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Nonlocal pseudopotential calculation of lattice-dynamical properties of cesium metal
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The phonon dispersion relations co(q) are calculated for cesium metal with use of a refined version
of the Harrison first-principles nonlocal pseudopotential formalism. Consistent with previous work
for the other alkali metals, the Lindgren exchange with orthogonalized plane-wave functions for the
conduction-electron density has been used in the present calculations. The Gruneisen parameter y,
which is obtained from the calculated m(q), is in agreement with experimental values to within 10%.
The elastic shear constants, Cll —Cl2 and C44, have also been computed and compare well with
measured values. Using the energy-wave-number characteristic evaluated for the liquid density, the
static structure factor and electronic transport properties of liquid cesium have also been computed
and found to be in good agreement with experimental data. The agreement provides a confirmation
of the theoretical phonon spectra co(q) for cesium, albeit indirectly. The computed co(q) also com-
pare well with other theoretical results and recently reported experimental measurements on. poly-
crystalline cesium.

I. INTRODUCTION

Experimental and theoretical phonon dispersion rela-
tions co(q) have been obtained for most of the alkali met-
als during the past two decades. ' However, the phonon
spectra for the heaviest alkali metal, Cs, have still not
been measured experimentally from single-crystal faces
even though several theoretical calculations "have been
done. Specifically, theoretical determinations of co(q) for
Cs have been made by Ho, by Ramamurthy and Sakshku-
mar' and by Taylor and MacDonald. " The first two
groups have used experimental data for the elastic con-
stants to adjust the model-potential parameters. Taylor
and MacDonald have done a nonlocal pseudopotential cal-
culation of co(q) for Cs. In their procedure the pseudopo-
tential parameters are chosen so that the pseudopotential
can reproduce the nonlinear electron charge density accu-
rately outside the ion core. Most recently, Nucker and
Buchenau' have reported, for the first time, neutron
scattering studies of phonon spectra for polycrystalline
samples of Cs using the time-of-flight method.

In this paper we report the calculation of phonon spec-
tra of Cs tnetal using a refined version of the Harrison'
first-principles pseudopotential formalism. In this pro-
cedure, the pseudopotential is constructed strictly from
fundamental atomic properties such as the atomic number
and atomic mass, the lattice constant, and the wave func-
tions and eigenenergies of core electrons for the isolated
ion. The formalism we have used includes (i) a more ex-
act form of Vopw, '' (ii) the Lindgren' conduction-core
exchange with orthogonalized plane waves (OPW's) for
the conduction electrons, ' and (iii) the Singwi-Sjolander-

Tosi-Land' (SSTL) dielectric screening function. We
have previously used the same modified scheme of the
Harrison theory in a systematic study of the lattice-
dynamical properties of the other alkali metals, Li„Na, K,
and Rb. ' ' ' In all cases the calculated results have been
in good to excellent agreement with experiments.

We have already reported the calculation of the
Griineisen parameter ' which has been evaluated using the
phonon spectra obtained in the present work. The com-
puted overall Griineisen parameter y is found to be in
good agreement (i.e., within 10%) with experiment. The
calculated mode-Gruneisen parameters y(q, s) also exhibit
the typical curves for alkali metals. 2 Here, y is obtained
by taking an average of y(q, s) over wave vector q and
mode s. The y(q, s) represents the volume dependence of
co(q) for each mode within the quasiharmonic approxima-
tion. In addition, the theoretical elastic shear constants
Cii —Ciz and C44 are found to agree within 20%%uo with
experimental data, where the same energy-wave-number
characteristic I'(q) is used as in the phonon calculations.
The agreement represents a confirmation of the theoreti-
cal phonon dispersion relations of the Cs metal, albeit in-
directly.

