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The magnetic properties of a Hubbard chain with on-site attraction are studied as a function of
the band filling. Magnetization curves are calculated numerically for several values of the interac-
tion and band filling. An unexpected feature of these curves is that the susceptibility is always finite

except for the empty and half-filled band. The gap in the magnetic excitation spectrum is also cal-
culated as a function of the band filling. The numerical results are compared with analytical results,
which are obtained for the nearly empty and nearly-half-filled band.

I. INTRODUCTION

For over a decade now there has been continuous in-
terest in quasi-one-dimensional systems. ' ' The electron-
ic behavior exhibited by these materials is often discussed
in terms of the one-dimensional (1D) Hubbard and related
models. 'o Among these models the 1D Hubbard model
plays a special role because it is exactly solvable. Al-
though it is a severe oversimplification of the real sys-
tems, it contains much of the physics dealing with the
Coulomb interaction. Moreover, because this model is ex-
actly solvable, it can be used to test approximate methods
which can treat more realistic models. "' Quantities that
are calculated by the approximate methods can be com-
pared with those which are available from the exact solu-
tion of this simple, but nontrivial interacting many-body
system.

The 1D Hubbard Hamiltonian is given by

N ) N
H= —t g g(c;~;+i +c;+i~; )+U g n;,n;, ,

where c; (c; ) creates (destroys) an electron with spin o
at site i and n; =c;~; . Lieb and Wu have shown that
the diagonalization of this Hamiltonian is equivalent to
solving a set of nonlinear algebraic equations, which are
often called the Lieb-Wu (LW) equations. ' Most of the
theoretical work at zero temperature has been based on
the different solutions of the LW equations. The struc-
ture of the excitation spectrum has been investigated by
Ovchinnikov, ' Coll, ' and one of the present authors. '

The zero-temperature magnetic properties of the model
were studied by Takahashi' and Shiba. ' In particular,
Takahashi found the magnetization curve for the half-
filled band for both positive and negative U. Extending
this work, Shiba gave the zero-field magnetic susceptibili-
ty for an arbitrary concentration of electrons, but only for
positive U.

The aim of the present work is to study the magnetic
properties of a Hubbard chain with negative U as a func-

tion of band fiHing. We give the magnetization curves
and gap in the magnetic excitation spectrum, calculated
by numerical solution of the Lieb-Wu equations for
several values of U and band filling. Since the gap is a
quantity of special interest, we also derive analytic expres-
sions for it in the cases of low and nearly-half-filled
bands. To verify the qualitative features of the magneti-
zation curves, we also analytically calculate the suscepti-
bility near saturation and near the onset of magnetization,
the latter only in the large-

~

U
~

limit.
The paper is organized as follows: In Sec. II we review

the formalism. Section III presents the numerical calcula-
tions of the gap and magnetization curves. Section IV is
devoted to analytical calculation of the gap for low band
filling and close to half-filled band. In Sec. V the suscep-
tibility is calculated analytically near the onset and satura-
tion of magnetization.

II. BASIC FORMALISM

The starting point of our study is given by the LW
equations (with t= 1, which does not restrict their gen-
erality}

M
Nkt. =ZmI& —g 2 arctan

a=1

sin(kj ) —A,

U/4
(2)

g 2arctan
A,a —slnkl

U/4

M A~ Ap=2m.Ja+ g 2arctan . (3}
P=l U/2

In these equations X is the number of lattice sites, N, is
the number of electrons, and M is the number of down
spins. The variables kl are the wave numbers of the elec-
trons, while the A, 's describe the motion of the spins. The
integers lj and J are the actual quantum numbers.
From any particular solution of this system of equations
the wave function can be reconstructed (first article in
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Ref. 16},and the energy, momentum, and spin of the sys-

tem can, respectively, be given as
= O.S0

E =—+2cask,
J

I'= gkj,

(4)

(6)

0.40

0.30

0.20—

0.10-

0.00 '

