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Anomalous electric and magnetic properties of V203 in the metallic state
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Assuming the Hubbard model for the tightly bound alg electrons of the two pairs of V atoms
within the unit cell of metalhc V203, we have studied the correlated ground and excited molecular
states. Using the exact wave functions of the singlet ground state and of the first excited triplet
state, we evaluate the molecular magnetic susceptibility +0(co). The susceptibility of the conduction

{e~) electrons X(q, m) is obtained in terms of +0 and the conduction-electron polarizability. The
conduction-electron mass renormalization m /mb is due to the virtual magnetic excitations of the

al~ electrons, introducing antiferromagnetic correlations between the V pairs. The resistivity

p=AT is caused by virtual exchange of these excitations. Both quantities are obtained from

X(q,co). The results are discussed in terms of the pertinent parameters in p, such as the intra-atomic
exchange interaction between the al~ and e electrons, and are compared with the experimental re-

sults. Because the antiferromagnetic spin-fluctuation model does not account for the susceptibihty
enhancexnent at q =0 and because A is not sufficiently large we use Landau's Fermi-liquid theory to
arrive at a consistent quasiparticle description of metallic Vq03. The Landau scattering parameters
A l are obtained by applying the potential-scattering model for the quasiparticle interaction due to
the molecular magnetic excitations. It is found that the experimental values for the specific heat,
the static susceptibility, and the electrical resistivity can be explained in a consistent manner.

I. INTRODUCTION

Recently, the electric and magnetic properties of VzO&
have attracted the interest of experimentalists and theore-
ticians alike, to an extent that few other solids have. One
reason for this interest is the attempt to understand the
nature of the metal-insulator (M I) transiti-on at the tem-
perature T =150 K. This transition is accompanied by
an antiferromagnetic ordering with an unexpected number
of Bohr magnetons per site (1.2p, it ) for a Vi+ configura-
tion and by a monoclinic distortion of the trigonal struc-
ture. The second reason for the interest in V20s is to
understand the anomalous behavior of the metaOic state,
due to some kind of spin-fluctuation effect. '

The basic question with regard to the M-I transition, as
it emerged in the following yoirs, is the following: What
exactly is the type of electron-electron exchange-
correlation effect that dominates the M-I transition and
how is it to be formulated& The Brinkman-Rice (BR)
theorys'9 of conduction electrons with short-range
Coulombic interactions, and moving in narrow d bands, is
based on Gutzwiller's treatment of the Hubbard Haniil-
tonian. This theory predicts a metal-insulator transition
as the intra-atomic Coulomb interaction is increased
beyond a critical interaction, the value of which depends
on the filling of the conduction band. As for the metallic
state, the Hall effect should be strongly temperature
dependent near the M-I transition because of the change
in the quasiparticle distribution as the M-I transition is
approached and the electrons tend to become localized.
Such a change has not been observed (McWhan et al. '; J.
Honig'"). The BR theory yields for the metallic phase a
mass enhancement rrt'/mt d, that is comparable to the
susceptibility enhancement X/Xp „g whereas the observed

X enhancement is about twice that of m '. This enhance-
ment ratio is, however, much less than that one might ex-
pect from the ordinary paramagnon theory. Finally,
Castellani et al. ' ' claim that in the BR model the ex-
pression for the mass enhancement, when evaluated for a
realistic set of parameter values for V20&, gives an
enhancement that is insufficient to account for the ob-
served ratio m'/m=5. In summary, it appears that the
electrons in V&03 are not the original BR Fermi liquid
that is close to a localization transition, as is the case for
normal sHe (Ref. 18) below the Fermi temperature.

There are two other theoretical approaches —by Castel-
lani, Natoli, and R'inninger' ' and by Ashkenazi and
Wegers —both of which are based on a Hubbard-like
Hamiltonian. These authors use realistic electronic pa-
rameters, as they are obtained from band-structure calcu-
lations. The model Hamiltonians are treated in the unre-
stricted Hartree-Pock approximation. Both groups, how-
ever, are mainly interested in the insulating phase and in
the metal-to-insulator transition; they do not evaluate the
metallic properties of ViOi (see Fig. 1). Castellani et al. '

give some qualitative arguments in favor of spin-
fluctuation (paramagnon) effects in the metallic phase
that lead to a Stoner enhancement of the Pauli susceptibil-
ity and to a large effective mass. Without giving details,
the authors also point toward the importance of short-
ranged spin correlations within the vertical pairs of V
atoms oriented along the c axis. Likewise, in their "exci-
tonic" model, Ashkenazi and %'cger emphasize the impor-
tance of the V-atom pairs and also the role of the two
types of electrons, a is and es. They discuss the change of
the c/a ratio at the transition and conclude that the
change in distance between c-axis neighbors changes the
nature of the a is band from delocalized to localized. The
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FIG. 1. Hexagonal unit ce11 of V203 in the trigonal metallic
state.

localization of the a is electrons also causes, via the atom-
ic exchange interaction, the localization of the es elec-
trons. This localization, then, causes the material to be-
come insulating. We believe, based on the following dis-
cussion, that the M-I transition is a magnetic transition
driven by a rather weak exchange interaction between
electrons at different parts of the Fermi surface (i.e., a
type of nesting transition as it occurs in chromium'9 2'),

resulting also in a localization of the es electrons below
the metal-insulator transition.

The M-I transition can be suppressed by applying pres-
sure; thereby, the metallic phase of V2Qq persists down to
0.3 K.~2 The anomalous metallic behavior is of particular
interest since it shows the inherent electron correlation ef-
fects that tend to drive the system into the antiferromag-
netic insulating phase. Experimentally, these effects man-
ifest themselves in a large renormalization of the electron
density of states at the Fermi surface. Firstly, measure-
ments of the electronic heat capacity ' show that the
electronic specific heat in the metallic phase is extremely
large, y =32 mJ/K mol V (the uncertainty in y is high,
—20%%uo), and leads to a value of 6.7 states/(eV V-
atom spin). Hence N'(eF)/Nb d(sp)-5, if one takes
the value Nb, „d(eF)=1.5 states/(eVV-atom spin), found
by different authors. ' ' Secondly, from the measure-
ments of the paramagnetic susceptibility ' of
1.84 X 10 emu per mole of V20i near the transition, one
finds an effective density of states, Nz(ep) —14
states/(eV V-atom spin) corresponding to an enhancement

of —12. A third unusual behavior is found in experimen-
tal studies of transport properties which show an unusual-

ly large T term in the electrical resistivity,

p —po ——0.042T P' in units of pQcm and T in degrees
kelvin. Only the heavy fermion metals have larger T
coefficients, AC, Ai -30. By virtue of this anomalous

behavior, the question arises as to why metallic V203 does
not exhibit some kind of anisotropic superconductivity,
perhaps triplet superconductivity, as recently pointed out
by Anderson. i9 In 1969 Mott3 suggested that BCS super-
conductivity may not occur because the metal atoms carry
residual magnetic moments. It is also possible that the
metallic phase of stochiometric V203 orders antiferromag-
netically at sufficiently low temperatures, ' which does
not necessarily exclude the possibility of superconductivi-
ty.

