dense Kondo" behavior. (By the latter term,
we mean lnT resistivity and Curie-type magnetic suscepti-
bility. )

We recall that the 8' qp branch is obtained, via (37),
by altering the occupation numbers of the f orbitals (in
Bloch representation} within the 40 of (34). Thanks to
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this "f character, " the excitation of a qp state from this
8' branch alters each one of the X sites by an amount

I/X, which is equivalent to fully altering one site. In Sec.
VIH we argue that in the simplest (one-parameter) ver-

sion, the nature of this alteration is to prevent hybridiza-

tion and leave the site in a pure magnetic (f'-like or f '

like) configuration. In other words, a local moment is

generated, or rather, it is released from its singlet bound

state. In the two-parameter version, spin-flip scattering
becomes possible for this site, and we note that spin-flip

scattering is the key ingredient for lnT resistivity. The de-

tails have not been worked out, but one can already see

that each 8' qp excitation effectively creates one site ex-

hibiting incoherent spin-fiip scattering. Excitation of a
significant number of quasiparticles (a macroscopic frac-
tion of N from the "far" qp branch (on the side of the

gap opposite from eF) can thus produce a drastic change
in the transport properties. (This should even change the

qp spectrum itself, according to Sec. VIH. ) Incoherent

Kondo behavior is thereby "turned on" in a continuous

manner with increasing T, at temperatures comparable to
(e~ Er~)/ka—, where Er~ is the position of the far peak in
the qp state density. It follows that this crossover tem-
perature range is necessarily much higher than the tem-
perature of the peak in C/T, as is indeed found experi-
mentally.

A related crossover mechanism was discussed long ago
by Doniach, who called this "dehybridization. " This
proceeds by means of a rapidly-growing ( —T ) imaginary
part of the self-energy (within the Green's function), and
is thus a consequence of intraband and interband (Baber)

qp scattering. %e agree that this should also be present,
but this is different and much less radical than the present
mechanism. %'e have presented both empirical and
theoretical arguments that the main mechanism for the
Kondo crossover is the turning on of spin-flip scattering,
by means of thermally generated local moments.

The present picture also explains why the temperature
of the resistivity peak is typically higher than that of the
second peak (in C). The former is due to the far peak in

p(E), arising from the 8' branch, while the second peak
comes from a "central" peak in p(E), located near p or Zf,
due to qp branches resulting from additional conductian-
band branches. Alternatively, the discrepancy between
the experimental peaks can be taken as evidence far addi-
tional conduction-band branches.

There is, however, a notable exception to this rule. In
UBe&3 the resistivity peak coincides with the second peak
in C. We attribute this difference to a I s (quartet)
crystal-field ground state, for the U + =5f configura-
tion, together with a I i singlet ground state for the
U + =Sf configuration. We note that these assignments
are quite plausible from the standpoint of general sys-
tematics, even though direct evidence is lacking. %e
have also explained how the I 8 quartet can be incor-
porated within the present type of hybridization model,
simply by assuming that there are two spatially-different
types of localized f orbitals (in addition to the two-fold
spin degeneracy), which both have the "bare" energy ef
%e shall demonstrate elsewhere that the renormalizations
all follow the simple pattern of (39) and (40). The eonse-

quence is then easily seen to be a new and large peak in
p(E), concentrated at p or ef, and having the same "f
character" described above for the 8' branch. This will
turn on spin-flip scattering at a lower temperature, and
thereby lower the temperature of the resistivity peak to a
point near the second peak in C. The experimental agree-
ment between these features is, in fact, quite close.

3. Other properties

The present picture is also supported by magnetic sus-
ceptibility, for CeAlz and CeCu6. The X of CeA13 shows a
mild peak at 0.7 K. We argue that this arises fram basi-
cally the same source as the first or C/T peak, but with
the X peak skewed to a somewhat higher T by the
precurser tail of the spin-flip or "moment-unquenching"
turn-on. (This presumes that the latter effect is, relatively
speaking, quite strong. ) There is also a shoulder in X at
5.5 K, coinciding with a shoulder in resistivity, both of
which are above the (presumed) weak second C peak
around 4K. Agreement between these 7 and resistivity
features is expected, since both should be generated by the

peak. In CeCu6 there is a similar agreement between
the resistivity maximum, at 13 K, and a very prominent
shoulder (or weak peak) in X, but only along one crystallo-
graphic axis.

