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Two- and three-dhmensiotial Kronig-Prey model with 5-friction-potential wells
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An exstnpie of the Kronig-Penney model in the form of 1D (linear chain), 2D (square), and 3D
(cubic) periodic lattices of 3D (thr=-4mensio~~&) 5-function-potential wells is considered. For the
states of negative energy the Bloch functions can be represented in an exact foxm and the dispersion

law E(k) can be obtained either atialytically (for the 1D case) or from a numerical solution of the
transcendental equation (for the 2D and 3D cases). A pecuhar simplification is possible when the

participating 8-function potentials have zero strength (i.e., when a single 8-function-potential well

has just lost its only bound state). In this case the position of the lowest Bloch state depends only on
the lattice constant d as Eo-d ~ while the effective mass does not depend on d at all and has the
universal value of 1.16169.. ., 1.18475. . ., and 1.18425. . . for the 1D, 2D, and 3D cases, respec-

tively. For the 3D case, m is greater by 1.9% than m (1D), but at the same time m (3D) is

smaller than m (2D) by only 0.04%.

I. INTRODUCTION

Since the one-dimensional (1D) Kronig-Penney model
was first introduced in 1931 ' a tremendous number of pa-
pers have been published on various 1D models for band
structure, electron dynaxnics, localization phenomena, and
other aspects. In many cases 1D models provide an exact
solution —a fact which significantly increases their heuris-
tic value (see, e.g., Refs. 2—4, and references therein}.

In contrast, there are relatively few papers in which the
exactly solvable models are extended to the three-
dimensional (3D) case. An attempt to generalize the trad-
itional 1D Kroni~-Penney model to a 3D lattice has been
made by Maleev on the basis of the earlier paper by
Goldberger and Seitz.s The model used in Ref. 5 is a cu-
bic lattice of 5-function-potential wells which, in princi-

ple, provides a transcendental equation for the dispersion
law. From this equation one can further calculate the ex-
act value of the effective mass nt'. However, in Ref. 5
Maleev does not provide any explicit calculations of the
position of the lowest band or of tn '. It is the purpose of
this paper to perform such a calculation for the specially
simplified version of the 3D cubic lattice when the 5-
function potentials have zero strength. As we will see, the
position of the lowest btmd level (Eo}depends only on the
lattice constant d (Eo- —d ), while the effective mass
does not depend on d at all and has a "universal" value:
nt'=1. 184rno. Comparisons with similar results for the
1D and 2D cases will also be given.

To avoid possible ambiguity, we have to note that our
use of the term "5 potential" is equivalent to "zero-range
potential" or "point interaction. " This means that the in-
teraction of an electron with a scatterer is locally point-
wise in three-dimensional space in the sense defined by
Eq. (4) below.

II. POLYCEN IER PROBLEM FOR 3D
5-FUNCTION-POTENTIAL %'ELLS

The model of the 5-function well potential could be
considered as a limiting version of the Hulthen potential
model when the actu~) radius of the force action tends to
zero. To aocomphsh this transition one has to send both
parttmeters a and b of the Hulthen potential

V(r) =—b /[exp(ar) —I ]

to infinity in such a way that the ratio b/a -+—,. This
procedure is fully explained in Ref. 7. The ground-state
wave function of the particle in the field of a single 5 po-
tential has the form

f(r) = 2'

' 1/2
exp( yr)—

r

Q(r)= g Ay
p=1

exp( —tz
)
r Rr (

)—
Jr—Rx f

(2)

where y is usu~&ly called the "strength" or the "effective
depth" of the 5-potential well. Therefore, for the case of
a single 5-potential well the model has only one parameter

y and the ground state of the particle has an energy
Eo —y /2 (in atom——ic units). There are no excited
bound states for the particle in the field of a single 5-
potential well and, therefore, the next energy level (un-
bound) corresponds to the ionization liniit E~O.

In the field of several origins (or reference points) of the
5 potentials, the wave function has the form:
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E=—a /2, (3)

one has to apply the boundary condition to the wave func-

tion at each origin of the 5 potentials'

where Ry (p =1,2, . . . , N) are the radius vectors of 5-
potential wells.

%e assume here that all 5 potentials are attractive force
heaters, i.e., aB yz &O. To determine the possible values

of the parameter a and, correspondingly, the energy levels

l.-R- (, R)
—y,

I
(4)

The set of Eqs. (4) written for each participating 5-
potential well is equivalent to the Schrodinger equation
(the particle is "free" everywhere, except for the points
where it interacts with 5 potentials).

The set of Eqs. (4) leads to the transcendental secular
equation for a:

detlI('Yy —a)fiys+(I —Sys)exp( —a
~ Ry —Q ~

)/~ Ry —R~ [ [[=0, (5)

which generally gives N different discrete energy levels.

III. PARTICLE IN A PERIODIC LAx x ICE
OF DELTA POTENTIALS

Consider now an infinite linear chain of periodically ar-
ranged 5-potential wells with the same strength y.s '0 It
should be stressed that this is not a one-dimensional model
in the traditional sense, since we have here an array of 3D
5 potentials in a 3D space, although these potentials are
placed along a straight line. Similarly, we can consider a
2D or 3D lattice, and in the general case the coefficients

Ay in Eq. (2) can be written in a Bloch form

Ay ——A exp(ik Ry), (6)

itta(r) = Ui, (r)exp(ik r), Ui, (r+a) = Uz(r}, (8)

which is the definition of the Bloch function (a is any in-
teger translation).

Since all y's are the satne (all y&
——y), the application of

the boun&cry condition (4) at any site Ro leads to the
same tranaoendentat equation, namely

exp( —a
~ Ry —R0

~
)

a —y=g exp(ik Ry)-, (9)
y

where the prime indicates the omission of the term p =0
from the summation.