In this paper we address the anomalous metallic
behavior of Vi03, and not the M-I transition. We rely
upon some recent theoretical work about the electronic
structure of V&03.' ' ' There are two different types of
3d electrons. The vanadium 3d t&s ba-nd decomposes in
the trigonal symmetry of a metal site into two different
bands, for a is and es electrons, both of which incorporate
ligand admixtures. The @is electrons tend to form co-
valent molecular bonds between vertical V pairs by virtue
of a larger overlap integral along the c axis and a small
overlap integral between neighbors perpendicular to the c
axis. The nondegenerate a &s bonding band can accommo-
date two electrons per unit cell, containing two pairs of V
atoms (Fig. 2). This band is the lower of the two bands
originating from the splitting of the a &s band for a simple
V2 pair when proceeding to the actual trigonal unit cell
containing two Vi pairs. The Fermi energy sF is located
in the well of a double peak caused by this splitting. Thus

Vl

X
U

FIG. 2. Schematic illustration of the positions of the four V
atoms within the unit cell. D» gives the distance between the
two V atoms in the vertical pair; D~3 gives the distance between
the two V atoms of the horizontal pairs.
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FIG. 3. Sketch of the density of states. Plotted are the par-
tial densities of the al electrons (———) and of the eg elec-

trons ( ).

below sF there is —,
' a is electron per V atom (cf. Fig. 3).

Altogether we must accommodate two d electrons per
V atom in the conduction bands. That leaves —', electrons

per V atom for the doubly degenerate ee bonding band.
Here the splitting of the band —when proceeding from
two to four V atoms in the unit cell—is not so large as to
separate the split-off subbands. There is substantial over-

lap. The Fermi energy falls into a region with a high den-

sity of es states and, therefore, the thermodynamic and
transport properties of metallic V203 are governed by ee
electrons.

In the following we attribute the anomalous metallic
behavior of V202 to that of the es electrons caused by lo-

cal, molecular magnetic excitations of the ais electrons.
To this end, we treat the es electrons as being nearly-free-
electron-like. Their interaction with the molecular excita-
tions of the aiz electrons causes the mass enhancement
and the paramagnetic susceptibility enhancement; these
local excitations also mediate an indirect interaction be-
tween the es electrons resulting in the T dependence of
the resistivity.

O. ELECTRON MODEL FOR V203

As already stated in the Introduction, any realistic ap-
proach to the metallic phase of V202 must take into ac-
count the two different bands, a iz and es, near the Fermi
level. Here, we adopt a simplified model in that we treat
the es electrons as free-electron-like with 1.5 electrons per
V-atom within the doubly degenerate band. This number
is obtained from band-structure calculations. ' Then
there are 0.5 electrons per V-atom left for the ais band.
Since the latter do not significantly contribute to the den-

sity of states at the Fermi level, we describe these elec-
trons in terms of many-electron eigenstates of the molecu-
lar Hamiltonian for four vanadium atoms,

—a g(aiHzn+aMi +ai&ae+a~i )

—b g (a2~3g +ai~z +a~i~+a i~~)+ U g n«n«

Here the a (a=1,2, 3,4) are the annihilation operators of
the Wannier states which transform according to the one-
dimensional representation ais at the four V sites a
within the unit cell. The quantity a is the transfer in-

tegral between neighbors along the c axis and has a large
value compared to the transfer integral b between neigh-
bors perpendicular to the c axis; U is the Coulomb repul-
sion between electrons in the same orbit. In order to be
consistent with the periodicity of the crystal, we have
closed the molecule, consisting of the four vanadium
atoms in the unit cell, by periodic boundary conditions.
By using this procedure we neglect the dispersion of the
a &g band and take the k =0 point as being representative
for the center of gravity of the a,s band. One pertinent
advantage of the molecular approach is that we can take
into account the electron correlation effects. Since in the
average there are exactly two a &g electrons at the molecule
(unit cell), we solve Eq. (1) with the fixed n =2 occupancy
for the molecule. An analogous problem with two atoms
within the molecule has been solved by Falicov.

The ground state which is a spin-singlet state may be
written as the linear combination

consisting of the following many-electron wave functions:

0i= 'Xa ia -iI0&
a=1

02 Y(a 1ta 2 h +a 2 ta li +a 3ta 4i +a 4ia 3i )
I
0 &

t
43 2(a2ta3i+a3ta2i+a4tali+aitaita4i) I

o&

t
p4 Y(aitaii+aitaii+a2ta4i+a4ta2i) I

o&

(3)

E+(2t +U)—
—2Q

—2b

0

0
—2b 02 =0.
E+2r—

(4)

From this equation we evaluate numerically the ground-
state energy Eq and the associated eigenvectors g; in
terms of the parameters a,b, U. Furthermore, this equa-
tion yields three other singlet states (cf. Appendix A).
The first-excited state is a spin-triplet state with the ener-

By applying the Hamiltonian, Eq. (1), to the P;, we obtain
the following secular equation:
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gy ET ———2a. The wave functions are

$7, ———,(a], +a2, )(a3, +a4, ) lo&,

fr = [«tt+a2t)«3t+a4t)
2 2

the unit cell. The S„are the spin operators of the ate
electrons, and the o operators are those of the conduction
electrons. The exchange integral is given by

J=—f d ri f d rig, , (r2 —R„)

+(a t, +a3, )(a3t+a4t)] l
0&, (5)

ttr, = i «»+a2t )«3t+a4t )
I
o&

The other excited states (altogether there are 28 states) are
easily obtained by appropriate linear combinations of the
form of Eqs. (1) and (5) and are given in Appendix A.
However, the other states have much higher energies and,
hence, they are neglected in the following. For example,
for the values of the parameters, U =1.5 eV, a =0.65 eV,
and b =0.15 eV, which are typical for V203, the
ground-state energy is —1.43 eV and the energy of the
first-excited triplet state is —1.3 eV, whereas the energy
of the next-higher state, being a singlet, is —0.85 eV and,
hence, is much higher.

In order to study the magnetic properties of V203, it is
pertinent to consider the spin correlations within the mol-
ecule. By assuming that all spins are quantized along the
c axis, S~ is given by S =n« —n«. In the ground state,
we find, for the above-mentioned parameters, the follow-

ing spin correlations:

& s,s, & = &s,s, & = ——,'q', = —o.o55,

&s,s, &=&s,s4&= ——,'q', = o.21,

&s,s.&=&s,s, &= ——,'z,'= —o.2,
whereas for the triplet state we obtain

& s,s, & = &s,s.& =o,
( S,S3 & = (SiS4 &

= (S3S3 &
= (S2S4 & = ——, .

From these values we conclude that in the ground state
there is a strong antiferromagnetic correlation between

spins on different c-axis neighbor pairs and a relatively
small correlation between the spins of a c-axis pair. In
the triplet state there is no spin correlation between the
spins of one c-axis pair and a small correlation between
different pairs. This is one reason for the tendency to-
wards antiferromagnetic ordering between neighbors
within the plane perpendicular to the c axis.

Turning now to the coupled eg-a~~ electron system, ~e
assume that the Fermi level is shifted by the crystal field
so that it falls in between the singlet and the triplet state.
For the interaction between the two kinds of electrons, we
assume an intra-atomic Coulomb-exchange interaction,

H~t ———Ig S„n.cr(R„)
n,a

gJg[Sna(cnatcnat Cn~tcn~t)
+IX

++S & atnc ant+Sn&natnC ~t] ~n

where, in the tight-binding picture, the c«are the annihi-
lation operators at the nth unit cell and the site a within

Xg, , (ri —R„)g, (ri —R„) .