Magnetoresistance data also tend to support the present
picture. In the elementary model (65)—(69), the effect of
the magnetic splitting of the t and l bands, by 2pA,
should be qualitatively similar to a temperature increase,
ET=pe /2k', because Bf/BE av—erages o(E) over a
total width of about 4k& T. [The maximum of —Bf/BE
is (4kiiT) '.] The magnetoresistance should thus be
hp=p(T+hT) p(T); this is—-P dp/dT, unless

ksTI »p, A »ksT (dy-A ),
or pP &ksTf (complex behavior). The prediction is ob-
viously for dy positive at low T, then changing sign near
the peak in p(T). Now consider the Kondo behavior
which enters at higher T, and its strong negative magne-
toresistance which is essentially quadratic in A . The
temperature of the sign change should thus be somewhat
reduced, and should be even further reduced by increasing
4 . This sign change and dependence on 4 have been ob-
served in CeA13, and the sign change also occurs in
CeCu2Si2. ' CeCu6 is highly anisotropic, but at 1.3 K
and along one axis it does show the expected sign change
with respect to 4 . UBei3, however, has bp simply
everywhere above its superconducting transition, con-
sistent with the above argument about more rapid turn-on
of the Kondo behavior, although high-field measurements
suggest a sign reversal at very low T ( -0.1 K).

If the elementary resistivity treatment (65)—(69) were
correct, the same o(E) should be valid for use within the
standard formulas for other transport properties, such as
thermopower and Hall coefficient. This approach gives
definite sign predictions for these properties. (See an im-
portant comment about this in Sec. VI H. ) Both of these
properties should be positive (negative) for Ce (Yb) ma-
terials. The experiments generally follow these predic-
tions at high temperatures, but for the "heavy" materials
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these properties typically show sign reversals below some

T & Tf. This is surprising, because the elementary ap-

proach should apparently be most reliable at the lowest

temperatures. In the case of CeCuzSiz, the "wrong sign"
of the thermopower has been attributed to a relatively ra-

pid temperature variation of the average valence, i.e., of
For the Hall effect, skew scattering has been suggest-

ed. Another possibility for these low Td-iscrepancies is

the recently-suggested "Kondo-hole" concept, ' where the
absence of an "active" ion (a vacancy, or substitution by
an inert ion) has a drastic effect by virtue of the strong al-

teration of that site. According to this picture, a defect
on the active sublattice is far more effective than one on a
ligand sublattice. However, recent data show the thermo-

power returning to the expected sign at extremely low

teinperatures, for CeA13 and CeCuzSiz, thus we suspect
that the explanation lies in a strong T dependence of the

qp spectrum and/or g. This conclusion is supported by
anomalies in the thermal expansion. ' %e also expect
that such a strong temperature dependence will emerge
from a proper extension of the present work to finite T, as
outlined in Sec. VI H.

Inelastic neutron scattering has been analyzed in much
the same spirit as the present discussion, by Fedro and
Sinha, ' and by Huber, They consider quasiparticle-

quasihole excitations, and they find some qualitative
agreement with experiment, especially for the q depen-
dence and T dependence of the inelastic peak. We find
that for such quasiparticle excitations the explicit 1 —g
factors for the M~'s of (43) are missing; the coupling of
the neutron to the quasiparticles involves only the f con-
tents obtained from the elementary hybridization picture
(using, however, the renormalized parameters Vk and sf).
But two more aspects need to be worked out before the
present picture can be properly applied to neutron scatter-
ing, namely, the detailed temperature dependence of the

qp spectrum, which arises from the N' thermal excita-
tions (Sec. VIH), and the possibility of a significant "con-
tinuum" (nonquasiparticle} contribution.

Finally, we mention the relaxation rates seen in
electron-spin-resonance, nuclear-magnetic-resonance, and
ultrasonic attenuation experiments. These relaxations are
all expected to proceed via quasiparticle-quasihole excita-
tions, and in the simplest picture the couplings to the ex-
perimental probes involve only the conduction-orbital
components of the quasiparticles. Each quasiparticle is
thus weighted by P,k ——M,+k, whereby the relevant state
density is p, . This p, has a very ordinary conduction-
band magnitude [see (44)], consistent with the lack of
prominent enhancement found in electron-spin-
resonance and ultrasonic attenuation experiments. The
NMR data does show considerable enhancement, but in
this case there are several known mechanisms which can
introduce coupling via f-orbital components, and thus
involve the enhanced density (1—g) 'pf [see (45)].