The same pseudopotential formalism has also been used
in the calculations of the static structure factor S(q), elec-
trical resistivity p, and thermopower gr of liquid Cs met-
al by evaluating the pseudopotential at the melting
point. Although the computed p differs from the experi-
mental value by a factor of 2, the calculated S(q) and Qr
have been found to be in excellent agreement with experi-
ment. ' The static structure factor S(q) has been calcu-
lated using a Monte Carlo simulation of the liquid Cs
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metal. The same procedure has been used to yield good
structure factors for the other alkali metals. ' ' The ef-
fective ion-ion pair potential used in the simulation is ob-
tained from the same pseudopotential that yields the form
factor T. herefore, both the structure factor and the form
factor are used "self-consistently" in the Ziman formula
for p and Qr. We have argued that the discrepancy of p
can be attributed to inadequacies of the free-electron ap-
proximation in the Ziman theory rather than the Harrison
pseudopotential formalism. This has been discussed in

more detail elsewhere in the literature. "
In Sec. II, we outline the first-principles nonlocal pseu-

dopotential formalism. The theory of lattice dynamics
appropriate for cesium is briefiy given in Sec. III. The de
tails of the calculations and the results for the phonon
dispersion curves, elastic shear constants, and Griineisen
parameters are given in Sec. IV.

II. HARRISON FIRST-PRINCIPLE
PSEUDOPOTENTIAL

In the Harrison' formalism the second-order perturba-
tion term due to the ion-electron interaction (i.e., pseudo-
potential) is the structure-dependent band energy Eas.
This is written as

Eas= g I
S(q)

I

'+(
I qI »

q+0

where S(q) is the geometrical structure factor and F(q)
the energy-wave-number characteristic. The function
E(q) is given by

I &k+qI W Ik& i'F q
(2m) (vari /2M)(k —

~
k+q

~
)

IIoq
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gm.e' 1 —G (q)
where 00 is the volume per ion, 8' the pseudopotential,
and

~

k& the normalized plane wave for a conduction elec-
tron of wave number k. The second term on the right-
hand side of Eq. (2) is a correction due to counting the
electron-electron interaction twice in the self-consistent
field approximation. The function G(q) is introduced to
account for the screening effect of the conduction elec-
trons.

The matrix element of the pseudopotential W is given

&k+qI W Ik&= &k+qI V'Ik&+&k+qI W'Ik&

+&k+q
~

W" (k&,

where V' is the crystal potential, W the repulsive poten-
tial, and W the screening of V'and W". The first two
terms are usually called the bare potential matrix elements
in contrast to the screening potential matrix element.

V'(r) is the Coulomb potential arising from the nucleus
and the charge distribution of core and conduction elec-
trons. In general, the crystal potential V' has the follow-
ing contributions: (i) the potential due to the single ion
(i.e., nucleus plus core electrons), (ii) the conduction-
band —core exchange, (iii) the correlation between conduc-
tion and core electrons, and (iv) the potential due to the
charge density of single-OPW states of the conduction
electron.

W" is the positive potential that results from the
orthogonalization of conduction states to core states. The
matrix element of W is given by

k'
&k+ql W'lk&=g +&kI V'Ik& —Ei &k+ql«&&«~k&

„t
fi k+g +&k~ v'~k& —E„, &k~nl&&nl~k&

k+q~p~k
(4)

where E„i and
~

nl & are the eigenvalues and eigenfunctions of the core electrons for an ion in a metal, respectively, and
rn is the electron mass. P, given by P= g„i ~

nl &&nl ~, is the projection operator onto the core states. Here, the
~

nl &

represent the core-electron states for an isolated ion as well as those for a bound ion in a metal. Both values are con-
sidered to be the same in the small-core approximation, which is essential in the Harrison pseudopotential scheme.

In the fully nonlocal theory, the screening of W" is considered along with the screening of V'. Therefore, the matrix
element of W is the sum of two contributions:

&k+qi W iq&= &k+qi V'ik& Je(q) 5 e(q)q (i)i k /2M)(k —ik+qi )

where e(q) is the dielectric response function for the interacting conduction electron gas. It is given by

e( q) = 1+[ 1 —6 (q) j[P(q) —1],
where P(q) is the free-electron or Hartree dielectric constant. The SSTL screening function' is used because it satisfies
the compressibility sum rule and yields reasonable values of the pair correlation function for small r, the interionic
separation.