We assume that J—which is independent of R„—is a
constant, i.e., independent of energy. By Fourier-
transforming the conduction-electron states into the k
representation,

1 ik'R~~'" =(4N, )'" ~'
where N, is the number of unit cells, we obtain the in-

teracting part of the Hamiltonian,

J —iq R„
H;„,= — g e

c kana

gX [Sna(ck+qtckt Ck+qtckt )

++ nd k+qt kt+Snttck+qt kt] ~

III. SPIN SUSCEPTIBILITY, ELECTRON MASS
ENHANCEMENT, AND ELECTRICAL RESISTIVITY

In this section we evaluate the transverse dynamic spin
susceptibility X of the coupled aig-eg electron systems.
First, we find the molecular susceptibility Xo of the aig
electrons localized at the molecule that consists of the
four vanadium atoms within the trigonal unit cell, cf. Fig.
2. Then, we proceed to evaluate X in terms of Xo and X',
the latter being the susceptibility of the free-electron-like

eg electrons.
In order to calculate the molecular susceptibility,

(X+ ) = —'e(r)(([S„+(r),S„]»,
we start from the spectral representation,

+— 1 PE. PE.
(Xo )nit= — g (e ' —e ')c itE,

(10)

& ls. IJ&&jls.pl &

X
co (EJ E; )+i5— —

Here, i denotes the molecular states discussed in Sec. II.
We assume the molecules to be independent of one anoth-
er and, therefore, terms with n+n' do not exist. Taking

This interaction is added to the free-electron Hamiltonian
for the conduction (eg) electrons and the Hamiltonian,
Eq. (1), for the ate electrons.
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into account only the singlet ground state and the first-
excited triplet state —all other states are much higher in
energy and do not play a significant role at low
temperature we get

—Pd

(Xo )
1 +3e N —6 +2ll 5CO

(12)

—1 —1

—1 —1
(13)

Here, b, is the singlet-to-triplet separation; M ~ is given

by

we obtain

X+ (q, co) =M(q)XO(co)+ J Xo(co)M(q)X'(q, co)X+ (q,~)

(18)

In Eq. (17), the r are the basis vectors within the unit cell
and M(q), Eq. (18), is

4
M(q)= —,

' g e M~~e
a,P=1

The function

—1 —1 e( ) g f&+q
4N, co e(p—+q)+s(p)+i5

(20)

where S stands for singlet and T for triplet. In the limit
T—+0 we obtain

(Xo )ay= —Map i . =MapXO(co) (14)'
co 52—+2i5co

Apart from the fact that here (Xo+ ) & is a matrix due to
the molecular structure of the excitations, there exists
some analogy to the 4f magnetic excitons in rare-earth
metals which have been invented by %Rite and Fulde to
explain the conduction-electron mass enhancement in
praseodymium. Within the random-phase approxima-
tion (RPA) the transverse susceptibility of the coupled
aig-eg electron systems is evaluated according to the dia-
gram of Fig. 4. We obtain

X+.„,(~)=[Xo+ (~)]. .

Xo(ro)M(q)X+ (q,~)=
1 —J Xo(ai)M(q)X'(q, co)

(21)

The longitudinal susceptibility is defined by the equation

X'(q, ro) = —ie(r)(([s„',(t),s„'g(0)])), (22)

and we obtain

& Xo(~)M(q)
X'(q, ~)=

1 —J'Xo(~)M (q)X'(q, co)
(23)

is the Lindhard function; g =2 is the degeneracy factor of
the es band. Equation (18) is solved by

n &,a&, n2, a2
[Xo(~)]„„,,

XJ X'„, ,„...(co)X„+,,,„(co),

(15)

This form of the susceptibility function, Eqs. (21) and
(23), indicates what type of magnetic structure could arise
from a phase transition where the susceptibilities go to 00,
i.e., the common denominator vanishes. The quantity
M (q) of the denominator in our model is given by

where Xo ls the polarizability of the a is electrons, cf. Eq.
(14), and X' is the polarizability of the conduction elec-
trons.

Using the equation

(Xo )„~ =5„„M Xo(ro),

and using the Fourier transform

nan a

A, (k A, 0('. A, & ~ ~

A,(k A~,(g q Al,o(!q A, QC

FIG. 4. Diagrams for the evaluation of the conduction-
electron susceptibility g+; go and g' represent the molecular
susceptibility {singlet-triplet excitations) and the free-electron
polarizability, respectively.

1 qid it
M(q) = —,(ili+ri2) cos

2

qxdz3
X sin

q, d ii
2

(24)

Here, d i2 is the distance between two V atoms of the pairs
oriented parallel to the c axis, whereas d2& is the distance
between two V atoms of the pairs perpendicular to the c
axis, Fig. 2. The function X (q, O) is the static Lindhard
function, and is a slowly varying function of q when com-
pared with M(q). Hence, the maximum of the suscepti-
bility is determined by the maximum of M(q), obtained
for q, =O and q, =midi&. Thus the magnetic ordering
due to the "freezing" of spin-wave excitations is antifer-
romagnetic perpendicular to the c axis and ferromagnetic
parallel to the c axis, in agreement with experimental
findings. This magnetic structure is found by elastic-
neutron-scattering experiments in the insulating phase.
The magnitude of the saturation moment in
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stoichiometric V203 was determined to be 1.2p,q. No
completely satisfactory explanation for this unusual mo-
ment has yet evolved. However, we would like to point
out the fact that antiferromagnetic ordering, with an ef-
fective moment p,&-0.5, occurs even within the metallic
phase in oxygen-rich V20&." These observations suggest
that the ais electrons can order antiferromagnetically in
the metallic state of V20q.

Given the susceptibility, Eqs. (21) and (23), we can
proceed to calculate the ee-electron self-energy (see Fig.
5). The contribution of the transverse susceptibility to the
self-energy is given by

FIG. 5. Contribution of the exchange of the magnetic excita-
tions to the conduction-electron self-energy.

d'p' I~+, , f(e(p')) 1 —f(&(p'))
X p, co =J

(22r)~
' ei+ai' —e(p') co —ai' —e(p')i IiilX p —p, co (25)

By taking into account both the longitudinal and trans-
verse magnetic excitations, and by performing the spin
summation, we find that the shift in the specific heat due
to the magnetic excitations in the limit of low tempera-
tures is given by

(26)

Here, N(0) =msp~/n is the density of states per spin for
the doubly degenerated ee bimd. For the effective mass
enhancement (cf. Appendix B for the details) we obtain

dQ 8—1=—3 &(pF,ai)
41l' 8ei

The simplest way to account for the cylindrical symmetry
is to replace the q vector in M(q), Eq. (24), by the radius
vector qi, oriented perpendicular to the c axis. By allow-
ing X' to be q dependent, we find that the maximum af
the function X'(q)M(q) has shifted to a slightly smaller
value of q compared to q, and the largest value of W is
now given by Wo ——1.128682865 5. Because af the
cylindrical symmetry of this model, the azimuth-angle in-
tegration in Eq. (27) can be performed. The resulting
two-dimensional integral is shown as a function of W' in
Fig. 7. Again we find the logarithmic divergence at
8'= 8'p.