4. Conclusions

It now seems reasonably well established that the Lut-
tinger picture is correct for VF materials, and also that
this leads to a renormalized hybridization model for the

qp spectra at T =0. We have therefore considered how

this basic picture, together with the expected complica-
tions of real materials (conduction-band structure, k
dependence of V, crystal-field splitting, etc.) can be recon-
ciled with the low-temperature phenomenology of "nor-
mal" heavy-fermion materials. At energies small com-
pared to crystal-field excitations, general arguments indi-
cate that their p(E)'s should typically have a "three-peak"
type of structure. The qualitative agreement with avail-
able data seems reasonably good, in view of the expected
variability and complexity of individual materials. The
proposed correspondence involves some speculations
about details of conduction-band structure and Vk, these
speculations can and should be tested by means of a suit-
able band-theoretic analysis. Treatment of excited
crystal-field states is described in Ref. 64.

The heavy-fermion superconductor UPt& departs con-
spicuously from the present phenomenology in several
respects, and likewise for UAlz. The TzlnT terms in their
specific heats seem to be signatures for paramagnon
behavior, suggesting that interactions among the quasipar-
ticles are now playing a major role. We suspect that the
underlying reason why these materials behave so dif-
ferently is due to breakdown of the present U=oo as-
sumption.

For any material with only one branch of the conduc-
tion band intersecting the effective f level ef, there should
be only a single scaling parameter,

Tf- kr( C)po(~f»—

for all of the various electronic phenomena, at tempera-
tures well below the first crystal-field anomaly. Thus, for
example, data for any thermodynamic or transport prop-
erty taken at different pressures should obey a single-
parameter scaling. If, however, more than one branch of
the conduction band is significant here, it is at least con-
ceivable that the Vk's and po's for the various branches
could have different volume dependences, in which case
one-parameter scaling would not necessarily apply. On
the other hand, if the dominant effect of pressure is to
vary (1—g), this would tend to enforce one-parameter
scaling. The crystal-field splitting will very likely have a
different volume dependence than Tf, so any features in-
volving the magnitude of this splitting should not be ex-
pected to follow a single-parameter scaling. All of the
low-temperature properties depend on material-specific
details, thus, in general, one should not expect any simple
scaling law to accurately relate one material to another.
Nevertheless, if the relevant temperature scale is large
enough (in the VF regime), it may become reasonable to
ignore the crystal-field splitting, and thereby come close
to a simple one-parameter scaling behavior.

F. Correspondence with single-impurity results

Experimental phenomenology indicates that there must
be a close correspondence between the lattice problem and
the single-impurity problem, because single-impurity
models have been highly successful for periodic VF ma-
terials, ' except at the very low temperatures where
coherence effects appear. ' Formally, however, it is not
at all obvious that this should be the case. There are two
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general results bearing on this issue, but these are of limit-

ed help: (a) Thermodynamic perturbation theory shows
that an independent-site picture becomes asymptotically
correct at high temperatures (but still with an indirect
coupling via the chemical potential). (b} For the T~O
regime, %ard-identity studies have shown that the %ilson
ratio (50) for an Anderson lattice need not be the same as
for the corresponding single Anderson impurity. (This is
consistent with the existence of magnetic ground states,
and with the apparent observation of reduced Wilson ra-
tios for the heavy-fermion superconductors. ) In any
event, we believe it is significant that the present results
show a number of strong correspondences with previous
single-impurity results, including both exact results from
the Bethe-ansatz work and approximate results from the
(1/N/)-expansion studies.

Our one-parameter and two-parameter versions corre-
spond closely to the first and second stages of the 1/N/
expansion. To see this, one should focus on a single site j
and consider the types of configurations being admixed, in
the trial wave functions (14) and (46). The discussion of
Gunnarsson and Schonhammer's is very helpful here.
For a single site, the one-parameter model is identical to
the leading approximation, (1/N/), of the (1!N~)-
expansion school. The two-parameter model fails to in-
clude all of the configurations to order (1/N/)', but Gun-
narsson and Schonhammer have found that the terms we
omit tend to be unimportant. ' We would therefore ex-
pect to differ from the "exact" (1/N/) +( I/N/)' results
by only some small percentage, and to correctly recover
all of their qualitative features. This is very 'encouraging,
because the most careful (1/N~) +(1/N/)' results to
date are qualitatively and even quantitatively in remark-
ably good agreement with the exact Bethe-ansatz results. i

[However, a problem of a spurious singularity' ' remains
for dynamical properties calculated to order (1/N/)'. ]
The (1/N/)' terms that we omit correspond to the se-
quence of (virtual) transitions jcr~ko, k'o ~j o,
jo'~k"0', and would thus require a "three-parameter"
model. This would probably be prohibitively complicated,
so it is gratifying to find these indications that the two-
parameter level of approximation may be reasonably accu-
rate.

