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One-body models for transport properties of valence fluctuators: Exact results
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We consider various transport processes for (a) the resonant level lattice and (b) the dilute

resonant level scattering of conduction electrons. These models, of possible relevance to valence

fluctuators, consist of narrow resonant levels hybridizing with a broad conduction-band continuum.

For case (a), hybridization results in strongly-energy-dependent effective masses in the vicinity of
the resonance energy. However, these mass effects do not appear in the plasma frequency or the dc
resistivity. Indeed, for normal conduction-electron impurity scattering, the weak-coupling memory

function method, the exact Boltzmann-equation solution, and the exact Green s-function solution (in

the dilute limit) are shown to be in essential agreement. For normal electron-phonon scattering we

show that the weak-coupling memory function approach treated correctly to second order in the
electron-phonon coupling yields the Bloch-Gruneisen law despite the presence of large, energy-

dependent effective masses. Moreover, application of nonconserving approximations which have

previously yielded appealing fits to the resistivity of valence fluctuating CePd3 cannot account for
the striking absorptivity of that material. Finally, we show for case (b) that the weak-coupling

memory function approach yields resistivities in qualitative disagreement with the exact Boltzmann

equation, although the zero-temperature ac conductivity agrees quite well in the dilute limit. We

conclude that the weak-coupling memory function approach is ill suited for calculating transport

properties in the presence of resonant scattering.

I. INTRODUCTION

This paper is a contribution to that part of the scientific
literature concerned with the use of approximate methods
to study Hamiltonians whose "exact" solution is known.
Only a small part of the work done in this area is pub-
lished in line with the dictum: %%o publishes negative re-
sults? %e do so in this case because the model appears to
be one of growing physical interest in the rare-earth and
actinide compound literature. The model is an extension
of the resonant level model' (one f-like atom interacting
with a structureless conduction band) to a lattice of such
f-like atoms. Since the resulting Hamiltonian is quadra-
tic, all properties can be calculated exactly, including the
dc and ac conductivities associated with the scattering by
a dilute concentration of impurities. We also treat
electron-phonon scattering in the standard second-order
approximation.

In Fig. 1 we illustrate the extraordinary conductivities
observed in a typical compound, CePd3. Note in Fig. 1

the maximum in the dc resistivity at —100 K and the
overall large value of the resistivity, being an order of
magnitude larger than most metals at room temperature.
Figure I shows the absorptivity A( v'co/tr); -the large
bump in A (co) compared to a Drude result (dotted line)
suggests a large bump in the scattering rate with fretluen-
cy. Prudence requires that single-particle mechanisms be

0.08
(o)

200.0

0,06- I 50.0 E

0,04-
Cs

100 0

0.02- 50.0

0'
0

I l I I 0
I 00.0 200.0 0 IOO. O 200.0 300.0

a) (cm 'j T (K)

FIG. 1. Resistivity and absorptivity of CePd3. (a) The far-
infrared absorptivity at low temperature has a sharp onset near
15 meV (120 cm ' or 180 K) which rises well above the expect-
ed Drude value. (b) The resistivity has a pronounced and large
maximum of =160pQcm at —120 K.

examined before investigating many-body possibilities.
The points of this paper are simple. (l) The single-

particle model in this paper cannot explain the data. (2)
Any published suggestions to the contrary result from the
failure to use a current operator consistent with the con-
servation of charge, '6 and/or an improper treatment of
effective-mass factors which explicitly cancel in the dc
resistivity.

The plan of this paper is as follows. In Sec. II the con-
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tinuity equation is used to derive the current operator
which in turn is used, via the f-sum rule, to deduce that
the plasma frequency is unaffected by the presence of the
f-like atoms in the model. Approximate expressions for
the current operator and approximate calculation schemes
for the plasma frequency give large temperature-
dependent deviations from this result; these deviations
will be a source of some of the problems associated with
the memory function treatment commented on in Sec. V.

The next sections (III and IV) are devoted to a calcula-
tion of the dc resistivity using the Boltzmann equation.
(The sainte result is derived in Appendix C with a
Green's-function approach. ) The result common to both
is that potentially large effective masses associated with
the hybridized bands do not appear in the final result, and
hence the dc resistivity due to impurities is essentially
temperature independent.

In Sec. IV the memory function approach is used to
calculate the dc resistivity and ac conductivity due to both
impurity and electron-phonon scattering. None of the
sensational experimental properties can be found in the
calculated ones.

Finally, in Sec. V we consider a resonant scattering
mechanism (a resonant level impurity) and show that the
weak-coupling memory function formalism is unable to
qualitatively mimic the exact result, which has been noted
previously for the magnetic susceptibility of that model. q

II. HAMILTONIAN, ELECTRICAL CURRENT,
AND f-SUM RULE

In this section we describe our model Hamiltonian and
the types of scattering terms we shall consider. In addi-
tion, we derive the current operator and use it to obtain an
explicit formula for the plasma frequency via the f-sum
rule. A major result is that the plasma frequency is unaf-
fected by conduction-electron —resonant-electron hybridi-
zation, a result which holds for all temperatures.