The Ti term of the electrical resistivity is derived else-
where by using the variational method,

3q ) q
+-

err
$p - 200

To evaluate this expression as a function of the dimen-
sionless pam~eter

W = —,
'

(2) i+2)2) I N(0)X0(0),

we take two slightly different approaches in averaging
over the anisotropy of X+ (q). In the first case we take
the I.indhard polarization function X'(q), which slowly
varies with q, as compared with the function M(q), to be
a constant: X=X,(q ). Here the wave vector q is de-
fined by the maximum value of M(q). The largest value
which the pat+meter W can assume is, then, given by
Wo ——1/X, =1.148075. For this case we show in Fig. 6
the effective mass enhanceinent m '/ms —1 as function of
W. Near W= Wo, m'/m& —1 diverges logarithmically.
In the second approach we generalize the planar model to
the more realistic cylindrical symmetry. We take into ac-
count that every V atom of a c-axis pair "sees" three
equivalent neighbor atams in the plane perpendicular to
the c axis (cf. Fig. 1). In other words, we take into ac-
count that another unit ceH can be chosen by rotating the
original cell about the c axis by an angle of 120' ar 240'.

I

JD
E

E

5 a

O

t

-160

t
t

t
-)20

- SO

- 40

1,13 1.14 N~ 1.15 N

FIG. 6. Electronic mass enhancement m /mq and electrical
resistivity enhancement A/Ao (Ao ——4.3)&10 5 pQcm/K ) vs
the strength of the effective interaction parameter 8' for g' in-
dependent of q.
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1 d'k' d'k'
p= gx3f,f, [u(IC) —U(k)]'U(t, &')

6k' T (2m) (2n )

13k Bf(e}
(2ir)'

—2

(28)

Here the transition rate is given by

U(k, k')=Ii f d'q 5(k' —k —q) f ImX+ (q, Q)m5(eq —eq+Q)n (Q)[1—f(ei, )]f(eb ) . (29)

In Eq. (28), g =2 is the band-degeneracy factor and the factor 3 in front of the integral in Eq. (28} arises from the spin
summation that arises from the different contributions of the transverse and longitudinal magnetic excitations. Perform-

ing a momentum integration, we get

p=, , f 3S()—q/2pj )I qtau+ (q()) , n(()) .
9n mb J d3q +~ dQ + Q

(30)
4e~pF ke T (2n.)i ~

—PQ

In the limit of low temperatures this expression becomes

3n mbJ ks d'q l~+ (q, Q)p= 2 b, 8(l q/2p~—)q lim
2e pF (2m }i 0,-+0

T —AT (31)

)O e - 200

I

JD
E

E

- 160

-120

- e0

1.115 1.12 1.125

FIG. 7. Electronic mass enhancement m /mb and electrical
resistivity enhancement A/Ao (Ao ——4.3X10 ~ pQcm/K2) vs
the strength of the effective interaction parameter 8' for the
cylindrically symmetric model.

In Figs. 6 and Fig. 7 we plot A as a function of the pa-
rameter W for planar and the cylindrical models, respec-
tively. In both cases, A rapidly increases with W, i.e., the
strength of the exchange interaction J between ais and ee
electrons.

The measurement of the heat capacity yields, for the ef-
fective mass enhancement, m'/mb-4. 5. To this mass
ratio we fit the interaction parameter W with the results
W=1.146 and W=1.1237 for the planar and cylindrical
models, respectively. The values of W correspond to a
value of about 0.1 eV for the interaction parameter J,
which is a reasonable number. For the two W values the
resistivity enhancement A /Ao (Ao =4.369X 10
pQcm/Ki, as calculated from band-structure data} is
found to be 150 and 50, respectively The resulting coeffi-
cients, A =6.5X10 pQ cm/K and A =2.18X10

p, Qcm/K, are 1 order of magnitude too small in com-
parison with the experimental result. Allowing for a
larger mass enhancement, bearing in mind that the experi-
mental value is known only up to an error of 20% leads to
a somewhat improved agreement between theory and ex-
periment. We mention that in A the Fermi momentum

pF is evaluated in the free-electron model, whereas the
realistic band structure and the Fermi surface are not so
simple. Allowing p~ to be a free parameter, the agree-
ment of the resistivity coefficient A with the experimental
value can be significantly improved, because of the strong
dependence of Ae on p~. The shape of the Fermi surface
and the effects of the band structure on the electron polar-
izability function X'(q} are important for the phase space
of the singular region of the susceptibility X+ . In order
to have a singular behavior of the effective mass enhance-
ment and, hence, of A near a critical value Wo, we need a
sufficiently large region in the q space where the denomi-
nator in the effective susceptibility is close to zero. For
the two models discussed below Eq. (27), we have two dif-
ferent lines of singular behavior of X+ in q space. From
Figs. 6 and 7 we conclude that the structure of the singu-
lar lines have a large influence on the enhancement fac-
tors. We also mention that the wave vector q where
X+ reaches its maximum is determined by the structure
of the electron polarizability X'. In conclusion, we find
that the antiferromagnetic spin-fluctuation model in its
present form is not yet sufficient to explain the metallic
properties of VzOq consistently for two pertinent reasons:
The absolute value of the resistivity coefficient A is too
small and, what proves to be the main deficiency, we have
no explanation for the susceptibility enhancement at
q =0.

Can we remedy these deficiencie'? A comparison with
rare-earth and actinide compounds —e.g., CeA13,
UB $ 3 UPt3—suggests that we treat V203 as a heavy-
electron Fermi liquid, as has recently been proposed by
Anderson. Just as V&03, these compounds show a large
mass and susceptibility enhancement and they have a very
high resistivity coefficient. Both V20i and the com-
pounds mentioned above have been treated as Brinkman-
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Rice Fermi liquids and are close to a paramagnetic or an-

timagnetic transition, as is He. For these reasons, in the
next section we treat VzO& as a Fermi liquid. We first dis-
cuss the phenomenological Fermi-liquid model and at-
tempt to fit the Landau parameters in a consistent
manner. %e then evaluate these parameters on a micro-
scopic basis by using as the effective interaction a scatter-
ing potential which arises from the exchange of the collec-
tive modes, namely the molecular magnetic excitations of
Sec. II.

IV. THE FERMI-LIQUID DESCRIPTION
OF METALLIC Vg03

Landau's theory of Fermi liquids has been successfully
applied to liquid He. The properties of He can be un-
derstood as those of a gas of quasiparticles if one assumes
that the liquid is close to a phase transition where the in-
stability is connected with the long-wavelength spin fluc-
tuations occurring close to a ferromagnetic phase transi-
tion. z In addition, the transition is affected by the
short-wavelength spin fluctuations occurring close to an
antiferromagnetic transition. The basic assumption is
that both of the spin-fiuctuation effects yield a quasiparti-
cle scattering amplitude that is dominated by the ex-
change of collective modes in the two different particle-
hole channels, in particular by the exchange of spin-
density fluctuation and rotons. i In addition, the densi-
ty fluctuations are taken into account. These so-called
potential-scattering models are appropriate for construct-
ing the zero-frequency vertex function I ". The resulting
scattering amplitude is then successfully used to compute
the transport properties of He. Hence, an important in-
gredient of the Fermi-liquid behavior is often a strong ex-
change interaction mediated by collective excitations.

As in the He, there exists in VzOi —being close to an
antiferromagnetic phase transition —a strong exchange in-
teraction between the quasiparticles (i.e., the conduction
electrons} due to the molecular magnetic excitations stud-
ied in Sec. III. This similarity suggest that we describe
the metallic phase of V20i as a Fermi liquid, using our
magnetic-excitation model.

We proceed by studying first the Fermi-liquid behavior
in terms of the quasiparticle scattering amplitude, thereby
assuming a potential-scattering model. In this
phenomenological approach, we attempt to approximate
the true scattering amplitude by adjustable parameters.
Thereby, experimentally known quantities are used in
determining the scattering amplitude in terms of a con-
sistent parameter fit.