The first type of correspondence we found is between
the sharp "two-peak plus gap" photoemission f-electron
state density (45), near the Fermi level, and the "Kondo
peak" (or Abrikosov-Suhl resonance) of the single-
impurity studies. There are three aspects to be compared
here: (a) In both cases the resonant structure is near but
not precisely at sr. (b} The characteristic widths are of
order 1 —g. (c} The integrated total intensities are of or-
der 1 —g.

Our f spectral density contains both quasiparticle and
nonquasiparticle contributions, corresponding to the pole
and continuum terms of Gunnars son and Schon-
hammer. ' The above Kondo-peak structure derives en-
tirely from the quasiparticle contribution, which also has
a surprising property: In the Kondo regime for the two-
parameter version (but not in the one-parameter version),
we also find some f spectral density near the bare f-level
s/. This structure fades away as e/ is lowered into the VF

regime, in common with the broad s/ peak found for the
single impurity. We expect to find considerably more
intensity near e/ from the continuum contribution, but
this remains to be studied.

Another significant correspondence is the effective-
mass formula (56). The same formula [expressed as y(g)
and/or Xo(g)] was obtained from single-impurity studies
at the (I/N~) level. In the limit $~0, the exact
Bethe-ansatz result also agrees with this formula. On
the other hand, Bethe-ansatz and (1/NI) +(I/N/)' cal-
culations agree that, as (~1, Xo(g) increases far more
rapidly than as (1—g) ', and in fact as an exponential, i~

Xo-exp[1/N/(1 —g) ] .

The formal analyses ' indicate, however, that this much
more rapid dependence of Xo on g is not due to a more ra-
pid asymptotic dependence of Xo on sy (or D ), but is due
instead to a far slower asymptotic dependence of 1 —g on

ej, namely, 1 —g-(e& —eF) ' (see below), in contrast to
the exponentially-decreasing (1/Ni) behavior seen in (30)
and (31).

In spite of this formal analysis that Xo should have a
similar asymptotic dependence on e/, we find that in the
interesting range 0.6 &D & 1.7 eV (the upper limit of the
present two-parameter calculations), the m' of the two-
parameter model is increasing far more rapidly than for
the one-parameter model; the ratio

m '( two-parameter ) /m '( one-parameter)

is steadily increasing. Study of asymptotic formulas in
Ref. 23 (although for Xo, rather than for m "~y) indi-
cates three sources for this enhancement: (a) The
relevant parameter for asymptotic behavior in the Kondo
regime is ej' rather than e/, where e/ incorporates an ef-
fective (constant) level shift. A part of this level shift is
formally of order (I/N/)' and thus displaces the Xo
curves for the two approximations by a constant shift
along the s/ {or D ) axis. [This shift corresponds to the

2 1/Ng
( Nf V /%Did ) prefactor seen in the most-refined cal-
culations of the Kondo temperature. ] (b) There is a fur-
ther small enhancement of the exponential prefactor, by a
factor I '(I+N/ '), which equals 1.13 for the present
N~=2. (c) There is a difference between the regimes
2mVi/W«(e/ eF) «Dtt—and Dtt &(e/ sF) (i.e.,—s/
above the entire conduction band). In the former regime
(corresponding to D &1.7 eV) there is some further
enhancement, by a factor (eDx/~ e/ —er

~

)', which
eventually dies away. The latter factor cannot be taken
literally for D &1.7 eV, but it does indicate an extra
enhancement in this region. The quantitative behavior of

m '( two-parameter) /m '(one-parameter)

seems reasonably consistent, in view of the rather vague
point (c}. [Of course, the different Wilson ratios should
also be considered when comparing our m'~y results
with these single-impurity go results, but this will not af-
fect the present conclusion if the two-parameter Rir is
consistent with (70) below. ]

There is some further correspondence for the %ilson
ratio (50). The one-parameter model gives Rir ——1, as
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and

1 —(~2V /W(Ef Ep)— (71)

1Ilf ~ D
(72)

These many and fairly detailed correspondences strongly
suggest that the present results are reliable.