In the Harrison scheme, it is assumed that the eigenvalues of the core states for the isolated ions may be slightly shift-
ed (i.e., core shift) in the metallic state, but the wave functions do not undergo any significant change. In this first-order
approximation, the core shift Vopw is given by the potential energy of the core electron under the orthogonalization-hole
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(OH) charge field. The OH can be interpreted as a depletion of core-electron charge density. Cutler et al. ' derived the
exact expression of the OH charge density noH(r); this is given by

4QO "F
~

(2I+1)(k
~

&I)P@(1) 4g . Pg'1(r)(k
~

n I)
noH(r)= k dk g j&(kr)— {7)

(2m ) 0 n

where N is the number of ions. The effective valence Z'
is used in the calculation of the effective ion-ion pair po-
tential for the phonon frequencies, the elastic constants of
the solid, and in the Monte Carlo simulation for the static
structure factor of the liquid metal.

The Lindgren approximation' of the conduction-core
exchange interaction is given by

' 1/2

I [p~««)+a~.d«) )'"I. 2

Sm'

d{r)]'"I

where p,~d(r) and p~z(r) are the core- and conduction-
electron charge density, respectively.

The subtraction of the conduction-conduction exchange
p', d(r) in the Lindgren form yields an asymptotic
behavior of the conduction-core exchange near the cell
boundary such that V~(r)=0, as is physically required.
Thus, the Lindgren approximation should, in general, lead
to a better representation of the conduction-core exchange
than the Slater 9 or the Kohn-Sham approximation.
Within this approximation, we do not explicitly treat the
core-core exchange because its effect is already included in
the calculation of core states.

The use of the OPW conduction states in the Lindgren
exchange approximation has systematically improved the
pseudopotential calculations of lattice-dynamical proper-
ties for the alkali metals. ' ' The OPW state is given by

~
k& =(1—&k [ P ~

k)) '~(l —P)
( k&, (10)

where {1—(k~P ~k)) '~ is the normalization factor.

where P„~(r) is the radial wave function and j,(kr) the
spherical Bessel function. In addition to the core shift,
another explicit change due to the OH is the effective
valence Z'.

1 (kiP ik)
1 —(kiP ik)

I

Squaring ) k)opw the conduction-electron charge density
can be written as a sum of uniform and localized charge
densities:

p~(r)=QO '(1 —(k
~
P

~

k)) '+noH(r) .

The first term is the constant charge density and can be
interpreted as the effective valence (1—(k

~

P
~
k) )

' uni-

formly distributed over the volume Qo. In fact, the factor
(1—(k

~

P
~
k) ) ' is approximately equal to the effective

valence Z'. The second term is the OH charge density
localized at each ion site, and is given by Eq. (7).

III. THEORY OF LA I, LICE DYNAMICS FOR CESIUM

In the Born —von K;artnin ' theory, the phonon fre-
quencies are given by the solutions of the secular equa-
tions,

i
D(q) —MaP(q)1 i

=0, (12)

where D(q) is the dynamical matrix, 1 the unit matrix,
and M the mass of the ion. In general, the 3X3 matrix

D(q) is written as the sum of three contributions:

D(q)=D (q)+D (q)+D "(q) . (13)

Here, D (q) is the Coulombic or Ewald contribution due
to the direct electrostatic interaction between point ions.
D (q) is the electron or band-structure contribution due
to the electron-ion interaction. D {q) is a repulsive con-
tribution due to the overlap between the closed shells of
the ions, which is negligible in the small-core approxima-
tion. This approximation may be questionable for the
heavier alkali metals Rb and Cs. Nevertheless, it is used
here to be consistent with our systematic treatment of all
the contributions to the pseudopotential for the other al-
kali metals.

The Coulombic term can be computed by considering a
lattice of point ions immersed in a uniform compensating
background of negative charge. Derivations of Dc{q)
have been given by Ewald32 and Thompson. 3 The results
can be written in the following form:

—c 4n(Z'e) + (G+q)(G+q —lG+e I'~4 ' GG —G'~4v

MQO G~o ( G+q
~

2 G2

(Z'e) XX 3 erfc{qX) 6qe " 4q e —1
2qe " erfc( gX )

~~x' x' (1 —iq x)

(14)

where erfc(x) is the complementary error function, and G
and X are the reciprocal and real lattice vectors, respec-
tively. The parameter q is chosen to make both the sums
over G and X converge rapidly.