Although the LW equations hold regardless of the sign of
U, one encounters difficulties in applying these equations
directly to chains with on-site attraction, since for the
states of interest a macrascopic number (-N} of k's are
complex. However, the electron-hole symmetry provides
a way to overcome this inconvenience. Changing only the
up-spin electrons into holes is equivalent to changing the
on-site attraction inta repulsion. (The details of this
transformation and its consequences are discussed in the
last papers of Ref. 16.) Through this transformation, any
eigenstate of a chain with attractive interaction, U&0,
with N, electrons and a magnetization Sz, can be
transformed into the eigenstate of a chain with repulsive
interaction,

I
U L with N, =N —N, +2M electrons with

a magnetization S,= (N N, )/2—, and vice versa. The en-

ergies of the corresponding states are related by

E(N„M, —I
U

I )

= —
I

U
I
M+E(N N, +2M;M—; I

U
I

) .

(7)

We need to calculate the lowest-energy states as a function
of the band filling n =N, /N and magnetization
s =N, /2N M/N =S—,/N for U&0. Thus we have to
find the lowest-energy states for the interaction

I
U

I

with N, =N(l —2s) and M =N(n/2 —s). In these states
all the k's and A, 's are real and in the N~00 limit we
describe the pasitions of the k's and A, 's by continuous
densities p(k) and n(A, ), in the intervals ( —Q, Q) and
( —8,8), respectively. These densities satisfy the equa-
tions'3

2ep(k) =1+ f 2cos(k), , a(A, )dA, ,
B

I UI/4
( U/4) + (A, —sink)

p,H

FIG. 1. Magnetization per electron versus magnetization
field is shorn for several values of band filling for attractive
coupling U = —1.

from which, by the electron-hole transformation, the
states with —

I
U

I
can be obtained. Nevertheless, the

functions p(k) and n(k, } can be related to the U&0 case.
In the states with U&0 a part of the particles are in
bound pairs with wave numbers sink-+=A, +iU/4 and
n(A, ) describes the distribution of these A, s, while the un-
bound electrons have wave numbers k distributed in the
regian [—(e —Q), +(n Q)] a—ccording to p(k) =p(e —k).
Performing the substitutions p(k) =p(e —k) and
n —Q =Q in Eqs. (8)—(11) leads to the equations present-
ed by Taltahashi'~

2ep(k) =1—2cos(k) f 3 a(A, )dA, ,
IUI/O

—a (U/4) +(1L,—sink)z

(12)

2 {A,)+ 2 I
U

I
/2

( U/2)2+(A, —A, ')3

2'
[1—(X—iU/4)']'"

,p(k)dk,—& (U/4)2+(A, —sink)3

(14)

,p(k)dk—& (U/4)3+(A, —sink)

=2nn(A)+ f, a(A, ')d A, ', (9)—s (U/2) +(A.—A, ')

with the conditions for Q and 8

f p(k}dk =2s,
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f p(k)dk =1—2s; f cr(A, )dA, =——s .

Due to (4) and (7), the energy can be given as

E n—= —
I

U
I

——s —2 f cos(k)p(k)dk .
2 —Q

(10) cn I~ 0.30

0.20

0.10

0.00
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Equations (8)—(11}do not directly describe the states
with U&0, but rather they describe the states with

I
U

I FIG. 2. Same as Fig. 1 but for coupling U =—2.
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0.40

couplings U = —1, —2, and —5, respectively. In each
figure, curves are labeled according to band filling n. All
three sets of curves share common features. The inost ap-
parent difference between them is that for increasing at-

0.20
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0.00
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6.70

FIG. 3. Same as Fig. 1 but for coupling U = —S.

B iU—= —4 Re ~ 1 —A, —

—2 cos p

' 2 1/2

'o(A, }dA,

6.50—
2.40

The set (8}—(11) is equivalent to the set (12)—(16). In the
numerical calculations the set (12)—(16) was solved, but in
the analytical calculations (8)—(ll} proved to be more
convenient.