G. The present approximations

The approximations in the present work are of several
types: (a} the choice of trial wave functions 4, (b) the di-
agrammatic approximation for the expectation values and
transition amplitudes, and (c) neglect of some of the
quasiparticle interaction effects. None of these approxi-
mations affect electron-number conservation, which is
handled precisely throughout. (This is true even before
and during optimization of the variational parameters. }
This feature is important for the correct placement of the
Fermi level. The most obvious effect of U = ao, the elim-
ination off configurations, is also treated exactly.

Choosing a form of trial wave function 4 is equivalent
to selecting the classes of configuration admixtures to be
considered. This aspect has been discussed in Secs. V and
VI F. The remarkably good agreement between
(1/Nf ) +(1/Nf )' and Bethe-ansatz results for the
single-impurity problem, and the various good correspon-
dences between these results and our lattice results (Sec.

shown above, in agreement with the (1/N) studies. Al-
though Xo has not yet been calculated for the two-
parameter model, we expect the ~ulting R~ to differ
from unity and to depend on g (or D ). The
(1/Nf ) +(1/Nf )' result for a single impurity is

Rw= 1
1 —(1—() (70)

Sf
For Nf =2 (the present case with only spin degeneracy),
this varies between 2, for /= 1, and 1, for /=0. The
Bethe-ansatz result' for Nf 2va—ries between the same
limits, but is always larger than (70); the maximum differ-
ence is about 0.14 near /=0. 6. The Bethe-ansatz result
falls from 2.0 very slowly; in fact, R@ & 1.99 for g & 0.81.

Finally, we consider the asymptotic dependences of
1 —g and (H);„, on D {or equivalently, on Ef —EF) in
the Kondo regime. The exponential falloffs in (30) and
(31) agree with the (1/Nf ) single-impurity results. The
two-parameter results for 1 —g and (H );„,are clearly fal-
ling more slowly, however. It has been shown23 that the
single-impurity (1/Nf) +(1/Nf)' result for 1 —g agrees
rather well with the Bethe-ansatz result, throughout all of
the Kondo regime, and that this falls asymptotically only
as (Ef —EF) '. We suggest that the actual behaviors of
1 —g and (H );„,can each be viewed as a sum of two con-
tributions: (a) an exponential term similar to (30) or (31),
but perhaps with a different (and slowly-varying) prefac-
tor, and (b) an ordinary (nonexponential) function of
Ef Ei' which arises from second-order perturbation in V
for the Bk-type processes ko~jo, with Ek&E~. This
perturbative picture gives

VI F), offer considerable hope that the two-parameter lev-

el of approximation may be adequate for most practical
purposes. We do, however, neglect certain terms of order
(1/Nf)' (Sec. VIF). These deserve further study, al-
though it appears that their omission is not very signifi-
cant.

These optimistic statements are, however, based only on
very-low-temperature ( T« Tf ) behavior. A number of
important aspects remain to be studied, including higher-
temperature behavior, the continuum contribution to the f
spectral intensity, inelastic neutron scattering, and also
magnetic phases and the effective RKKY interaction.

%'ithin our diagrammatic analysis, we see only one kind
of approximation. Grewe and Keiter have emphasized
that, in diagrammatic cluster-expansion terms with more
than one VF site, the summations over site indices should
be restricted so that no site labels can coincide. Our di-
agrammatic formalism is different from theirs, but it
shares this "site-exclusion" feature. We have totally ig-
nored this restriction. From this standpoint, it is difficult
to understand why we have obtained such apparently-
reasonable results. ' On the other hand, the fact that our
one-parameter formulas have a simple physical interpreta-
tion [Eqs. (20}—(23)] suggests that this is in some sense a
consistent approximation. Obviously, further study is
needed here.

There is a further motivation for refining this approxi-
mation. We would like to eventually extend the present
work to finite U (i.e., U & 00) in order to study (a) the
"two-peak" photoemission structure of Ce and its com-
pounds, (b) the various phase transitions of Ce, and (c) the
connections with paramagnon phenomena, including the
phenomenology of UPti and UA12. Preliminary work
suggests that the site-exclusion problem will have to be
dealt with in order to obtain proper behavior as U~O.

Interactions between the quasiparticles should have a
number of physical consequences which we have not con-
sidered. These interactions should lead to finite quasipar-
ticle lifetimes (except on the Fermi surface at T =0}, to
Baber-scattering contributions to resistivity and other
transport properties, perhaps to paramagnon effects or to
collective oscillations of some sort, and possibly even to
superconductivity. (The origin of the pairing interaction,
in those VF materials which also superconduct, is present-
ly unclear. ) A further and very important effect of these
interactions is described in Sec. VI H.