In the second part of this section we evaluate these pa-
rameters on the basis of a microscopic theory by using the
magnetic excitation model for the spectral representation
of the scattering potential.

Assuming that the scattering amplitude arises from the
exchange of magnetic excitons we approximate the static
vertex function I (i.e., first co —+0, q being small, then
q/co~ao) in the following manner, i.e., the potential-
scattering model,

I'"(pi, p~, q)= —~ r(1) o)ss(2)J(q)

p +qr Pg+q

pi 0('

FIG. 8. Physical processes describing the potential-scattering
model. The wavy line represents the exchanged antiferromag-
netic spin fluctuations (magnetic singlet-triplet excitations).

In Fig. 8 the wavy line represents the propagator J(q} for
the exchange of a spin-density fluctuation. In the follow-
ing we shall discuss J(q) on the basis of our magnetic-
excitation model; for the time being, however, we assume
J(q) to be any given potential. Since VzOi is close to an
antiferromagnetic phase transition, which implies the im-
portance of short-wavelength spin-density fluctuations, we
neglect the exchange of density fluctuations. The effect
of these fluctuations is considered to be unimportant, in
comparison with the exchange of the spin-density excita-
tions. Due to the formal similarity between the scatter-
ing amplitude for ordinary potential scattering through a
local two-body interaction and the exchange of collective
excitations we denote the approximation of the static ver-
tex function as the potential-scattering model.

We assume, furthermore, that the Fermi surface of the
conduction electrons is isotropic, which implies that be-
cause of the assumed Galilean invariance the effective po-
tential depends only on the absolute value of the momen-
tum transfer, q, for reasons of consistency. Since we are
close to an antiferromagnetic phase transition, and since
we have in mind the magnetic-exci. tation model governed
by interband transitions (singlet-triplet excitations), th' e
matrix elements for q =0 are equal to zero and, hence, we
take J(0) to be zero.

The quasiparticle scattering amplitude A is connected
with the vertex function I ",

A(pi, p2, q)=N'(~p)zp, zp I "(p„p„q) . (33)

q =2@Fain(8/2)sin(P/2) (36)

The quantity N' is the density of states of the quasiparti-
cles and z is given by

zp, m~/rn ', ——

where m~ is the band mass.
By eliminating the second pair of o matrice in Eq. (32},

we obtain

A (pi, pz, q) =X'(sz)z I —,5 &5~(q& )

—~ „(1)~its(2)[J(q)+—,J(qi )]f,
(35)

where

+~ s(1) crp„(2)J(p2 —pi —q) . (32) q, =
~ pz —p, —q ~

=2pzsin(8/2)cos($/2) . (37)
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A'(8, $)=—', N'(sz)z J(qi), (38)

Here, 8 is the angle between the two incoming particles
and the scattering angle P is the angle between the plane
containing the incoming momenta and the plane contain-
ing the outgoing momenta.

From Eq. (3S) we find the spin-symmetric and the
spin-antisymmetric scattering amplitudes,

3 e0'
p ~2 ks

(49)

%e parametrize the scattering polynomial by expanding J
in terms of Legendre polynomials,

T

N'(sF)z J=g JIPI 1— (50)
l &IF

A'(8, $)= N'—(sp}z [J(q)+ —,J(qi)] .

We note that A' and A' obey the sum rule for 8=0:

A'(8=0, P)+A'(8=0, P) =0 .

(39)
Here,

0 q, Pi 1—, 'F'zq 51
21 +1 zI'~ q qz

2 pF 2JF

a(pi, p2)=N'(sF) 'A(8, /=0) . (43)

Furthermore, it is convenient to introduce the singlet and
triplet scattering amplitudes,

A„„s(8,$)=N'(s~)z 3[J(qi )+J(q)], (41)

A,„~(8,$)=N'(sF)z2[J(q& ) —J(q)] . (42)

In order to find the Landau parameters, we note that the
Landau quasiparticle scattering amplitude a (p„pz) is re-
lated to the scattering amplitude A by the equation

A'(8, /=0) =g Al'Pl(cos8),
I

A'(8, /=0) =g Al'Pl(cos8) .
I

(52)

(53)

These expressions, together with Eqs. (38), (39), and Eq.
(50), yield

In order to find the Landau parameters, we use the result
for the forward-scattering amplitude,

It is evident that knowledge of A goes beyond Landau
theory, since A contains the full angular dependence of a
scattering process.

The framework of the Landau Fermi-liquid theory can
be extended to obtain the transport coefficients. 5 The
low-temperature result for the thermal conductivity ob-
tained by an exact solution of the Boltzmann equation is
given by

2 3
Sm A 1

H(A, ),
3 (ni')4T ( W(8,$)(1—cos8)/cos(8/2})

A) ———,JI,
Al'= —

p Ji —&i,op Ji .
I

Since we assume J(q =0)=0, we get

g Jl ——0.

Thereby, we immediately obtain, cf. Ref. 44,

AI' ————,Ag' .

(54)

(5S)

(56)

(57)

where

H (4n +5)(3—A, )

o (n + 1)(2n +3)[(n + 1)(2n + 3)—A, ]
(45)

To evaluate the resistivity, the quantity W(8,$) is
parametrized by using Eqs. (41), (42), and (50). The result
1S

~(8,P)=—[N'(sp)]

Xg AIAI t2PI(qi)PI (qi )+[PI(qi )+Pl(q}l
( W(8,$)(1+2cos8)/cos(8/2) )

( W(8,$)/cos(8/2) )

Here the ( . ) values are defined by the angular aver-
ages,

where

X [Pp(qi )+Pl (q)]],

(58)

(F(8,$))—= f dP I d8sin8E(8, $) . (47) PI(q) =Pl 1—
The quantity 8'is related to the scattering amplitude A,

fV(8, $)=—[N'(sF)] t —,
'

[At„p(8,$)+A„,s(8,$)]

+ 2 At~i (8 4)] . (48)

The electrical resistivity is obtained from the thermal con-
ductivity via the Vfiedemann-Franz law since we assume
elastic scattering promises,

The average values, Eq. (47},of the product of two Legen-
dre polynomials, are readily evaluated. Using these aver-
ages, we parametrize the resistivity p in terms of the Lan-
dau coefficients Al',

(59)

Here the coefficients Cll are given by
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CI =([2'(qi)P, (qi[+[P(qi[+Pi(q[][Pp(q&}+Pp(q)][
sin'(e/2)
cos 2

(60}

We keep in mind that q i and q are functions of 8 and [I), Eqs. (36) and (37).
Besides the resistivity, there are two other experimental quantities, the specific-heat capacity and the susceptibility,

both of which can be parametrized by Landau coefficients. We now address the mass enhancement m'/ma, and the
susceptibility enhancement X/Xo.