The electronic term can be regarded as the difference
between band-structure energies of a perturbed lattice and
a lattice in equilibrium. By expanding the structure factor
S(q) in Eq. (1), we easily obtain D (q),
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D x(q)= g [(G+q)(G+q)F(
~
G+q

~
)~o o

—GGF (
i
G

i )] . (15)

This equation provides the connection between the pseu-
dopotential and the phonon dispersion relation co(q)
through the energy-wave-number characteristic F(q },
given by Eq. (2).

In the quasiharmonic approximation the mode-
Gruneisen parameter y(q, s) is defined by

d in'(q, s)
dl Q

(16)

where s refers to the mode. The overall Gruneisen param-
eter y is the average of y(q, s) with the mode specific heat
as the weighting factor,

g y(q, s)C„(q,s)
q, sy= 7 (17}g C„(q,s)

q, s

where C„(q,s) is the contribution of the mode (q,s) to the
specific heat at constant volume, C„=g, C„(q,s).

The elastic shear constants are related to the elastic en-

ergy density 4 by the following equations:

(18)

2(g)
=3C44,

2 0

(19}

where subscript 0 refers to the equilibrium displacement
and ei and e2 are the deformation parameters related to
the strains. Similar to the calculation of the phonon
dispersion relation, an electrostatic and an electronic term
are the two main contributions to 4. The repulsive term
is also neglected here as in the calculation for ro(q). We
do not consider the contribution from the free-electron
gas since its energy depends only on the volume and the
elastic shear constants are independent of the volume
charge.

IV. CALCULATIONS AND RESULTS

The Herman-Skillman atomic program is used to ob-
tain the eigenenergies s„l and wave functions

~

nl ) of the
core electrons for an isolated Cs ion. The set of s„i and

~

nl ) are used to evaluate the energy-wave-number
characteristic F(q) (see Pig. 1). As shown in Table I,
theoretical values of c5s and E5p are s0111ewhat smaller
than the corresponding experimental data, i.e., the
second and third ionization energies of atomic Cs, respec-
tively. This discrepancy represents a consistent pattern
for all calculated energies of the alkali elements in the use
of the Herman-Skillman program for the Hartree-Pock-
Slater theory. Nevertheless, these energies and wave func-
tions have yielded good phonon dispersion relations for
the other alkali metals, I,i, Na, K, and Rb. ' '
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'The second and third ionization energies of the Cs atom (Ref.
35).

FIG. 1. Normalized energy-eave-number characteristic

F~(q) for Cs meta1 at 5 K: FN(q)=[2m(Z e)2/q~Qo] 'F(q).
The normalized factor is the asymptotic form of F(q) in the

limit as q~0. The experimental values used as input are the

mass M =132.9054 amu and the lattice constant a =6.045 A.

The experimental values used in the calculation of F(q}
are the atomic mass of M =132.9054 and the lattice con-
stant a =6.045 A. The latter value implies that evalua-
tion of lattice-dynamical properties for the solid Cs are
made at 5 K. We have used the two lattice parameters
a =6.045 and 6.050 A to compute the mode-Gruneisen
parameter y(q, s) given by Eq. (16). The effective valence
Z' is theoretically obtained from Eq. (8) and found to be
1.248.

The phonon dispersion curves, obtained by solving Eq.
(12), are shown in Pig. 2. No noticeable difference is
found between the use of 40 or 80 mesh points in the first
Brillouin zone. Some mesh dependence was observed in
the region close to the I point. However, this implies
only the sensitivity of the numerical treatment for
evaluating Eqs. (2) and (5) for small q around the singular
point. Thus, all contributions to the dynamical matrix are
computed accurately by summing over 300 real-space vec-
tors and 500 reciprocal vectors. Convergence is found to
be satisfactory with the choice of rl=(4/Qo)'~i in Eq.
(14). This value of g has also been used for all the other
alkali-metal phonon calculations. In the present calcula-
tions, the quasiharmonic approximation is assumed valid
at 5 K so that the cubic and the higher-order anharmonic

TABLE I. Eigenenergies E,„I of a Cs ion calculated using the
Herman-Skillman program for the Hartree-Pock-Slater theory
(in Ry).

n/I
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FIG. 2. Phonon dispersion curves for Cs metal at 5 K. The
effective valence of Z = 1.248 is used as the ionicity of the ion.
This is the theoretical value which is obtained from Eq. (8).
Comparison arith other theoretical results and experimental data
of co(q) for polycrystalhne cesium is made at symmetry points
in Table II. Theoretical results are obtained for a single crystal.
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TABLE II. Theoretical phonon frequencies co(q) for Cs met-
al (in 10'2 Hz).