It is noteworthy that a study of quasiparticle interac-
tions has already been carried out, ' in much the spirit of
this paper, for a single impurity to order (1/Nf) There.
it was found that the diagonal interaction between @+-
type quasiparticles on the Fermi surface is repulsive and
spin independent. It was also noted, however, that this in-
teraction must be spin dependent in order (1/Nf)', this
can be viewed as the origin of the nontrivial VA'lson ratio
(70). We have indeed found effects attributable to this
spin-dependent interaction, in our preliminary effort to
calculate Xo for the two-parameter version. The diagonal
interactions between 8'+-type quasiparticles arise via the
dependence of the "basic parameters" (g and p, for the
one-parameter version} upon the quasiparticle occupation
numbers n~(k, o}, and are therefore rather straightfor-
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ward (although tedious) to calculate. These interactions
were considered in Sec. VI C.

The present basic strategy (variational ground state,
leading to quasiparticles} has some resemblance to the
Bardeen-Cooper-Schrieffer theory of superconductivity.
The success of that theory suggests that neglect of quasi-

particle lifetime effects should be satisfactory for many

purposes.

H. The highex-temperature pxoblem

The final point about approximations is probably the
most significant. This is that the present treatment of the
quasiparticle spectra is valid only when the number of
S' excitations is very small, corresponding to T« Tf.

The problem is most easily visualized for the case of a
single impurity. There, the analog of the S'+ spectrum
has been discussed by de Chatel, '~ while the S' spec-
trum reduces to just a single state (for each spin o},name-

ly, the state obtained by removing fcr from the initial
wave function 4f ——

~ ft,f}). In the one-parameter
model, excitation (i.e., removal) of the S' state leads to a
"free-spin" state in which hybridization is totally
suppressed. In the language of quasiparticle interactions,
we see that the interaction of S' with S'k ~ is singular,
because removal of the S' state transforms the qp ener-

gies S'k ~ into their "bare" equivalents, ek . Moreover,
removal of S' forbids the excitation (removal} of S'

Similar statements apply for the two-parameter version,
except that S'k+ ~(S'k, sk~), i.e., the "same spin" S'k is

shifted to an energy S'k different from the bare s~ . Also,
spin-flip scattering now becomes possible, and g'& l.

For the lattice case, we believe that the correct physical
picture at finite temperatures is that of a diluted (although
nonstationary) system of bound singlets, the remaining
sites being local moments which are effectively nonhybri-
dizing. The assumption of complete site equivalence,
valid at T =0, must thus be abandoned. In the language
of Sec. VID, each unbound site will release one electron
from the "binding and screening" reservoir (which derives
from 4f), and transfer this into the unbound-electron (or-
dinary metallic} subsystem 4, . The resulting
renormalized-hybridization picture may therefore be
strongly temperature dependent. We intend to quantify
this picture in future work.

Some such refinement would also be needed for materi-
als corresponding to the present model with less than 2
electrons per site, if, indeed, any such inaterials exist. The
existence of such systems seems unlikely, because of the
serious loss of VF correlation energy which this situation
would necessarily produce. If we accept the assumption
that such systems do not exist, then the Fermi level of any
intermetallic material is constrained to fall on a predict-
able side of the hybridization gap region. This then leads
to definite predictions for the signs of the thermopower
and Hall effect, as discussed in Sec. VI F.

In the Kondo regime of the one-parameter version, for
a single impurity, we have just seen that removal of S'
eliminates all of the interaction energy (H );„,. It is there-
fore clear that (minus) the expression (30) is just the ener-

gy required to "unquench" the magnetic moment at

T =0. {This same expression is obtained for the case of a
single impurity. ) This provides a very reasonable defini-
tion for the Kondo temperature, ' and therefore this
lends some support for the definition (57) for Tf. More
generally for lattice systems, however, p(sF) ' cannot be
identified with

~

X '(H);„, ~, nor can either of these be
identified with a relevant average over the S'k spectrum.
Thus, if we define a "Kondo temperature" for lattice sys-
tems in terms of a suitable average spin-unquenching en-

ergy, to characterize the "Kondo crossover" of Sec. VIE,
this T» will generally differ from the Tf of (57), and the
ratio Tx /T~ will be material dependent. Finally, we note
that the "unquenching" energy S' is reminiscent of the
phenomenological E~ parameter of Sales and Wohlle-
ben. ' lt cannot be identical, however, because of these au-
thors' use of a renormalized temperature.