The periodic resonant level model describes a system of
conduction electrons interacting with localized 4f elec-
trons (with energy e, ) and impurities or longitudinal
acoustic phonons

H, ph
—g [g(k —k')dtQkapk k+H. c.] .

k, k', e
(2.6)

in conjunction with the continuity equation:

iq j(q) =ie[H„p(q)] (2.8)

to obtain the longitudinal part of the electric current as
(Q =q/q)

1 . ekj~= lim q j(q) =e g .tldk+k
lel

(2.9)

Had we considered V as k dependent we would have ob-
tained an additional contribution to the longitudinal
current of the form

av„
'4(dk fk +fkAk }

k, a

In (2.2) the operators dka (fra) create a Sd/6s conduc-
tion electron of wave number k, spin u, and energy ek (a
4f localized electron at site R;, and spin 0) whereas the

b& create a phonon with wave number q and energy co~,
and rtrq=(bq+b q). We neglect any k dependence of the
hybridization coefficient V between the conduction and

4f electrons. N is the number of sites. G denotes the
strength of the scattering potential of the impurities. The
electron-phonon interaction is taken only between the con-
duction electrons and longitudinal acoustic phonons. The
coupling constant is given by

g(q)=(2NM;coq} ~2C(q)

(q =
~ q ~

), where M, is the ionic mass and C(q) is a slow-

ly varying function of q. ' Also, we work within a
volume 0 and use constants b =ke ——l.

In order to calculate transport properties of the system
described by Hamiltonian (2.1) we need to know the ap-
propriate current operator. In this respect we follow the
standard prescription of using the particle density

p(q)= g(dk+qgk +fk+q, fk )+0(q') (2.7)
k, cr

H=H, +H),
He = g ekdiradlra+ g eqfrafra

k, o l, O'

+ g (e 'di f; +Hc. ) .

(2.1)

(2.2)

(see Ref. 11). Nonetheless, in Ref. 5 it is argued that the
true current jed underestimates the effects of correlations
and another current is used, given by

BEk
3aa = g &kafka (2.10)

k, a

or

H imP

k,k', cr

Hf =Hph+H, ph,

(2.3)

(2.4)

Hph
——Q coqbPq, (2.5)

Thus Hamiltonian H, is diagonalized in Appendix A.
We consider these forms for H i

to calculate the resistivity as a function of the temperature
T, p (T},which is similar to the experimental resistivity
of CePd3. In Sec. IV of this paper we show that even if
one agreed to work with the current j~ (which falsely in-
troduces mass effects not contained in the true current
joe) and used the same parameters that fit the resistivity,
the resulting ac conductivity differs considerably from the
experimental one.

In summary, the appropriate current derived from Eq.
(2.1) is joe, one cannot mimic the effects of correlation by
truncating j~ and introducing mass effects which
enhance the resistivity. [In Sec. IV we shall calculate the
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resistivity p~( T) using the true current j~.]
Now we show that co&, the plasma frequency in the

presence of hybridization, is equal to coo&, that in the ab-
sence of hybridization, at all temperatures.

From the f-sum rule, ' ' we have

4me
co~ = lim & [[p(q),H, ],pt(q)] &

q~O Qq
(2.11)

Because the f electrons are dispersionless, using (2.2),
(2;7), and (2.8) we can immediately write

co~= g &dirtf„& . (2.12)
Qm

1.00
exact

0.75

From the diagonalization of (2.2) (Appendix A) we know
that in terms of the new (tz and P) bands

&dPi &=u~&~i'~i &+U~&PPi & (2.13)

where uk and Uk are the coefficients of the canonical
transformation relating the d's and f's to the a's and P's
(see Appendix A). Since the density of states of the a (P)

bands are N(0)ux. [N(0)ux ] with N(0) the bare densi-
ty of states, we finally obtain &f is the Fermi function}

E Pf O
m

(2.14)

ruz ——cuoz/[ I+[V/e„(T)] j, (2.16)

where e,(T) is the (strongly-) temperature-dependent f-
level energy. The origin of (2.16) can be readily seen in
three steps. (i) One can split (2.11) (somewhat artificially)
into terms apparently arising from direct and interband
contributions:

S~e
p = 1 m

&
(Idirect+linterband)

e o 3Qqi

with

(2.17)

af;, -afg-
uk +Vk

m i, t}Ek t}Ekp

The quantity within large parentheses is just the band
filling [apart from corrections of order ( V/W) ], which is
unchanged by hybridization. Thus

ruz ——cut1 [1+0((V/IV) )] . (2.15)

In contrast, the corresponding formula for ro~ used in Ref.
5 1S

2
(dp

2
cO ap

0.50
kF, , fk fE-

I~~„d——2 Qk vk
Ek~ —Ek

(2.18)

(2.19)
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FIG. 2. Temperature dependence of the plasma frequency.
Applying the f-sum rule [Eq. (2.7}]to a model for valence fluc-
tuators in which an undispersed f-band hybridizes with a broad
conduction band [the f-d hybridization model of Eq. (2.1}],we
have computed the temperature dependence of the electronic
plasma frequency. We measure co~ in units of coo~, the plasma
frequency in the absence of hybridization. The most striking re-
sults are obtained by treating direct contributions using the
Sommerfeld approximation and neglecting indirect terms. This
was the approach used in Ref. 5; for their parameter choices

[V=40 K is the hybridization potential, e,(T}=(15+2.5
X 10 T ) K is the 4f 1evel positiott] the lowest curve results.
Correct treatment of direct terms with neglect of interband f
terms results in the middle curve, which shows the Sommerfeld
approximation to be inadequate for all but the lowest tempera-
tures. Finally, the correct result is obtained by including inter-
band terms and treating direct terms exactly. This results in the
uppermost curve, which is temperature independent and indis-
tinguishable from the zero hybridization result. Note that at
T =0, some 90% of the total co~ value comes from interband
contributions.