III. MAGNETIZATION CURVE AND GAP
IN THE SPIN EXCITATIONS

2.20

In the presence of a magnetic field H, we add to the
Hamiltonian the Zeeman interaction term pHS„whe—re
p=g)ua with g=2 and ps is the Bohr magneton. The
ground state occurs at a value of s=(Sz)/N, which
m1n1mizes

6~ (s ) =6(s ) p,H$,'—
where e(s) =E/N„and E/N is given by Eq. (16). The
magnetization curve s as a function of H is then implicit-
ly given by

(18)

2.10

2.00—
0.50—

0.40

Equations (12} and (13) were solved numerically for the
functions p(k) and o(A, ) with Q and 8 as independent
variables. Substitution of p(k) and o(A, ) in (14}—(16) gives
the energy e(s), band filling n, and spin s as functions of
Q and 8 To calc.ulate the derivative in Eq. (18) with
respect to s while hoiding n constant, a numerical
transformation was performed from independent variables
(Q,B) to (n, s), where s =ns The Ja. cobian for this
transformation (with U&0) was shown to be positive
everywhere in the (n, s) plane except for the region n= 1,
which corresponds to 8 = oo in Eqs. (12) and (13) (see
Ref. 19). Thus, we did not calculate the magnetization
curves for n= 1, the half-filled band case, but they are
available in Ref. 17. The calculations were performed on
a VAX-11/780 computer equipped with a floating point
accelerator. Each magnetization curve required several
hours of CPU time to achieve an accuracy of two to six
significant figures.

Figures 1, 2, and 3 show the magnetization curves for

0.10

FIG. 4. The gap in the spin-excitation spectrum is shown
versus band filling for several values of coupling U. The curves
labeled 5& are the numerical results while h2 and h3 are the
analytical results given in Eqs. (43) and (28), respectively.
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traction, the onset of magnetization occurs at higher
values of critical field H, and the difference H, H—„
where H, is the saturation field, becomes larger. This is
an obvious consequence of the competition between the
magnetic field, which favors alignment of the spins paral-
lel to the field, and the attractive interaction, which at-
tempts to keep the electrons in singlet bound pairs.

In the hmit of low electron density, the magnetization
curves for all U approach step functions. In this limit the
bound pairs are independent of one another and as the
field H approaches its critical value from below, all the
pairs break up simultaneously.

For increasing electron density, the magnetization be-
gins at lower values of magnetic fields and the curves are
all less steep with increasing n Th. e decrease in the criti-
cal field with increased band filling shows that the effec-
tive coupling strength of the bound pairs decreases with
increasing electron density. The increasing overlap of the
bound pairs leads to a weaker coupling between the elec-
trons. Although in the formalism of Bethe ansatz, the
Fermi velocity does not play a role, and the coupling con-
stant, U/us, used in other methods can not be singled out
(except in the limit U-+0, n ~0, U/n finite), apparently
it controls the qualitative behavior of the system.

The field at which the onset of magnetization occurs is
the critical field H, and pH, is also the gap b,(n, U) in the
spin-excitation spectrum. The gap is plotted as a function
of band filling for U =—1, —2, —5, and —10 in Fig. 4.
In some sense, the size of the gap is a measure of the
strength of the effective interaction between the electrons.
For any coupling, the gap is largest in the limit of zero
band filling and decreases monotonically as n=1 is ap-
proached. The variation in the gap, defined to be

5b, ( U) =h(n ~0+, U) b(n ~—1,U),

is a measure of the dependence of the effective interaction
on band filling. Figure 5 shows this dependence is strong-
est near U= —3.5.

The slope of the magnetization curves is sensitive to the
rate at which the bound-pair coupling changes with the
relative number of bound-electron pairs and unbound elec-
trons. This behavior stands in contrast to that of the crit-
ical field, H„which is sensitive to the bound-pair cou-
pling itself. The slope of the magnetization curves is also
affected by the width of the band available for unbound
electrons above the continuum of bound pairs and the way
the shape and width of this band changes with the relative
number of bound pairs and unbound electrons.

& 0.20

4.00 6.00 S.00 40.00

FIG. 5. The variation in the gap (i.e., the gap at zera band
filling minus the gap at half-filled band) is platted versus the
magnitude of the coupling

~

U ~.