L(100) L(110) T(110) T(110)

Present
TayloI
Moriarty
Moriarty'
Experiment~

1.06
1.03
1.06
1.09
0.96

1.20
1.20
1.27
1.29
1.07

0.23
0.24
0.22
0.21
0.22

0.72
0.71
0.69
0.70
0.63

'Reference 11.
bPseudoatom model calculation without s-d hybridization {Ref.
37).
Pseudoatom model calculation with s-d hybridization (Ref. 37).
Inelastic neutron phonon spectra measured for polycrystalhne

Cs at 50 K (Ref. 12).

terms can be neglected.
In Table II, this calculation is compared with other

theoretical results for the phonon spectra of Cs. The
comparison, made at the symmetry points, is seen to give
good to excellent agrennent. Taylor et al." have con-
structed their pseudopotential so that the nonlinear charge
density outside the core region is accurately reproduced.
Using the pseudoatom technique, Moriarty has con-
sidered s-d hybridization in the lattice-dynamical proper-
ties for Rb and Cs metals even though his values are lim-
ited to the high-symmetry points. In the present scheme,
we have not included the s-d mixing contribution because
of complications in its evaluation. However, Moriarty s
results show that this contribution is not significant for
t0(q) even in Cs. In Fig. 3 comparison is made between
the effective ion-ion pair potentials for the present scheme
and that of Taylor and MacDonald. "3s The present cal-
culations predict a nearest-neighbor distance of 5.8 A
which compares well with the observed first-nearest-
neighbor distance of 5.4 A for Cs metal. 36

The phonon spectra for polycrystalline cesium have re-
cently been obtained for the first time. ' These are com-
pared with our theoretical results in Table II. The mea-
sured values of c0(q} at symmetry points are systematical-
ly lower than the theoretical ones obtained for a single

-0.04
400 600 800

r(A)
IO

crystal. These differences refiect the effect of random
scattering in the polycrystalline material which both
reduces the intensity of e0(q) and broadens the peak. Al-
lowing these differences between the polycrystalline and
single-crystal samples, the current calculations, as well as
the other theoretical phonon spectra, " can be con-
sidered to be in equally good agreement with the experi-
mental data.

Although indirect, additional verifications for the
theoretical phonon dispersion relations of Cs are provided

by the agreement between experimental and theoretical
values of Griineisen parameter and elastic constantsi' for
the crystalline Cs. The overall Griineisen parameter ob-
tained from Eq. (16} agrees well with experiment:

y,h, ——1.20 (5 K} and y,„~,=1.28 (90 K) and 1.16 (293
K). The elastic shear constants are also in good agree-
ment with experiment. Theoretical values of Cii —Cii
and C44 at 5 K are 0.033 and 0.181, respectively, while
the corresponding experimental values39 at 4.2 K are
0.041 and 0.160, in units of 10" dyn/cm . We note that
the calculation of the Griineisen parameters and the elas-
tic constants were computed using the same F(q) as in the
calculation of the phonon dispersion relations.

The calculated liquid-metal properties provide further
confirmation of the pseudopotential. The static structure
factor $(q) was obtained via a Monte Carlo simulation
and found to be in very good agreement with experimental
results. A noticeable improvement vvas obtained in the
values of the thermopower Qr and electrical resistivity at
the melting point; QT" '=5.51, QT*~'=6.5 pV/K, z and

ptheoI' 18 2 pexp& 36 pQ cm It is stressed that the
same form of pseudopotential was used for the calculation

FIG. 3. Effective ion-ion pair potentials U(r) at 5 K for the
present scheme (solid line) and Taylor's (dashed line) (Refs. 11
and 38). U(r) is given by

(Z' )'
U(r) = +

&
F(q)e'&'diq .