(ii) For a normal metal, Eq. (2.19) is negligible as higher
bands are separated from the Fermi level by energies -ro.
(iii) in a normal metal one can apply the Sommerfeld ex-
pansion'4 to (2.18) with minimal error. Equation (2.18)
with these latter two approximations gives (2.16).

To demonstrate how badly (2.16) serves, we have plot-
ted in Fig. 2 the correct (constant) result along with the
result of (2.16) for the parameters of Ref. 5 and the exact
evaluation of (2.18) (not a Sommerfeld expansion). Two
things are apparent: (1) the Sommerfeld approximation is
a poor approximation for (2.18},primarily because the in-
tegral varies rapidly over a small energy scale, and (2) it is
also a poor approximation to ignore interband contribu-
tions which make up some 90% of the zero-temperature
result for the given parameters.

We conclude that (2.16), obtained from what seeins to
be reasonable assumptions, is in fact inconsistent with the
f-sum rule and gives rise to spurious temperature depen-
dence in the plasma frequency.

III. BOLTZMANN-EQUATION TREATMENT
FOR THE IMPURITY PROBLEM

In this section we solve the transport problem for the
dilute impurity potential (2.3) within the Boltzmann-
equation framework' to demonstrate the explicit cancel-
lation of the mass factors u and U~ (and hence a dull
resistivity).

To this end, we note that the semiclassica1 impurity
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2irc(G /2W)uk

[1+GL(Ekp)/2W] +(rrG/2W)
(3.2)

where c is the impurity concentration, and
L( p)i=i ni pi E+

i

——lni to Ett—i. Ett (E+) is the
band minimum (maximum) for the P (a) band (see Ap-
pendix A}.

In equilibrium, the linearized Boltzmann equations read

—~fo Cka Vka —~fo
dE~ r (k) r}Et,~

(3.3}

where the C's are to be solved for, e is the thermoelectric
field, and, e.g., V i, is the electronic velocity for the a
band. The equation for the P band comes by changing a
to P in (3.3).

We next need the semiclassical current; solving (3.3) for
C, multiplying by neV, and averaging yields

e' k', af«k~)—
k V kg

ka

(3.4)

0.92,,

problem can be solved exactly to leading order in the con-

centration within the relaxation time approximation. We

first obtain the quantum-mechanical relaxation times by
solving the T matrix equations for elastic scattering.
These are derived in Appendix B. Because of elasticity,
only the diagonal rates matter, and these are

2m.c(G ~/2 W)uk
CECE

(3.1)
[1+GL (Ek~) /2 W] + (n G /2 W)

and

from which the conductivity is read off as ( V~p is the un-

perturbed Fermi velocity)

coop E N (E)g= ' dE
4m —n' N(0)

V (E)

~FO

Xr. (E) +(et') (3.5}

where t (E) is defined by

r~(k)ui, —rot(Eat, )—, (3.7)

rp ——ircG /W being the Born result for zero hybridization.
The result of computing p(T) from (3.5} is displayed in

Fig. 3. We note that apart from a very small bump due to
the frequency dependence of t(E), the result is indistin-
guishable from the constant value obtained by summing
the Born series for r ' to all orders.

We remark that a Green's-function calculation, which
includes all possible interband effects, reduces to Eq. (3.5}
in the limit of zero frequency and to leading order in the
concentration c; namely, to order 1 where

0'( T) = tr +tr(o)+CO' +
C

However, in view of the results of diagonalizing (3.2)
(see Appendix A)

[N (6)IN(0)) V /Vpp=u (e),

[Ntt(&) IN (0)]VtI /V~p —u(e)—,

and thus the mass factors cancel, ' leaving

2 E+
(3 6)

p(T)
Po

Boltzmann Equotion

~Memory Function

Details of this derivation are presented in Appendix C.
We conclude that for this exact treatment of impurity

scattering in a model with hybridized bands, no striking
temperature dependence of the resistivity emerges despite
a striking energy dependence in the effective mass. The
reason is the cancellation of mass factors in the dc con-
ductivity.

IV. MEMORY FUNCTION RESULTS

0.90
0.0 l 0,0

T/Er

FIG. 3. Resistivity due to impurity scattering for the hybri-
dized band model. The solid curve is the Boltzmann-Kubo re-
sult for the resistivity. The resistivity is measured in units of
the Born-approximation result pp ——(4H/co~} i G i c/W with 6
the impurity potential, e the concentration, $V the conduction
bandwidth. The temperature is measured in units of the zero-
temperature f-band position with respect to the Fermi leveL
The dashed curve is the result of the weak-coupling memory
function approximation (Ref. 17). The two results are forced to
agree at T =0 by the sharpness of the Fermi surface. However,
for finite T they differ by &0.2' throughout the displayed
temperature range.