At the onset of magnetization, H =H„and near sa-
turation, H=H„ the susceptibility diverges both for
n~0 and n ~1, but is finite for all intermediate n, see
Figs. 1, 2, and 3 and Sec. V. The behavior of the suscepti-
bility at low electron density ( n ~0) is well understood on
the basis of independence of bound pairs and that the un-
bound electrons, produced by breaking bound pairs, occu-

py the almost fiat bottom of the band. The divergences at
n=l near H, and H, are known from the work of
Takahashi. '7 The fact that the susceptibility at H,
diverges when n-+1 suggests that for n =1 and s -=0, the
binding energy of bound pairs does not depend on the rel-
ative number of bound pairs and unbound electrons. The
divergence of the susceptibility at n= 1 as H-+H, can be
understood as follows: as s ~n /2 there is a small number
of bound pairs which become independent and the un-
bound electrons, produced by breaking these pairs, occupy
the flat top of the band.

IV. ANALYTIC CALCULATIONS FOR THE GAP

In the ground state there is zero magnetization, so s=0
and Q =n, as can be scen by integrating Eq. (8) over the
interval ( n, n ) Th—e gap .is the minimum energy needed
to turn up one spin. It can be calculated by setting
s =1/N, which corresponds to

Q =n 1/[Np(k)—] .

For this value of Q, Eqs. (8) and (10) can be eliminated
from the set (8)—(11),which leads to

1 ~ IUI/4
—~ (U/4) +(A, —sink)

(21)

] e' 8
dk cos (k) 2

'

z o(A, )dA, .
( U/4)2+(A, —sink)z

(22)

After solving Eqs. (20) and (21), the ground-state energy will be given by terms of the order of unity while the gap will be
given by the coefficient of the 1/N term in (22). No method is known by which Eqs. (20) and (21) can be solved in
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closed form for all values of n, but in the limiting cases 1 —n « 1 and n « 1, approximate methods yield results of suf-
ficient accuracy.

A. (1—n) &~1

Since 8 = ao corresponds to n =1, we expect 8 to be large. In this case we use a form of Eqs. (20)—(22) in which the
A, integrals are over the region ( —ao,B}and (8, 00 ). This form can be found by straightforward algebraic manipulation
involving a Fourier transformation of Eq. (20):

~o —si~ — oo ——2~0 — & — ' +E +

f (r(iL)d A, = —,
' (1—n),

+ + f cos (k)K(sink)dk
E nIUI IUI —4 1

f J 2cos (k)K(sink sink )—dkdk''+ f dcossk J oc(k. sink)r—r(k)dkdk,

(23)

(24)

(25)

where

soph ,-I llUI«
(ro(iL) = dA, , E(d{,) = e dco.

2n — 2 cosh(co U/4)
' —~ 2 cosh(co U/4)

(26)

Equation (23) is very similar to an integral equation which arose in the treatment of the Heisenberg model. ~o Following
the method used there, one obtains the energy as a power series in (1—n), which, up to second order is

E Eo b,+ (27)
N N N '

&o IUI 1 ~ 2, , IUI n Ii(2ir/IUI }
2cos kK(sink —sink')dk dk'+ (1—n)+— (1—n)2,

N 2 (2~)' -~ 2 2 I (2o./I U I)

(28)
2 2 I((2ir/

I
U

I )5=
I

U
I
—4+ —f cos~kE(sink)dk +(1—n)2o.

m' -e' Io(2n/I U
I

)i

where Io(x} and Ii(x) are the Bessel functions of imagi-
nary argument. The neglected terms are of the order of
(1—n)4. However, the validity of (27) and (28) is not only
limited by 1 —n «1, but also the procedure applied,
which converges only if

Bo
0'0 — P1

N —Bo 2

(U/4) +d{, (U/2) +(A, —Bo)

(32)

e —(2s/( U
) )

ne IUI e
(29)

(U/2) +(&+Bo)

B. n g~1

In this case, according to (21), 8 is expected to be small.
Iterating Eq. (20) should be a convergent process, increas-
ing the accuracy by one power of (n —1/N) with each
step of iteration. To obtain results correct up to second
order, however, there is a simpler method. In Eqs.
(20)—(22) separating the terms I/X from those charac-
teristic of the ground state, leads to the set of equations