From the Galilean invariance, we get a general relation between the quasiparticle velocity and the Landau interaction
function f(p, p'). The current is given by the equation

3 ~

J(p)=v(p)+g I f(p p')&(s(p') —}[i)v(p') . (61)
(2n )

Since we treat the conduction electrons as nearly free, neglecting periodic lattice effects such as umklapp scattering, the
current is proportional to the momentum. Hence, Eq. (59) gives the relation

v(p) = —g f s f(p, p')5(s(p') —}[i).v(p') = —g J s a(p, p')5(e(p') —[u) ~ (62)
ma (2tr) rnb ~ (2~)s 7tlb

The solving kernel, a(p, p'), is related to the scattering
aruplitude A, Eq. (43), and is the Neumann series of the
Landau scattering function f; mb is the band mass.
Hence, for an isotropic system where the momentum is
parallel to the velocity, we finally get the mass enhance-
ment

rn'/rrts ——(1——,
' A'i ) (63)

In a similar manner the spin susceptibility is obtained as

dQq J —,'~(q)Xo
J(q) =

1 —J'~(q)XoX'(q)
(65)

This equation assumes that J(q) is replaced by the angu-
lar average, denoted J(q}. In real solids, J(q) is anisotro-
pic due to the squared matrix element, M(q), Eq. (24).
Also, the Fimni surface is anisotropic. %%en the aniso-

(1—Ao) (1+ 3 Ao)
)Fib mb

From the measurement of the heat capacity, we have
m'/ms 4.5, and hence get A[-2.3. From the mea-
surement of the spin susceptibility, we have (X/Xo)/
(m'/ms)=2 and obtain Ao-3.2. A third coefficient,
A2, may be determined by the sum rule g& Ai ——0, Eq.
(56), if we neglect all terms with I p 3; then A2 ———5.5.

Taking into account the first two Landau coefficients,
we calculate the resistivity coefficient A to be 0.034
pQ cm/K 2; we take H(A, ) to be 0.5 since H(A. ) is only a
slowly varying function of A, . This value of A is in good
agreement with the experimental value 0.042. Hence we
obtain in a consistent manner —by fitting two parameters
and evaluating a third quantity —good agreement with the
experimental data. We conclude therefore, that the es
electrons in V&03 can be described as a Fermi liquid. If,
in addition, we take into account A t, then we find almost
nochangeof A (&1%).

We now proceed to evaluate on the basis of a micro-
scopic theory the Landau coefficients At. Remembering
that V203 is close to an antiferromagnetic transition, we
take as an effective interaction J the interaction which
arises from the exchange of the magnetic excitations,

TABLE I. Experimental and theoretical values of the Lan-
dau coefficients AI.

Oem~(~~~ )~( [I[~ ) A
PQcm

K

Experimental
=4.5

values mb
0.042

Experimental
values

Theory

q =0.535

q =0.615'

Ao

3.2

3.2
3.2

2.3

4.1

2.3

—5.5'

—3.6
—6.5

'This value is determined by the sum rule +[A[=0.
The parameter q gives the position of the peak of J{q}taking

the cylindrical model for X(q},cf. Fig. 9.
'This q gives the position of the peak of J(q) if one assumes
that the electronic polarizability g'(q) is a constant in the region
of short wavelengths.

tropy of J(q) is taken into account, one finds that the
spin-fluctuation contribution depends on the states, p and
p', at the Fermi surface; that is, it depends on p and on
the direction of p —p' with respect to the crystalline axes.
Thus, a relation is obtained, Eq. (62), that holds at each of
the different points p on the Fermi surface. By averaging
over the directions of the momentum transfers in J(q),
we arrive at the quasi-isotropic model. The foregoing
model assumption is equivalent to the neglect of all of the
anisotropy coefficients in the expansion of J(q) in terms
of the hartnonics for the trigonal V20s symmetry. These
harmonics are of second and higher order in the direction
cosines. On the other hand, the Landau coefficients for
1 & 2 cannot be determined from the experimental quanti-
ties C„,X, and p; the resistivity p is almost independent of
the coefficients Ai, 1&2. As compared with the magni-
tude of Landau's coefficients Az in Table I, we expect
that the lowest-anisotropy contributions are not very
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40-

30- Hf "-),128

FIG. 9. Plot of the effective potential J(q) vs q/2pp.

relevant. The reason for A2 being rather large, as is con-
sistent with the sum rule (cf. Table I), is the quasisingular
behavior of J(q), cf. Fig. 9. Hence, by averaging J(q)
over all q directions and by treating the e electrons as an
isotropic quasiparticle system, we are consistent within
our model.

Substituting the J(q), in Eq. (54), we obtain for the
coefficients A~' the result

3(21 +1)
2(m '/mi, )

1 —WX(q)F (q)

(66)

The quantities X and F(q) are defined by Eqs. (85) and
(86); q is normalized with respect to 2pF.

In the effective-potential model we can evaluate the pa-
rameters Ai" by fitting the interaction parameter W to
Ap. In order to explain the magnitude of Ap, we observe
that the spectral function

1QqI q WF q (67)
4~ 1 —WP(q)F(q)

has to be nearly 1 order of magnitude larger than the cor-
responding quantity occurring in Eq. (87) which is used
to evaluate the effective mass. This requires that the in-
teractian parameter W be very close ta its limiting value,
Wp, where the system becomes unstable against the anti-
ferromagnetic transition.

Unfartunately, the experiments yield only the first two
Landau parameters. Hence, we cannot reconstruct the q
dependence af the effective potential. However, we get
same further information about J(q) by looking at the ra-
tio Ap/Ai. Assuming the cylindrical model, Sec. III, in
Fig. 9 we plot far the parameter value W=1.128. It is
seen that this function has a steep peak at q~, where q~ is

Ap

3Pi (1—2q~ )
(68)

From the experimentally observed ratio Ap/A i, we con-
clude that the maximum of the function S(q) should be
near q =0.615. When compared with the previously
found value of q =0.535, the agreement is satisfactory.
If we would take X to be independent of q, the maximum
would occur at q =0.615. The main conclusion is that
one needs a sufficiently large phase-space volume in the q
space, where the nearly singular behavior of the effective
potential occurs; this potential should have a strong peak
close to q=0.615, cf. Table I. It appears that the metal-
insulator transition is a magnetic transition driven by the
exchange interaction between the ee electrons, whereby
the shape of the Fermi surface —and the existence of some
nesting parts should provide sufficient phase space in
order to drive the antiferromagnetic instability.

The approximation af the local potential model, namely
taking into account only the exchange interaction due to
the magnetic excitations, results, however, in a serious de-
ficiency: A p & 1. A Fermi liquid with A p & 1 or
Fp & —1 becomes unstable to fluctuations in the density.
A hint of how to resolve this problem is given by the
work of Ainsworth et al. These authors point out the
importance of the direct electron-electron interaction.
The inclusion of this interaction yields more reasonable
values of the Landau parameters FI and a better conver-
gence of the Fi series. The model in which the direct in-
teraction is assumed to be of zero range (e.g., the Stoner
model) is not sufficient to obtain reasonable values for the
AI. In order to include both the direct interaction and the
induced interaction, we add, as in Refs. 40 and 41, the ef-
fective interaction j(q) (Ref. 50) to our exchange potential
J(q), Eq. (32). The behavior of j(q) near q=0 is well
described by the paramagnon model. However, for larger
values of q there are deviations from the simple model pa-
tentials used in Ref. 40. First of all, the direct exchange
interaction has a finite range, resulting in a q dependence.
As discussed by Herring ' and Schrieffer, this momen-
tum dependence cannot be neglected in order to get
reasonable results in paramagnetic metals. Herring argues
that the main contribution to the exchange interaction
near q =0 arises from the interaction of charge distribu-
tions on different atoms. Although the matrix elements of
these interactions are smaller than the one-center in-
tegrals, the summation over the nearest neighbors causes
these two-center integrals to be the dominant ones near
q=k —k'=0. Hence, it is obvious that there are negative
contributions to j(q) by virtue of the two-center integrals.
An additional source of the q dependence of the direct in-
teraction is the exchange of two or more spin fluctua-
tions. 53 In view of the fact that there exist so far no quan-
titative calculations of the q dependence of the exchange
interaction between d electrons, we fit the effective poten-
tial j(q) by experiment.

determined by the maximum of the denominator function
X(q)F(q) in Eq. (67). The weight of S(q) increases
strongly as W approaches Wp. Then, the ratio Ap/Ai is,
to a very good approximation, given by
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Including j(q), the equations of this section remain un-

changed, except that we replace the Eqs. (54) and (55) by

Ao= z(jo+Jo» (69)

j)+aJp ———,A )
——1.53,

J,—(1+a)Jo= 3 A2= —1 42 .