In this section we show how correct calculation of the
conductivity within the d-f hybridization model will give
rise to normal metallic behavior for normal impurity
scattering and the ordinary electron-phonon coupling.

A. Formalism

The primary definitions and analyticity properties of
the memory function formalism are summarized in Table
I; for more details the reader is urged to see Refs. 17 and
18. The results listed in Table I are not new and are in-
cluded solely for completeness and clarity.

In order to calculate the memory function and hence
the conductivity, we follow Ref. 17 where it is assumed
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TABLE I. Memory function relations.

Definitions (g~O+)
zg{z) ie g(0+i@)

g(0+ ig) —g(z) z +M (z)

g(z) = dz e j~(t),j~(0)
3Q

Functional relations
M (z)=M{z ) X'(z) =X(z')
M(z) = —M( —z) X(z)=X(—z)
M(z)-1/z, as z~ 00 X(z)-1/z, as z~ «x)

p~{T) =pcl(~,'I~»)' . (4.8)

The impurity resistivity is simply inversely proportional
to the square of the number of carriers (or the fourth
power of the plasma frequency which has been calculated
in Sec. II). The coefficient pc is the analog to Eq. (3.5),
where instead of averaging t(E), one averages t '(E);
namely

the Hamiltonian (2.3) along with the (3.2} term, yields the
resistivity

that its behavior is regular in the concentrations c of im-

purities and the electron-phonon coupling g and write

zX(z) =XcM (z) +O(c,g ) . (4.1}

Using the definition of the current-current correlation
function

50'

40

Po 30
X(z)= —(&j~,jdd &&, , (42) 20

where (( &), is Zubarev notation'9 for correlation func-
tions,

IO

((~,a)),= ——„' f e~&[~(r),a(0)]&dr

with the equation of motion

(4.3)

(4.4)

0- '-

150

(( ) and [ ] denote thermal averaging at temperature T
and commutator brackets, respectively), one obtains

(4.5)

E

c. IOO

where

4(»=«[j~ ~i]'[Ju ~i]&&. (4.6} ~ 50a ~

B. dc resistivity

The dc resistivity is now obtained through the use of
the formula for 0 (z) in Table I after taking z =co+i 0 and
letting u approach zero:

M"(a ) . 1 4 "(~}
p~(T) = lim

z
——lim

g)~0 e gp cy~p e +O CO

(4.7)

Equation (4.7) is the basic formula used in Ref. 5 to calcu-
late the dc resistivity and follows directly from the for-
malism of Ref. 17. The basic assumption that is needed
in the derivation of (4.7) is the regular dependence of
M (z) upon the concentration of impurities or the
electron-phonon coupling which made the expansion (4.1)
valid (this is not true in general).

In order to calculate p~(T) for impurity or electron-
phonon scattering we need to calculate (the imaginary
part of) the function P(z) and use the correct value for the
quantity Xc {see Sec. II) which satisfies the f-sum rule
{since co& 4me Xc}. ——

The calculation of P(z} for impurity scattering, using

IO

20 IOO 200
T{K}

FIG. 4. dc resistivities calculated within the weak-coupling
memory function formalism. For (a) and (b) the underlying
band model is the resonant-level lattice of Eq. (2.2), with V and
e,(T) chosen as per Fig. 2. The numbers on the curves refer, as
per Fig. 2, to exact calculation of cop (curve 1), exact treatment
of direct contributions with neglect of interband terms {curve 2),
and the Sommerfeld expansion treatment of direct terms with
neglect of interband contributions (curve 3). In (a) only impurity
scattering [Eq. (2.3)] is kept and treated within the Born approx-
imation, with all resistivities measured in units of po, the Born
result. All the spectacular temperature dependence visible in
curves 2 and 3 is removed when the plasma frequency is com-
puted with inclusion of innerband terms. In {b) electron-phonon
scattering is kept [Eq. (2.6)], and the normal ( V =0) resistivity
at 0 and pe, is chosen to be 6 pQcm. The spectacular max-
imum in curve 3, reminiscent of the resistivity of CePd3
displayed in Fig. 1, is removed when the plasma frequency is
properly computed, and the correct result (curve 1) is indistin-
guishable from the V =0 Bloch-Griineisen law.
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po po
1

as t(s) '

with po the Born-approximation result.
Figure 4(a) shows the behavior of p~(T) using three

different schemes in the calculation of ro~z/r0& and treat-
ing po only in the Born approximation. It is important to

I

note that spectacular effects show up when one makes the
approximation (2.16) used in Ref. 5. The correct result
given by curve (1) [where one uses (2.15)] is indistinguish-
able from the zero hybridization impurity resistivity.

For electron-phonon scattering we obtain similar re-
sults. We can calculate the resistivity pJ"(T) through the
use of Harniltonian (2.1) with the term (2.4). As per Ref.
5, we obtain

pJ (T)= du F(u,z), (4.9)

where 8 is the Debye temperature. The function +(u,z)
is given by

sorptivity, in the absence of hybridization, agrees with
typical metallic values, and

F(u, z) = 1 1

1+a —{II+I) (as+ 1)
(4.10) g (x,co) =

Ci)

—g(x, c0}— [1—g(x,~)]x kF 2

eD

and the resistivity prefactor po (see Ref. 5) is chosen such
that the numerical value of pJ"(T) agrees with typical
metallic resistivities in the absence of hybridization. A
good value for po is 100 p,Q cm, which corresponds to a
normal resistivity at 8 (pe) of 6 pQ cm.