=2~wc)+ f" I I/ gX)dX,
o (U/2)'+(A, —A, ')

(33)

(34)

(35)

f,' gX)dc= —1 —2,
Bo

&=
I

U
I

—4—f f/{))(,)5(A, )dA, —2zf2(Bo),

fi(A }=2'(r(ro(A )

+ " I'I,(~)d~,
0 (U/2)' —(A, —A, ')

Bof (ro(A, )d A, =—,—Bo 2'

(30)

(31)

where

f, (A, )=— dk,—~ (U/4) +(A.—sink)

f2(d{)= cos'k I I,dk,
(U/4) +(d{,—sink)

(36)
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8 —80
5(A, ) =[o'(A, )—cr0(A, )]/N, z = o'0(8) .

N

Using the equality

f(A, )n(A, )dA, =f(A, ') f o(A)dA, , —8&A.'&8

one finds that

(38)

Figure 4 shows a comparison of the gap given by the
analytical results in Eqs. (28) and (43), with the gap calcu-
lated from the numerical solution of Eqs. (12)—(16}. This
figure shows very good agreement between the numerical
and analytical results, within the range of validity of the
latter.

V. SUSCEPTISII.ITY NEAR ONSET
AND THE SATYR.ATION OF MAGNETIZATION

&0 n 2

2
= —

~

U
~

——fz(0)n+0(80n),

4=
~

U
~

—4+fz(0) — fz'(0)+0(&0) .
&o 3

2

80 linear in n is given by (30) and (31) as

80=@'n/2f i(0) .

Finally, after evaluating fi(0), fz(0},and f"(0)one obtains

( V2+16)1/2

2
(42}

' 2 —1/2

b, =[(U'+16)'~' —4]— 1+ U (urn)

8

(43)

Previously, Krivnov and Ovchinnikov have calculated
the gap on the basis of the LW equations by calculating
the quasi-ionic excitation spectrum. ' Larkin and Sak
have prescribed a formula for the gap by solving the
renormalization-group equations. For the case
(1—n)«1 and n~O,

~

U [ ~0, with ln( U
~

=constant, our result, given in Eq. (28), agrees with that
of Refs. 21 and 22. For the case n « 1, our result in Eq.
(43) holds for any U&0. In this hmit n~O,

~
U

~

~0
with n/

~
U

~
&&1, Eq. (43) does not reproduce the earlier

results. According to Ref. 21, there is no quadratic term
in the gap. Our result cannot be compared with that of
Ref. 22, since that result is valid only in the weak cou-
pling limit,

~
U

~
/n &&1, which cannot be obtained from

our formula.

As already indicated, the magnetization curves for less
than half-filled bluids, n&1, are qualitatively different
from those for half-filled bands, n= 1, which were found
by Takahashi. ' While for n= 1, all curves start, and ter-
minate with infinite slopes, for n & 1 this behavior is not
seen. The following calculations confirm, that the infinite
susceptibility at the onset and saturation of magnetization
is really only a characteristic of the n~0 and n~1 lim-
its.

To see the behavior at the onset of magnetization, we
solve the LW equations directly for a strong on-site repul-
sion

~
U

~
&&1, and applying (4) and (7), we calculate the

energy and magnetization for U « 1.
In Eqs. (2) and (3) in the large- U limit, all A, are propor-

tional to
~

U ~, thus Eqs. (2) and (3) for symmetrical k
and X distributions to leading order in 1/

~
U

~
become

I~ sink~
k) 2n—— (44)

, 1 —(4X /U)

4A,~
2N, arctan =2nJ~+ g 2arctan

a=1

(45)

The solution of (44) to leading order in 1/
~

U
~

is

I)
sin 2m—

M
' —X& . , 1+(4)./V)z

Equation (45) is the Bethe ansatz equation for an isotropic
Heisenberg chain of N, =E(1—2s) spins with total mag-
netization S,= —,

'
(N, —2M ) =(1—n)N/2. According to

(4), (7), and (46) the energy is

R, /2

2 cos 2&/

N = mg2
r

2 2 l —Pl= —
(

U
~

——s ——sin(2ns)+ (1—2s)eH
2 m'

i
U

i 2(l —2s)
sin4m

1 —2s+
2m'