For the 1D case the sum in Eq. (9) can be calculated
analytically, and the above equation takes the form

cosh(ad) =cos(kd)+ —,
' exp(yd) .

By solving this equation one can obtain the dispersion
law E =E(k), i.e., the energy of the particle E = —a /2
as a function of k (for a given value of y}. For the 2D
and 3D cases Eq. (9) has to be solved numerically.

where k=(k„,k„,k, ) is the quasimomentum and

~

k „,~
(d/m (d is the lattice spacing). The wave func-

tion of the particle now has the form

exp( —a ~r —Ry
~

}
gati, (r) =A g exp(ik Ry)

IP
r —R,

Using the translational invariance of the lattice, one can
easily verify that this function is representable in the form

IV. SAND EDGE AND THE EFFECTIVE MASS
OF AN ELECTRON IN THE MODEL

OF ZERO-STRENGTH 5 POTENTIALS

The approximation of zero strength 5 potentials (ZSDP)
assumes that all y's have arbitrarily small (but still posi-
tive} values, i.e., y~O+. For the case of just two poten-
tial wells the model of ZSDP leads to a nontrivial re-
sult '" that the energy Eo of the ground state of the parti-
cle at a fixed separation d between wells is finite, despite
the apparent "disappearance" of the force centers in the
limit y~O+. Moreover, Eo ——const/d—which implies
that Eo~ —oo if d~O. Again, as above, we note that
our term "ZSDP'* is equivalent to "zero range p-otential of
zero strength" or "point interaction of zero strength. "

For y =0, Eq. (9) takes the form (for the 3D case)

P= g exp[ —i(k„n, +k„n„+k,n, )d]
n„,n ,n

exp[ —p(n, —ny+n, }'y~)

(n.'+ ny'+ n,'}'"
where we introduced the variable P=ad. In Eq. (11) the
summation over the integers n„, n„, and n, extends from
—oo to + 00 and the point (0,0,0} is omitted. For the 2D
and 1D cases Eq. (11) simplifies in a straightforward
fashion.

For the limit k~O, Eq. (11) turns into a dimensionless
equation for the only remaining parameter P:

exp[ P(n +n„—+n, )'~ ]
(12)

tt„tt, n, (nx+ny+nz }

As a strictly numerical equation, Eq. (12}has an "abso-
lute" (dependent only on the geometry of the lattice) root,
namely Po——0.9624, 1.5120, and 1.9458 for 1D, 2D, and
3D cases, respectively. Note, that while for 2D and 3D
cases Po was obtained numerically, for the 1D case we, in
fact, have an exact expression, namely

po —ln[(3+v 5)/2] =0.962423 65. . ..
Therefore, the position of the bottom of the conduction

band has (similarly to the above-mentioned Eo for just
two ZSDP's) the "universal" dependence on the lattice
period d; Eo —Pz/2d . In atomic units o——f energy
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—0.463 13
d

—1.14301
0 (13)

—1.89301
0

cf

Assuming that close to the bottom of the conduction
band (1) the dispersion law is isotropic, and (2) it is possi-
ble to use the parabolic approximation, one can obtain

E(k)= — =Eo+ (14}
2m 0 2'

where a(k) can be obtained from the solution of Eq. (11).
Note that the isotropy of the dispersion law to the terms

of second order can be easily verified by the direct dif-
ferentiation of Eq. (11}—because of the terms n„n„, etc.
all cross derivatives t} a/t)k;t)kj (we use Cartesian coordi-
nates} are zeros at k~0 and the second derivative matrix
turns out to be a multiple of the identity matrix. The an-

isotropy appears in the fourth-order terms of the Taylor
series, which, however, are immaterial for the purpose of
defining the effective mass.

The effective mass ttt' in terms of the free-electron
mass mp can now be expressed as

' —1

m /ttto ———a t} Q
(15)

, k-+0

Using Eq. (11),one can turn Eq. (15}into the following
form (for the 3D case):

1+ g exp[ Po(n,—+n„+n, )'~2]

3 Ng, Ny, Ng

po g (n, +ny+n, }'/zexp[ po(n—,+n„+n, )' ]
Nz p Ny ) Ng

(16)

where Po is the root of Eq. (12). For the 2D and 1D cases
the factor "3" in Eq. (16) should be replaced by "2" or
"1," respectively.

In atomic units (ttto ——1) the numerical values are

m'(1D) =1.16169,

m'(2D) =1.18475,

m'(3D) =1.18425 .
Again, for the 1D case the summation in Eq. (16) can be
performed in closed form, which gives for m '/ttt o the ex-
act expression

m '/mo ——~5/in[(7+ 3~5)/2] = 1.161 685 9. . . .

V. CONCLUDING REMARKS

An attractive feature of the Kronig-Penney —ZSDP
model is that it eliminates all characteristic parameters
except for the lattice spacing d. This makes this model a

kind of "absolute standard" for more elaborate mul-
tiparameter calculations.

The position of the bottom of the conduction band (Eo)
in this model depends universally on the lattice constant d
as Eo —C/d ——. At the same time, the effective mass
does not depend on d at all and, therefore, has universal
values, which are close, but not equal, to unity. The pecu-
liar fact is that while ttt '(3D) is greater than rn'(1D) by
1.9o//o, m'(3D) is smaller than m'(2D) by just 0.04%.

A similar consideration can be performed for the ZSDP
lattices with symmetnes other than cubic, e.g., diamond
lattice, etc.

The model of ZSDP described in the present paper can
be applied, for example, for an estimate of the isotopic
shift of the bottom of the conduction band. Isotopically
pure crystals of the same element have slightly different
lattice constants' which, according to the present model,
can be straightforwardly related [through the Eqs. (13)]
with the position of the lowest electronic state.
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