Figure 4(b) shows how the different ways of calculating
the plasma frequency (see Sec. II} dramatically affect
pJ (T). The most spectacular effect showing up in
p'J (T) is once again the approximation of ro&/rooz used
in Ref. 5 (curve 3). The correct resistivity (curve 1)
p'J (T) is indistinguishable from the typical metallic
curve ( V =0 case).

(4.14)

g(x,a))=[1+(&/e, ) ]

(4.15)

The real part M' (ro) is calculated through a Hilbert
transform of M~(co). Figure 5(a) shows the variation of

C. ac conductivity
l.O-

(b)

A (co)=4Re 1
(4.1 1)

( ) 1
4nio (co)'

(4.12)

The real and imaginary parts of cr are given in terms of
the real and imaginary parts of the memory function
M' (co) and M" (a)), respectively

Following the procedures outlined above we calculate
the imaginary part of the memory function at T =0 K.
We find (using the notation of Ref. 5)

min(o), 8I
M~(co) =Ao f dx x [g(x,co}+g(x,—u)],

(4.13)

where Ao (on the order of 1/6 ) is chosen so that the ab-

The use ofj~ introduces frequency-dependent mass ef-
fects in the resistivity. However, we show below that even
if one agreed to use j on the basis of the rough agree-
ment between p (T}and the experiment, one would still
be unable to explain the ac conductivity data. The ac ab-
sorptivity of Cepd3 has been measured in the far in-
frared. The absorptivity is related to the dielectric con-
stant via

1/2

O

0.5
3
X

0.05—

0 0
00 l00 200 300 IOO 200 300

w {cm ') u(crn ')

FIG. 5. (a) Real and imaginary parts of the memory function
M' (co) and M" (co), respectively, as functions of frequency co

at zero temperature. The hybridization parameter is V=120 K,
the same value used in Ref. 5 to fit the dc resistivity p (T).
The other parameters are the Debye frequency 8=169 K,
kF/q~ ——1, and e, =37.5 K (all from Ref. 5). The plasma fre-
quency and the prefactor of the imaginary part are chosen in or-
der to yield the correct order of magnitude of the absorption in
the absence of hybridization (see text); they are given by cu = 10'5

Hz, Ao ——10 ' K, respectively. The vertical scale is to be
multiplied by 10 K. (b) Variation of the absorption with fre-
quency at zero temperature. Curve A corresponds to zero hy-
bridization V =0, whereas curve 8 is calculated for V= 120 K.
The rest of the parameters are the same as those used in (a).
Note the break in the slope at a frequency of 110 cm ' which
corresponds to the Debye frequency. For clarity we have multi-
plied the vertical scale corresponding to curve A by 10 in order
to show it on the same vertical scale.
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M' (co) and M" (co) in the infrared at T =0 K, whereas

Fig. 5(b) shows the absorptivity at T =0 K in the far in-
frared for V=0 and 120 K (which is the same value for
the dc resistivity of Ref. 5). The absorptivity of Fig. 5(b)
does not correspond at all to the experimental result. %e
conclude that the anomalous dc resistivity and anomalous
far-infrared absorptivity of CePd3 cannot be explained by
the model of Ref. 5. One cannot by any means introduce
artificial mass effects or induce an artificial change in the
number of carriers (without violating the sum rules) in or-
der to explain these anomalies.

V. FAILURE OF THE WEAK-COUPLING
MEMORY FUNCTION FORMALISM

FOR RESONANT SCATTERING

In the preceding sections we have seen that when treat-
ed with care, the weak-coupling memory function formal-
ism' can yield conductivities in good agreement with
Boltzmann-equation and Green's-function results. This
held specifically for normal impurity and electron-phonon
scattering, even in the presence of a lattice of resonant lev-

els.
In this section we include resonant scattering and show

that the weak-coupling approach' breaks down. This is
most easily seen by considering a metal with a dilute con-
centration of s-wave resonant-level scatterers.

To lowest order in the concentration, impurity averag-
ing yields the following expression for the conduction-
electron self-energy 20 2'

p~(T) =
2

RQ'( —,+ I /2~T+ie, /2irT) .4w sf
Q) 2

JEST

(5.5)

[+e note that including the density-of-states corrections
as per Ref. 17 modifies the result of (5.5) to

p~(T) =
2 (I+a, /W)

4w sI

cd 2&T

+ 1m''( —,+I /2n T+ie, /2mT)
r sr

I.00

p(&)

p(0}

(5.6)

which hardly constitutes a major correction to (5.5).]
These results are illustrated in Fig. 6. It should be

sI /2
N —Ep+l I (5.1)

where S =(SW/3m)c, c being the concentration of
scatterers, I is the resonance width, and e, is the reso-
nance energy with respect to the Fermi level.