(47)

where eH(x) is the energy per spin in a Heisenberg chain
with magnetization per spin equal to x. This expression
for the energy leads to a magnetization per site, just above
the onset given by

. p(H H, ), —
1 —nn(1 n) e"—

2
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pH, = iUi —4+ 1—n
&H

1 —n

2

(49)

Equation (48} clearly shows that the magnetization starts
with a finite slope provided a+0 and n+1 This result is
strictly valid for large

~
U

~
only, but it indicates that the

finite susceptibility at the onset of magnetization is a
property of the empty and half-filled band for any finite
U&0. Equation (48) also shows that the susceptibility

should diverge for any band filling as
~

U
~

~ 00. This is
a tendency which can also be seen in Figs. 1—3. In
several other Bethe ansatz models where there is a gap in
the ma etic spectrum (Gross-Neveu or the J- V
model ' }, the magnetization was found to start with in-
finite slope. Our result shows that this is not a common
feature of all Bethe ansatz systems.

Next we calculate the magnetization curve near satura-
tion. Close to saturation s & n /2, the parameter
v=n/2 —s is small, and, 8 is again a small parameter,
similar to the calculation of the gap for n «1, but now
we do not have the convenience of g being near to m.

After elimiiiating Eq. (8) from the set (8)—(11)we have

2
dk =2iro(A, )+ 2 2

o(A, ')aA, '1 + [Uf/4 B

-~ (U/4) +(A,—sink)2 -s (U/2)'+(A. —A, ')2

" -anQ (U/4) +(g &) (U/4) +(g x)
(50)

1
)t

A +siiig
n 2ir "-& iUi/4

Bf o(d(, )dk, =v,

A, —sing

I
U

I
/4

o(A)d A=, (1,—n)+2v, (51)

(52)

E—= —(U)v — I dk f dk
cos2k

o(A, )——sing .2.
N (U/4) +(A, —sink)

When this system of equations is treated by the same method as the equations for the gap d with U « 1, it yields

—= —~U~v —v f dk ——dng-LO(v),E (U) & cosk 2
N 2ir -& ( U/4)2+sin2k

+—varctan +0(v }=1—n +2v .0 2 sing
1T 7r

I
U

I
/4

(53)

(54)

(55)

After solving Eq. (55) for g up to quadratic terms in v, and calculating the energy, by Eq. (54), we get a magnetization
per electron of

s 1S= =—+
El 2

p(H —H, }

2—n sin(urn) 2ir —2arctan
sin(urn}

(56)

where the field at which saturation occurs is given by

2 sin(en)
PHs Its = cos(1m) 2ir —2arctan

n JUL/4

~
U [

(U2+16)1/2 (U2+16)i/2
arctan tan(np) —mp if n ~ —,',

L

pHs pHs —pHs +(U——+16)'—/ if n & —,
'

(57)

(58)

Equation (56) confirms that the susceptibility at satura-
tion should be infinite for n = 1 (and n ~0), but it is finite
for 0& n &1. The value of the critical field Hs given by
(57) and (58) agrees with the values obtained numerically
to within four significant figures.

VI. SUI4iMARY

In the present work, ere have calculated the magnetiza-
tion curves for a Hubbard chain with on-site attraction,
for several values of the band filling at different values of
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attraction (see Figs. 1—3}, by solving numerically the
Lieb-Wu equations. The curves are found to share com-
mon features except that the range in magnetic field be-

tween the onset of magnetization H, and saturation H,
increases with increasing attraction. A new feature of the
less than half-filled band is that the magnetization curves
start and terminate with finite susceptibility, unlike the
magnetization curves found by Takahashi for the half-
filled band. This property of the magnetization curves is
verified by analytic calculations.

We also calculated the gap in the magnetic excitation
spectrum numerically as a function of the band filling,
and by approximate analytical methods, for the case of

close to empty and close to half-filled btmd. Comparison
of the numerical and analytical results (Fig. 4) shows good
agrtueient in the range of validity of the analytical expres-
610ns.
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