VII. CONCLUDING REMARKS

An explicit realization of the Luttinger picture of a
periodic Fermi liquid has been presented. Since this
feature is essentially guaranteed by the method of con-
struction (initial state

~
4,4f ) with sharp Fermi surface,

and method of generating quasiparticles), two types of
questions naturally arise. First, is the t.uttinger picture
really correct for the present (Anderson lattice) Hamil-
tonian, i.e., is the low-temperature behavior really that of
a Fermi liquid? Second, are the detailed results quantita-
tively or even qualitatively reliable?

Because the first question can only be answered defini-
tively by an exact solution, our need to assume a Fermi-
liquid phase is shared by most of the other theoretical
literature on Fermi liquids. A more realistic goal is to
compare the free energies of this and the likely competing
phases, namely the magnetic and the superconducting
phases. More work in this direction is needed.

Concerning the validity of the detailed results, we are
again faced with the lack of any exact results to compare
with. There are, however, a number of comparisons that
appear to be significant. Experimental phenomenolo-

gy,
' high-temperature perturbation theory, and

%'ard-identity studies all suggest close connections be-
tween the single-impurity and lattice cases. We do indeed
find a number of close formal correspondences with the
very significant body of (1/Sf)-expansion and Bethe-
ansatz results (Sec. VI F). There is also a reasonably good
overall consistency with experimental phenomenology
(Secs. VI B—VI E}. In particular, a number of low-
temperature features of normal heavy-fermion materials
have been interpreted for the first time.

Several different weightings of the quasiparticle state
density have been considered here: (a) The total quasipar-
ticle state density,

p(E) =d (number of quasiparticle states)/dE .

This is the quantity relevant for low-temperature thermo-
dynamic properties, such as specific heat and magnetic
susceptibility. (b) The "spectral" conduction-electron and
f-ele:tron state densities, p, (E) and pf(E). These are ob-
tained by weighting each quasiparticle by an appropriate
transition probability describing the sudden addition or
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removal of a "bare" conduction or f electron. For the
one-parameter version the conduction-state transition
probabilities M k-are the same as the conduction-state
probabilities P,k, calculated in the obvious hybridi-
zation-model manner, but the f transition probabilities

are smaller than the f probabilities Pfk by a factor
1 —g. For this reason, p, (E)+pi(E) &p(E). These spec-
tral densities are relevant for the high-energy electron
spectroscopies [XPS, ultraviolet photoemission spectros-
copy (UPS), and BIS]. (This f spectral intensity must,
however, be supplemented by an important nonquasiparti-
cle contribution. ) Also, p, applies to relaxation via excita-
tion of quasiparticles, in electron spin resonance and ul-
trasonic attenuation, while in nuclear magnetic resonance
there is also a contribution from (1—g) 'p/. (c) The
quantity o (E), which relates to electrical conductivity, has
a character quite opposite to that of p(E). Instead of hav-
ing sharp peaks near the hybridization gap edges, it is
strongly suppressed near the gap. (d) Inelastic neutron
scattering involves f-electron probabilities Pfk, but not
the "sudden" factors (1—g) found in the %"fk's. The
qualitative features of these different density functions en-
able one to readily understand a number of basic features
of VF phenoinenology. Also, some of the more-detailed
low-temperature phenomenology can now be explained, or
at least rationalized.

A significant feature of the present approach is that all
aspects of the quasiparticles (such as the width and posi-
tion of "f-resonance" structure, and the Fermi level) are
fully determined, once the details of the Hamiltonian and
the number of electrons per site are specified. On the oth-
er hand, a very important aspic:t lies outside the scope of
this work: the position of sf with respect to the conduc-
tion band. This is merely an input parameter here. In
reality, this parameter is determined by a variety of
phenomenological considerations, which have been ex-
plored in much detail by %ohlleben and co-workers. '
The present type of Hamiltonian also has some potentially
serious physical omissions: the Coulomb interaction Ufg
between f and conduction electrons, electron-phonon cou-
pling, intrinsic f-band dispersion, and a noninfinite f-f
Coulomb interaction U.

There are, of course, approximations in this treatment.
Comparison with ( I/N/)-expansion results suggests that
the level of sophistication in our two-parameter model
should be adequate for most purposes. A potentially more
serious approximation is our neglect of the site-exclusion
problem. This will probably have to be refined before this
work can be extended to arbitrary finite U. A particularly
important problem concerns the treatment of a finite den-
sity of I' quasiparticles. Improvement here will be
essential for higher-temperature studies, nainely, for
T & T) . Also, a number of the expected consequences of
quasiparticle interactions have been ignored.