The Boltzmann equation and Kubo formula yield ex-
actly the same result for the dc resistivity p(T). First, the
Kubo-formula result for the conductivity is given by

'

( T)
'~P y" d [f(& co) f(&)]/cu- —
4n' —" co+X'(e—ai) —X(e)

The resulting dc resistivity is given by

0.00
5.00

p(&)
p(0)

e„ = 5.0

+memory
function

(b)

(5.3) 0.00
0.00 5.00

) J d f(e—~) f(&)—
sI /2

6—N —E' —/ I
sI /2

e, —@+iI
(5.4)

Inserting (5.4) into the relation (4.5} and taking the
zero-frequency limit gives the memory function result for
the resistivity, denoted by pl( T),

where P' is the trigamma function. According to the
weak-coupling meinory function prescription, ' M (co) is
given by

FIG. 6. Resonant-level-model resistivity. The resistivity is
measured in units of the zero temperature result for dilute
resonant level scattering. Temperature is measured in units of
the resonance width 1. For e, =O [part (a}] the Boltzmann-
Kubo curve decreases monotonically falling off as 1/T for high
T. The memory function result for e, =0 (as per Ref. 17) agrees
at T =0 with the dashed curve, but decays like 1/T for high T.
The departure from the Boltzmann-Kubo result is more striking
for e, =SI' [part (b}]. The Boltzmann-Kubo result is qualita-
tively identical to that of (a). In contrast, the memory function
result has a pronounced maximum at T =3I . Note that chang-
ing the Fermi energy from 10~I to 100I (dashed curve) has
negligible effect on p. The zero-temperature resistivity within
this model is given by (4m/coo~)s I' /(I +e,), with s = 8 Wc/3m,
c being the impurity concentration.
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pointed out that (5.3), which is the exact expression to
leading order in the concentration, decreases monotonical-

ly, and behaves as 1/T for high temperatures. However,
p~(T) has a maximum for e„&0 and decays like 1/T for
high temperatures. Hence, the weak-coupling memory
function result is in strong qualitative disagreement with
the known exact results for the dc resistivity of conduc-
tion electrons in the presence of resonant scatterers.

There is one regime, however, ~here the weak-coupling
memory function formalism agrees with the Green's-
function result. Comparing the zero-temperature conduc-
tivities from the two different methods, we find that

p))r(0) =p(0) = 4m sI
(5.7)

cop I +
which is due to the sharpness of the Fermi surface
[(—Bf/Be)=5(e), r~0]. (This apparently has been no-
ticed before; see p. 505 of Ref. 23.) Since the weak-
coupling result agrees by construction with the Green's-

function result at high frequencies, then for sufficiently
small s, the zero-temperature conductivities should be in
substantial agreement. This is indeed the case as seen in
Fig. 7, where we have plotted the memory function result
(crosses)

o~(co, T =0)=
2

l COp

sl @+I
4n co+ ln

e„+I —co —2iI m

(5.8)
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APPENDIX A: DIAGONALIZATION
OF THE ELECTRONIC HAMILTONIAN

The electronic Hamiltonian (2.1b) can be diagonalized
by the following transformation:

T

Q g Ug CEg~

r

a~~
=S), ' (A 1)f)~ —U) u) P)~

and the Green's-function result (5.2) for various parameter
choices.

We conclude that the weak-coupling memory function
formalism is ill suited for calculating the dc properties of
a metal in the presence of resonant scattering. However,
the weak-coupling approach can yield simple and accurate
answers for the zero-temperature ac properties if resonant
scattering is present, provided that the overall scattering
strength is not too strong.

= O. Q
= 2.0I'
=0

with the result

H. =Q«~a&)Wk +E~PP) P)» (A2)

E)a = —,
'

[ei,+e, +[4V +(e),—e, ) ]'~
) .

0.00
0.0 I 0.0

We consider the d electrons to have a tight-binding band
ek with a constant density of states —,

'
W( —8'&e),( IV).

The coefficients of the canonical transformation are

FIG. 7. ac conductivity for the resonant-level model at zero
temperature. The real and imaginary parts of the ac conductivi-
ty have been computed via the Kubo formula (solid line) and via
the weak-coupling memory function (crosses) formalism of Ref.
17. In (a) the solid curve shows the Kubo result for Reer for a
resonance position e, =O.OI" and strength s =0.1I, so that one
might indeed hope to be within the weak-coupling regime. In
this case the memory function result (crosses) agrees quite well
with the Kubo result. The same can be said of the imaginary
part of conductivity. However, if we change s to 2.0I we leave
the weak-coupling regime and agreement between the two
methods ceases, as seen in Fig. 7(b), where the same notation is
used as in (a). Note that conductivities are measured in units of
~(O) =(~,'/4~) [(I'+2)/sr'j.

2'
Qg 1 &k —&r

~
———1+

[4V2+(~ ~ )2]lt2
(A4)

or equivalently

Qg= 1+ V

e, —Eg

2 —1

(ASa)

Ug= 1+2= V

e —E~

2 —1

(ASb)

Use of (A4) and (AS) results in the following identities
which have been used in the derivation of various formu-
las in this paper:
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2 2By+Up=1

(Ek —e, )(e, E—kp) = V

2

(A6) Tkk'( } Hlkk'+ g Hikk" Gok" ( }Hik"k'+
k II

2 2
QgUg =

(Ek —Ekp)'
(AS)

(A9}

(A10)

Also, the densities of states N (Ek ) and Np(Ekp) are
given, respectively, by N(0)/uk and N(0)/Uk, with N(0)
the normal density of states at the Fermi level.