(74)

(75)

Ao = —i (0)—2 (Jo+Jo) ~

Ai= 2(j(+Jr), 1 &1

i~(ji+JI) I&1

(70)

(71)

(72)

where j(0)=g(j(. Hence, the forward-scattering sum
rule is satisfied. In the following we include all terms
with l &2.

Using the relation

J(——(21 + 1)P((1—2q~ )Jo,
corresponding to Eq. (68), we determine q~ from the sum
rule, g( JI =0. The result is q =0.596, in good agree-
ment with the value found in our model for J(q} by as-
suming X to be independent of q. Hence, we find
Ji =aJo J2= —( I+a}Jowith a=0.87. We are left with
a single adjustable parameter, Jo.

Because of the stability of the metallic phase of V20s,
we have Ao ~ 1. On the other hand, this phase is close to
the metal-insulator transition. Hence, the choice
Ao —0.95 is appropriate for the metallic phase of V20i.
From the experimental values, Ao ———1.06 and A i

——2.3,
we find j(0)=0.743. Using the forward-scattering sum
rule we get A2 ———2. 1. Hence, we have the following
equations for determining the potential j( q):

jo+Jo ———2[A ~+j(0)]=0.633, (73)

iIqj
j (0)

2 ~

o ql 2pF-

FIG. 10. Effective potential j(q) describing the electron in-
teraction between the eg electrons. The potentials for He
(—.—.—) and for a Stoner model (———)
[i(q}=Z 'I(1 Ig}, where I=0.76 is determ—ined from i(0))
are shown for comparison. The solid lines 1,2,3 correspond to
the parameters Jo——0, jo———0. 1, and jo———0.2, respectively.

Given the quantity jp or Jp we can determine the poten-
tial

i (q) =pi(I'I(1
1

As seen in Fig. 10, the choice of Jo ——0 leads to an effec-
tive potential which has a maximum at a finite value of q,
indicating the antiferromagnetic behavior of the metallic
phase. Hence, the inclusion of the antiferromagnetic ex-
change interaction, J(q)+0, yields a more reasonable po-
tential, j(q), for the direct interaction. The choice of
jo- —0. 1 yields a reasonable aPProximation for j(q), as
seen from Fig. 10. The behavior of j(q) differs from the
simple paramagnon model for large values of q. This
behavior is similar to that found in He. Since we are far
away from the ferromagnetic limit, the behavior of j(q)
at larger values of q becomes more important in averaging
the potential with Legendre polynomials [cf. comments
above Eq. (69)].

Taking into account the potential j(q} in addition to
the dominant antiferromagnetic potential J(q), we obtain
smaller values for J(q). This implies that the interaction
parameter W is not as close to the instability point Wo as
in the absence of j(q). With the new choice of the AI the
result for the resistivity coefficient A does not change ap-
preciably. Equation (58) remains valid, except for replac-
ing A o by A o +—,j(0). This value is 2.07, as comPared to
the value Ao ——2.3 for j(q}=0. Hence, the resistivity
coefficient A decreases only slightly and is still in good
agreement with experiment.

V. SUMMARY AND CONCLUSIONS

It is shown that the concept of antiferromagnetic spin
fluctuations plays an important role for the understanding
of the unusual d-band properties of metallic V203. The
spin fluctuations consist here of molecular magnetic exci-
tations of the two coupled, vertical Vz pairs (Fig. 2) that
form the metallic basis of the trigonal unit cell. The fluc-
tuations are due to transitions of the a(e electrons local-
ized at the Vq pairs. The correlation effects between the
ais electrons are caused by the short-range Coulomb in-
teractions and are treated with Hubbard's Hamiltonian for
the two V2 pairs. It is found in Sec. II that the lowest ex-
cited state is a spin-triplet state lying dose to the ground-
state singlet. The virtual singlet-triplet excitations of the
a ie electrons, i.e., the molecular magnetic polarizability of
the two V2 pairs in a unit cell gives rise to an interaction
between the remaining conduction (es) electrons. A first
eg electron polarizes the singlet state formed by the two
aie electrons per V4 molecule and thereby affects the
motion of a second ee electron. The corresponding
dynamic susceptibility of the conduction electrons is
found with a RPA calculation; the results are given by
Eqs. (21) and (23) of Sec. III. We then proceed to evaluate
the electron mass renormalization due to the virtual emis-
sion and reabsorption of the local magnetic excitations, in
analogy with the ordinary paramagnon theory for strong-
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ly paramagnetic metals. We find that both the effective
mass and the electron-electron scattering amplitude, as
measured by the T coefficient of the electrical resistivity

p, diverge as the system approaches the antiferromagnetic
instability, Figs. 6 and 7. As the mass is enhanced, the
particles become immobile and tend to localize.

This localization is different from the Brinkman-Rice
concept. In their theory, the primary effect of the
Coulomb repulsion is to keep the electrons apart, at their
lattice sites, in order to avoid a double occupancy (in the
case of a half-filled band). However, in the context of an-
tiferromagnetic spin fiuctuations and the metal-insulator
transition, we should mention that our model does not yet
give a realistic description of the M-I transition. The
reason is that we neglect real band-structure effects of the

ee electrons such as the shape of the Fermi surface and-
what is more important —the detailed form of the suscep-
tibility function. Because of a lack of a band theory for
the susceptibility function, we use the Lindhard function.
However, as is well known from, e.g., Cr, the structure of
this function in momentum space plays an important role
in antiferromagnetic band transitions. Usually, the
phase transition is attributed to some structure of this
function at short wave lengths. Of comparable impor-
tance is the q dependence of the form factors, i.e., the ma-
trix element M(q), as discussed in Sec. IIL

In Sec. IV we viewed the es electrons as a Fermi liquid.
The basic reason for this attempt is the fact that an es
electron can be viewed as a Landau quasiparticle, the ef-
fective mass of which is larger than the band mass by a
factor 4—5, by virtue of its interaction with the localized
spin fiuctuations, Sec. III. These excitations also give rise
to an effective interaction among the quasiparticles. We
do not believe that phonons play a dominant role in the
mass enhancement; otherwise metallic V&03 could become
an ordinary BCS superconductor at a reasonably high
temperature and not an antiferromagnetic insulator.