(2m)'

The first-nearest-neighbor distance is 5.4 A. for a bcc crystal of
cesium.
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of the lattice-dynamical and liquid-metal properties. That
is, there is no distinction in the formulation of or contri-
bution to F(q) other than the effects due to temperature.

It is well known that nonlocality is important in pseu-
dopotential calculations of solid and liquid metal proper-
ties. In the present scheme, nonlocality is manifested by
the explicit k dependence of the pseudopotential matrix
element (k+q

~

W
~

k). In general, the local pseudopo-
tential scheme neglects the k dependence by (usually) tak-
ing a simple analytical form of the ion-electron interac-
tion. Nevertheless, this does not necessarily lead to more
reliable results.

Sun et ttl. ' and Day et ttl. ' have stated that a nonlocal
pseudopotential will often yield significant differences in
the calculated physical properties as compared to those
calculated with a local pseudopotential. In particular,
Day et al. have shown that the use of a local approxima-
tion results in a considerable change in the phonon spectra
when compared to a nonlocal calculation, even for so sim-

ple a metal as Na. Young and Ross have also discussed
the importance of the nonlocal treatment of a pseudopo-
tential in obtaining reasonable values of the Griineisen pa-
rameters y at high pressure. They have found that their
local pseudopotential treatment led to negative values of y
at high pressure for Na and K, which are physically unac-
ceptable.

Among the contributions to the pseudopotential, the
conduction-core exchange is the most dominant term after
the ionic Coulomb potential. Moreover, it has been found
that an accurate treatment of the exchange is necessary to
obtain consistently good results in systematic calculations
of lattice-dynamical properties. Thus, for all the alkali
metals, the Lindgren'6 form of the conduction-band —core
exchange is used with OPW's for the conduction-band
states. As seen in Eq. (11), the OPW contribution is ob-
tained by simply adding the noH(r) to be the constant
value for the conduction-electron charge density. Sun
et al. have previously used this technique to obtain a sig-
nificant improvement in lattice-dynamical and liquid-
metal properties of Rb. The use of the Lindgren exchange
in the present calculations for Cs exhibits the same con-
sistent improved behavior of co(q) as for Rb.

Calculation indicates that the conduction-core correla-
tion is not a major factor in determining the phonon
dispersion relation co(q). In the present work the Pines
form is used. OPW's were used for the conduction states
in the Pines correlation function. This did not yield any

noticeable difference in either the phonon spectra of the
Gruneisen parameter when compared with the results for
plane waves.

Three different form of 6 (q), the SSTL, the
Kleinman-Langreth (KL), and the Overhauser (OV),
were used to investigate the screening effect in the lattice
dynamics. Among the screening functions considered in
the literature, the KL and the OV forms are classified as
the strongest and the intermediate screening, respectively,
while the SSTL lies between the two in strength. The
dispersion relations co(q) show only small changes with
the use of different forms of screening; specifically, the
height of the to(q) curve is 2% lower for the KL and 2%
higher for the OV, compared to the SSTL. Neither the
KL nor the OV gives better agreement with the experi-
mental Griineisen parameters than the SSTL screening
function.

In conclusion, the phonon dispersion relations and oth-
er lattice-dynamical properties of cesium metal have been
calculated using a refined version of the Harrison tt orio
pseudopotential formalism. The same pseudopotential
scheme has been used to obtain good to excellent results
for both lattice-dynamical and liquid-state properties of
the other alkali metals, Li, Na, K, and Rb. In the present
work, the phonon dispersion curves are in excellent agree-
ment with other first-principles pseudopotential results.
In addition, experimental verification for the theoretical
phonon dispersion curves of cesium is provided, albeit in-
directly, by the agreement between the computed and ex-
perimental values of the elastic shear constants and the
Griineisen parameters for cesium metal. We have also
found that the calculated properties of liquid cesium are
in good agreement with the experimental structure factor
and electrical transport parameters, providing further con-
firmation of the nonlocal pseudopotential for cesium.
The present calculations are also found to be consistent
with the experimental phonon spectra for polycrystalline
cesium reported very recently. These results strongly sug-
gest the accuracy of the refined Harrison pseudopotential
formalism for treating lattice-dynamical and liquid-metal
properties of the alkali metals.
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