Finally, to a good approximation, the band edges are
denoted by (with + signifying the upper or lower edge)

—W —V'/W for —,
e, —V'/W for +,
W+ V /W for +,
e„+V /W for —.

Gok(z) =
(z E—k )

(z Ek—p)
(84)

Using (81) and (82) we can immediately sum (83) to ob-
tain

' —1AA iA, AA
Tkk(z)=Sk 1 —g USk Gok"(z)Sk USk

kll
(85)

Obviously, for fully general U, Tkk has a rather compli-
cated structure. %e note two limiting cases.

(i) The "least-resonant" case (U~=G; Udf Uff 0——). —
This gives

%e note that these results are well known in the literature
and are reproduced here for completeness and clarity.

APPENDIX 8: DEVIATION OF THE T MATRIX
FOR a', ~

We generalize H'i p [Eq. (2.3)] to include d-f and f-f
scattering '

~k ~k' ~k Uk'G/N
Tkk (z) =

1 —G [Aq~(z)+Aqp(z)] uk Uk 'UkUk

with, e.g.,

1 ~k
2

Agr(z}= —g, y=a, P .
Z —

ky

Use of the optical theorem

(86)

(87)

H(mP m i(k —k'} R(d t ~t }
R,k, |l' df

i(k —k'( R(&~ )S US-
N„

Uff fk
r

CKg~
1

13k

(Bl)

(82)

'(k, ro) = —2 Im Tkk(co+i ri), r)~0+ (BS)

gives the diagonal rates quoted in Sec. III.
(ii) The "most-resonant" case (Udd =0= Udf Uff&0}.

This gives

with U the 2&(2 matrix of (81) and Sk defined in (Al)
We denote the product Sk US k as (Hi )kk

The Born series is thus

Uk Uk Qk VkUff /N
Tkk (z) =

1 —Uff [A„p(z)+A, (z)] ukuk ukuk

and hence the diagonal rate [I =m N (0)V ]

(89)

2c uk(Uff I )
(Ek )=

o f(Ek k„)(Ek —e, Uff) —(U—ffI /7T)L(Ek )] +(Uffr)
(810)

happ' has the same form with uk being replaced by Uk.

[L (E) is defined as per (3.2}.]
We note the presence of the mass factor uk, just as in

the least-resonant case. This is sufficient to give rise to
the saine cancellation of mass factors in p(T), leaving
behind only the average of sin 5(e), with

(

this could be large. In contrast, r '(E+) of (Bl 1) goes to
zero for V~O. Moreover, the explicit cancellation of
mass factors will not take place if (813) is put into Eq.
(3.4); rather, the factor of (Ek k, ) will su—ppress cr(T)
and falsely give an enhancement to p(T).

We conclude that the use of the Born approximation is
invalid in this case of strong scattering.

5(e) = tan
(e—e, )(e —e, —Uff ) (Uff r/~)L—(e) APPENDIX C

(811)

The unitarity limit is thus explicitly maintained, as
sin 5(e) will at most go to 1 near k„.

In contrast, if we had used the Born approximation,
then

2c (UffI }
'(Ek )=

2 2 2~NO [«k —&. ) + V l«k &.)—(812)

which tends to (2c/nNO)(mUff/2V) at E+. For V~O,

Using the diagrammatic approach, we shall derive Eq.
(3.5). We shall utilize the Kubo formula and finite-
temperature Green's-function formalism. The essence of
the derivation is that the leading term (of order of the in-
verse concentration) in the dc conductivity arises from
direct (intr aband) processes. Interband contributions,
which are beyond the scope of the semiclassical theory of
Sec. III, give dc contributions of order unity.

Our derivation closely follows that of Murata. ' From
linear response theory
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0(ico)= . [X(0)—X(ico}],
fN

(Cl) X(ico)=
~ g k k' I dec'"'P

m Q), ~

where ico=2nni. /P, n being an integer, will be analytical-
ly continued to ~+ig, q~O and ru real.

For X(ico) we use the interaction representation formu-
la24

x(Td ( )d ( )d / ~ ).

(C4)

X(ico)=—J dec' ( T,S(P)ji(r) j(0))0

with

(C2) We now want to express d operators in terms of a and P
operators, and thus use the Green's functions appropriate
to the true bands. We take the lowest-order result of im-

purity averaging,

( ) rH) rH— (C3}

The current j=gk vzdzgk is that of Eq. (2.9).
Expanding the S matrix to lowest order yields the

"bubble diagram, "

X,(k,co) =N; Tkk(co+i ri), q —+0 (C5)

where X„ is the retarded self-energy, N; is the number of
iinpurities, and T is given by Eq. (87).