Formulas concerning the parameter p are presented
here. This parameter is first encountered in connection
with the optimization of Ak, Eq. (24). We therefore de-
fine

1 5(H) 1 ekAk+2VkAk

N au (A 1)

Now consider the increment 5& arising from a variation
5Ak. According to Eq. (22),

Ak 4Ak5Ak
2 +~+~k N ~+~k) j

'2

(A2)

therefore

5u 4~k

5Ak N3F

2

(A3)

where

Ak
8P =1——

N, . u+~,'

Comparison with Eq. (24) shows that

p=W&/9F . (A5)

The optimization condition (24) can now be used to
simplify this expression for p. We note, from (24), that

ekA+2Vk~k = Vk~k I [(ek —y)~k/Vk+21+p~k/Vk I

=(Vk~k/S )(&+a„')+pak . (A6)

Inserting this in (Al) and (AS), we find
r

1 Vk~k &8kp=u-'—
N k,.&+Ak2 N k,.(&+Ak2)'

'I ~+p P I =w/(u —s)-

work. Beth-ansatz and (1/Nf )-expansion investigators,
especially O. Gunnarsson, A. C. Hewson, Y. Kuramoto, J.
W. Rasul, N. Read, and P. Schlottmann, have provided
much helpful instruction. I am grateful to A. Hewson for
providing unpublished Bethe-ansatz results for the Wilson
ratio. The main impetus for this work was the observa-
tion of R. M. Martin and J. W. Allen that the Luttinger
picture of a periodic Fermi liquid is the correct low-
temperature description for VF inaterials. This work is
supported by the U.S. Department of Energy.

APPENDIX

ACKNO%'LEDG MENTS

I am indebted to many people for helpful discussions.
Among experimentalists, discussions with Z. Fisk, J. L.
Smith, F. Steglich, G. R. Stewart, J. D. Thompson, and
D. Wohlleben have been particularly stimulating for this

Vi ~k
N k. ..~+~k

The last of these steps follows from (18), i.e.,

(A7)
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2
1 Ak

N k ~+3k
(AS)

A5&=-
NAP

(A10)

This result for p was used in Eq. (2g). Equation (A6) can
also be used to transform the expression (17) for (H },
thus

(H}= g s„+u-' g I k~k+Xl g.
k, cr Pi P(f——)=1——O O (A 1 1)

The simplified expression (36) then follows from (A6).
The uniform shift of the 8' quasiparticle energies (38),

by the amount p, is the result of a more subtle analysis.
When fkt is removed from 4f, the "initial" f2 occupa-
tion probability at each site becomes less than unity,

This was used in obtained Eq. (29).
In obtaining the quasiparticle expression (35), we have

used (22) to find

The effect of each virtual transition jo~k'tr is thereby
reduced by this probability Pz. We find that (17) must be
replaced by

P T

2 Pi
sk+ y (&k~k+2~k~k} 1+

k ,e k ,n

A:P +
A:P

'
~ ~ ~

Sk Ak+2Vk Ak

=,&."+„&.(~/P, )+.,
(A12)

and (18) must be replaced by

2 0

&=1+—g Ak 1+&k, +
A 2PO

~ ~ ~

Ak(N/P2)
& «~. (~/P')+~'

(A13)

(A14)

the variation of (A13) gives

These geometric-series forms follow naturally from the

diagrammatic analysis, as will be shown in a future publi-
cation. A crucial point, here, is to note that the Ak factor
in front of the series in (A13} is not accompanied by a Pi
factor. This is best justified diagr&unmatically, but the
reason can be understood by considering a single-impurity
system, in which case the geometric-series factors (within

large square brackets) in (A12) and (A13) are absent. It is
then clear that only the Pz factor remaining in (A12) is

needed; inclusion of a similar factor in (A13) would
amount to double counting.

We now consider the changes in & and (H ) which re-

sult from 5pz ——( I/N). Usin—g

5 = — 5P'=5&+
PO PO (PO )2

Ak5&=-
N k„(~/PZ)+~k

={1 3P )(5&+—&/N),
whereby

5$'=(I —9F )&/NAP .

pO

(A15)

(A16)

The net change in (H ) due to 5pi is therefore

a(H)
a(u/p', )

(A17}
This energy change has come from the removal of a quasi-
particle. The corresponding term in the quasiparticle en-
ergy must therefore have the opposite sign, hence the term
It, in Eq. (38).
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