At this time an exact formulation of the Fermi-liquid
theory for real solids is lacking that takes into account the
crystal symmetry, i.e., the periodic lattice and the aniso-

tropy effects. This observation, however, has not hin-
dered the successful Fermi-liquid description of the
electron-phonon system of simple metals, despite the large
phonon-anisotropy effects. We therefore attempt to ap-
ply the isotropic Fermi-liquid theory to Vz03. The basic
approximation (Sec. IV) consists of approximating the
static vertex function of Landau's theory by an effective
scattering potential. The physical origin of this short-
range potential is the exchange of the magnetic excitations
discussed in Sec. III. By taking an angular average of the
potential, we are consistent with the Galilean invariance
of the ideal system. Furthermore, the anisotropic effect
of the matrix element M(q), Eq. (24), appears to be small
for the Landau parameters with 1 «2, for reasons similar
to the small effect of the anisotropic electron-phonon ma-
trix element on these parameters for simple metals. In ad-
dition to the potential J(q), we include the usual effective
interaction between the conduction electrons in order to
have a stable Fermi liquid, cf. Eqs. (69)—(72). We find
that the isotropic antiferromagnetic spin-fluctuation
model of Sec. IV yields a consistent quasiparticle descrip-

tion of the metallic properties, C„,X, and p, for Vz03.
Recently, an attempt was made to apply the Fermi-

liquid description to the "heavy fermions" in
CeCu2Siz. Although the effective mass and the T
coefficient of p of V203 are not as large as in CeCuzSi2,
there are similarities between the local excitations giving
rise to the interaction. The Ce + ion allows for many-
electron excited states involving other (i.e., conduction)
electrons besides its oion four f electrons, whereas at the
V2 pairs only the local a&~ electrons participate in the
magnetic excitations. Just CeCu2Siq or other rare-earth
compounds, pure VzO& could be an interesting candidate
for triplet superconductivity, as was recently mentioned
by Anderson. So far, superconductivity is not observed
down to 0.3 K. Whether or not superconductivity can
occur in V203 is under investigation.
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APPENDIX A

In Table II we give the eigenvalue spectrum for the V4
molecule.

The Hartree-Fock energies (eV) and Hartree-Fock
eigenfunctions for the states Si, S&, S7, and Ss are tabu-
lated in the following for comparison with the exact re-
sults, cf. Table I:

Si. —2(o +b)+ U/4= —1.825, ,
' ($0+$,+pi+—pi),

S3.' —2(a ii)+ U/4=——0.865, —,(((to+pi —(( z
—p3)

Si. 2(a —b)+ U/4= 1.615, —,
'

( —(()o+((),—p2+p&),

Sip.'2(a +b)+ U/4=2. 625 i (po —pi —$2+$3)

APPENDIX 8

We calculate the contributions of the transverse mag-
netic excitations to BX/Boo, determined by X+, using the
standard procedure (co~0):

JX(0)f— ' X+ (p, 8o,$o;p, &,P) .

(Bl)

The z axis is fixed and oriented parallel to the c axis. The
integration fd cosefdP can be written as

f d cos8f dp= fd'p5(p' pz) . — (B2)
PF

Hence, we obtain
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TABLE II. Spectrum of the V4 molecule. The parameters are U = 1.S eV„a =0.86 eV, b =0.24 eV, and t =0.

Type Singlet (S)
Triplet (T)

S1 {=S)
T1 (=Q

S2

S3

T2

$5

T3

T4

T5

S6

S7

Sg

T6

S1o

Energy (eV)

—1.98
—2a = —1.72

2 [U —{U2+16]22}]~]=—1.12

—0, 871
—2b =—0.48

—,[U —(U2+16b2}]~]=—1.40

2& =0.48

U =1.5

—,[U+(U'+16b'}'"]= —1.64

2a =1.72

—,
' [U+(U'+ 16 2}]~]=—2.621

2.828

Eigenfunctions

0 279(I}p+0.39+]+0611/2+0 62+3'

2 {c»+C2]){c,fcqf }
I
o)t t b

t t t t
2N

C1fC2j +C2fC1) C3fC4J C4fC3)

—U+{U'+16 2}]~2
+

X{C]fC]]+ 2] 2] 3f 3] 4] 4])
t t

0.4644}p+0.74+]—0.367{()2—0.315(It3

2 (C]f +C4] }(C2]+C3]) I
0}t t t

'

t t t t t t t t
2N .

C1fC4$ +C4fC1$ C2fC3) C3fC2$

U+( U2+ 16b2)1/2

2b

X(C]fC]f +C4]C4] —C3]C3] C2]C2] }
t t t t t t t t

t t t t t t t
2 {C]fC3]+C3fC]l C2fC4] C4]C2]) I

0)

2 {C]f+C3] )(C2] +C4] )
I
0)t t t

2 (c» —c3] }(C2]—C4] )
I
0)t t t

2 (C]f —C4] )(C3] —C2f )
I
0)t

t t f t
2 (Cl]C]l —C2]C2]+C3]C3]—C4]C4]

—0.347{{)P+0.183$]—0.638/2+0. 662/3
t t t t t t

2N .
C]fC4$+C4fC1$ C2fC3J C3fC2)

U+( U2+ 16a2)1/2

4a

X(C]]C]l C2fC2] C3]C3]+C4fc4] )
I
0)t t t t t t t t

2 (c 1, —c2, )(c3,—c4, } 10)
'

t t t t t t t
2X .

C 1tC24 +C 2tC 1l —C 3tC4t —C4fC

U+(U2+ 1S ')'"
4a

X(C]fC]]+C2]C2] —C3]C3] —C4]C4] )
I
0)t t t t t t t

0.7654 p —0.51$]—0.289/2+0. 263{{}3

'The eigenfunctions P] are defmed in Sec. IL
We have written only the triplet state that is of the type 2A]B]. The other triplet states are given by {1/22p2}{AtB,

+A,af) and —2A fS,.tt 1 tt
'X is the normN»mtion constant.

J = —X'5)(0) z fd~p Jdq35(p' —p~)5((p —q) —p])X+ (q)

=—J2N(0) Jd'q —X+ (q)e(1 —q),
4m q

(83)

a&here in the last tenn q is normalized arith respet:t to 2@~.
It is convenient to defme the dimensionless parameter W, X(q) = —+ ln

1 1 —q 1+q
2 4q 1 —q

(85)

~= —,(31]+ri2) J N(0)Xp(0),

where X]l(0)=2/4, and to introduce the functions

(84) +(q) =~(q)[-.'(n]+n2)'1

=[cos(AD]2 )stn(qxD23 qzD]2 )]
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Since the main contribution to the integral comes from
the pole, and F(q) is a rapidly varying function of q in
comparison with X(q), we approximate X(q) by the
constant value

X, =X(q=(n./D22, 0,0)) .

The q» integration is now easily performed. Introducing
the polar coordinates for q, and q„we finally obtain

JdQ BX 1 1+(1 q2)1/2

2m'
dqq ln

( 1 2)1/2

Here, D12 p——»dt2 and D2&
——pF123 .We write Eq. (83) in

terms of these variables and get

dQ BX 1 di e 1
WF(q)I 4m Bro 4m' 1 —WF(q)X(q) q

Then we obtain A in an analogous procedure; the result is

3tr rrl skB ~p
s

e pF 1 —WFX
(810)

If we again approximate X(q) by the constant X„we may
perform the q„ integration and get

4k m3' B b
d (1 2)1/2

2 e2 ps 0

This expression is evaluated numerically.
In order to evaluate the T coefficient A of the resis-

tivity, we use the relation

ImX+ (q, ro)
lim

Ci)~0 N

J [Xc(0)~(q)]' mt
(89)

[1—J2Xc(0)M(q)X'(q, 0)]

WF(q, g)
1 —WF(q, g)X

(88) x d
W F (qP)

[1—WF(q, P )X]
(811)
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