This gives the Green's function

co Epk X—pp(k, c—o) X p(k, co)

Xap(k, co} co Eak —X—«(k, co)
G(k, co) =

[co—Epk —Xpp(k, co)][co—E k
—X (k,co)]—[X,p(kco)]

(C6)

Transformation to the aP basis gives

X k [Id~~~t(k i)+I~~«~b nd(k i)]
2

3niiQp k, i

~e, 1 — Nl
&rect rn'(E)

XA (E,g)A(E,g'),

where I is an integer, coc ——(21 +1)mi /P, and (C12)

Id;,~, (k, l}=ukG«(k, ico+icoi)G (k,i coI )

+vk(ct P) . (Cs)

%e shall return to I;„te~~d later.
Define the spectral function A as A = —lmG retarded.

Doing the I sum on Id;, , gives

(C9)

with

(k,g)A (k,g')+ ( P) . (C10)

(E —E, ) +V
(E —e, )2

and we can write

(Cl 1)

The conduction-band density of states has a high-
energy cutoff; thus, to order 1/8' we can replace
N(e)k /2m by N(0)W=3n, /2, the latter holding in a
match to the free-electron limit, n, being the conduction-
electron density.

We now combine the direct terms. The effective mass
is defined as

where

(C13)

2 as ukS «kp}
gpk =Ekp+ vkp S(Ekp) 1+Uk

k
+ EEkp kP ka

(C14)

This gives the residue of Gaa at gPk as

vkS«kp), c)S
vk (Ekp Ek )+ukS(Ekp}—

(Ekp Eka) Ekp—

(C15)

Since Ekp Ek &2V, this is always —of order c . Hence,

A (E,g), E &E&E+
A(E,g)=.

App(E, g), Ep &E&Ep

and I' is a mnemonic for integrating E from E to E
and Ep to Ep.

We note that the E integral may be extended into the
gap with error V /W at worst, and the upper and lower
bounds may be extended to + oo with the error of order
1/ W. The advantage to these extensions is that the E in-
tegral can be evaluated with contour techniques.

Before we do this, we need to get A (E,g) into a more
workable form. The problem is that, e.g., in A« there
are poles near both Ek and Ekp. However, the pole near
Ekp (call it +gpk) to second order in c can easily be found.
Define S(g) by g (k,g)=u Sk(g), then
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to leading order in c in the dilute limit, 6 is well ap-
proximated by

«0) =[0—Ek —&kS(k) j

mS(g)
ka

m '(Ek~)

which leads us to define a self-energy for A (E,g),

X(E,g)=, S(g) .
m*(E)

%e now do the E integral, which is

(C17)

(C18)1—
4 dE P2l I 1

m '(E) g E——X'(E,g) g E —X(E—,g)

Only the terms [g E ——X'(E,g)] '[g' —E —X(E,g') j '+ c.c. contribute; we close the contour for the first term in the
upper-half plane, and that for the second term in the lower-half plane. The poles of m/m' are irrelevant as those fac-
tors of m/m' in the denominator cancel the singularity in the numerator. The integral can thus be written as

m/m'(E)
(C19)

g+ X(—E,g) X'(E,—g')

where E is given implicitly by

E=g—X(E,g)=g —X(g,g)+O(c ) .

This latter result is really the essence of the quasiparticle approximation which is tacit in semiclassical theory.
We thus arrive at the spectral representation

ne f
—dg' 1 I f d [f(g g') —f(g)—][m/m'(E(g)}]

m m' z —gi
™d

g'+X (E(te),g g'} X(E(g),te}

(C20)

(C21)

which leads to the unambiguous identification

ImXd;, t(co~0)

71~CO Bf-
P dg

2 ImS
+O(1}, (C22)

where we used m/m'(E) =m/m'(g)+O(c). Noting
that ~pr(g) in Eq. (3.5} is the same as 21mS(g), we have
established that to order 1/c,

—" f d f(0 co) f(0) — -m
co+X'(E,g co) X(E,g)—m'(—E(g))

dg 1—f (g co) f(g) — —5m

m*(g)
(C23}

&p &direct(~ }

The second term on the right goes like 1/co for co~ eo, the
first term is X. From this we see that Xp —Xd; t has the
form

2
COp

Imcrd;, t(co~0) = ImXd;,~t(co~0)
41TCO

f(g co) f(g) — —m
co+X'(E,g co) X(E,g) m—'(E—)

(C24)

agrees with the Boltzmann result.
The spectral representation (C21) unambiguously de-

fines ImXd;, t', it defines Xd;, t apart from a constant. Let
us define

5m/m'(E)= V /[(E —e„) + V ] .

We note that for co~ eo

valid for both co~0 and co~ ec.
Finally, we focus on the interband terms. The largest

contribution comes from the term involving the product

G p(k, ico+icoi)[G (k,icoi)+Giiii(k, icoi)] .

In the same approximation as (C16), one can set
6 p ——X pG Gpts. Carrying through the same kind of
analysis which led to Eq. (C21), one obtains a term in
ImX(co~0} of the form

Im f gd
[f(g —co) —f(g)]S(g)[m /m '(g)][5m/m '(g) j

(g—&,}'+V' 5m
[co+X'(g,g —co) —X(g,g)] co+ +, S'(g —co)—

(g—~, ) m '(g)
S(g)

m "(g)

As co~0, there is a leading c term coming from this; this establishes the claim about interband terms. Any other com-
bination (6 gG p, G Gyp} gives at most terms of order c.
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