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Exponents for 1/f noise near a continuum percolation threshold
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New bounds for the exponent characterizing the amplitude of the resistance noise near the percolation

threshold of discrete random networks are found. The difference between the lower and upper bounds is

very small, so that an accurate estimate of the noise exponent can be obtained in all dimensions. Continu-

um corrections to these exponents for the random-void class of systems are then calculated within the

nodes-links-blobs model of percolating networks.

It has recently been shown" that resistance noise' should
diverge near the percolation threshold with a new charac-
teristic exponent which cannot be related to the previously
known percolation exponents, This new exponent is a
member of a hierarchy which can be naturally defined in

terms of the moments of the current distribution for finite-
size samples with a unit injected current. Members of that
hierarchy include the fractal dimension of the percolation
backbone d~, the conductivity exponent t, the resistance
noise exponent b, and the inverse of the correlation length
exponent v. In that context, it is important to verify experi-
mentally the value of the noise exponent b.

Experiments on the resistance noise near percolation have
been performed4 9 by many different groups. The value of
the exponent b which was obtained from a standard discrete
percolation network model cannot, however, be extracted
directly from any of these experiments because the systems
used are continuum percolation systems, and it has been
pointed out'0 " that percolation transport exponents for a
continuum system and for a discrete lattice model can differ
significant1y. This is the case also for resistance noise, but
the continuum corrections in this case must be calculated in
a slightly different way. %e should also stress that for con-
tinuum percolation it is difficult to estimate p —p, experi-
mentally; hence measurements of the noise magnitude as a
function of resistance, two quantities which in principle
depend on p —p„allow one to eliminate that unknown, giv-

ing at the same time a unique opportunity to check theories
of continuum percolation. Previous experimental checks'
have been limited to the case where the continuum correc-
tions vanish.

The purpose of this paper is twofold. First, we derive a
new upper bound for b within the framework of the
"nodes-links-blobs" (NLB) picture of percolating networks,
which, in conjunction with the known lo~er bound, gives a
rather narro~ range of possible values for the noise ex-
ponent in all dimensions. As a by-product, we find a new
inequality between percolation-backbone exponents. Sec-
ond, we investigate the corrections to the noise exponent
within the frameworks of both the effective-medium ap-

and
1
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a
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where i, r, and (Sr,') are, respectively, the average
current, resistance, and resistance-fluctuation correlation
function in branch a of the network, and I is the total in-

jected current. It is assumed that resistance fluctuations in

different branches are uncorrelated. e first consider the
standard discrete network model, i.e., a model in which all

bonds occupied with probability p have identical branch
resistances and resistance fluctuations (noise). The noise of
the entire network thus obeys the following inequality (from
now on all quantities are understood to be measured at a
given fixed frequency):

~here i is measured with input current I= 1 and the sum
over n' runs only over the branches that carry a unit
current. For a sample of size L in the fractal regime
L « g, where g —(p —p, )" is the percolation correlation

-P
length, the average resistance depends on size L like L
with an exponent —pL related to the usual conductivity ex-
ponent by —pL= t/ +(v2 —d), where d is the Euclidean
dimension. Furthermore, the branches that carry a unit
current are the singly connected bonds whose number' Ll
scales as L'~". This implies the following inequality:

Stt(L (( g) —L b~ L

or b ~ —2pL —1/v. This inequality can be seen as a conse-

proximation and the nodes-links-blobs scaling analysis. Re-
sults of numerical simulations are also presented.

Let us recall that" the relative resistance noise Sq for
any network at frequency co is given by Sit = (SR2)„/R',
where

(SR ) =Xi (Sr ) /I
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quence of the general inequality x„»x„ 1 derived in Ref. 1

for exponents x„which are members of the hierarchy.
Ho~ever, the above derivation clarifies the physics of this
inequality. Using the known lower bound, ' we obtain

—PL ~ b ~ —2Pr, —1/v

Numerical values for the bounds are listed in Table I.
Clearly these bounds determine the value of b with a
reasonable accuracy. The close agreement between the
Monte Carlo result2'7 b=1.16+0.02 in two dimensions
and the upper bound suggests that indeed most of the noise
comes from the singly connected bonds. %'right, Bergman,
and Kantor" have independently come to a similar con-
clusion. Detailed histograms of the current distribution'~

alamo confirm the dominance of the singly connected bonds
in producing the noise. In dimensions above six where
mean-field theory holds, the upper bound in Etl. (4) be-
comes an equality. In passing, we note that in the scaling
regime L » g, the noise is described' by Sa —(p —p, )
where ~ = v(d —b ).

We have used the 1ast column of Table I to list the fractal
dimension of the backbone, which was derived earlier' as an

upper bound for b. The numerical values c1early suggest
that the following new inequality is satisfied:

—2PL, —1/v ds (Si

We have not found a proof of Etl. (5).
Finally, we calculate the percolative noise exponent for

the random-void class of continuum percolation models. It
was shown recently' that percolation exponents for trans-
port properties of this class of models can differ consider-
ably from the corresponding ones for the standard discrete-
lattice models. This is a consequence of the fact that the
conducting bonds in the continuum models can have a
singular power-law distribution. It is known"' that such
a distribution gives rise to modifications of transport ex-
ponents. The mapping of the random-void model to a ran-
dom resistor network was described by Blam, Kerstein, and
Rehr. ' Conducting resistances are characterized by a chan-
nel width ~. It is assumed that the probability distribution
for having a channel of width ~ is continuous and takes on a

TABLE I. Upper and lower bounds to the resistance noise ex-
ponents for the standard lattice percolation model. The numerical
values with no superscript are extracted from various references
given in Table 1 of A. B. Harris, Phys. Rev. B 28, 2614 (1983).

PL = r/v + (2 —d ) ——2P L
—1/v

finite limit at ~=0.
The relative noise in a single bond n can be computed by

assuming that the material in a conducting channel is homo-
geneous and that the resistivity fluctuations are uncorrelated
in space. Noting that it is a good approximation to assume
flat equipotentials in the neck region, we find that the rela-
tive noise of a bond behaves as e " and the resistance as

"with the values of v and u listed in Table II, for both
random-void and inverted random-void models. '

Halperin, Feng, and Sen' have found continuum correc-
tions to the transport exponents by applying the NLB pic-
ture' "of percolation clusters. The use of "typical" trans-
port quantities for a "link" in their work is based on the
possibility of finding an upper bound to the overa11 resis-
tance by removing all the links that have atypically high
resistances. No such variational principle exists for the
noise problem. This means in particular that when the
average noise of a link diverges, we cannot in general argue,
as for the resistance, ' that it suffices to compute the typical
value of the noise of a link instead of the average. Since
the contribution of a link to the total noise depends on the
current which flo~s through the link and since that current
is determined by the resistance, it is the interplay between
the relative noise and the resistance which determines
whether a link contributes appreciably or not to the overall
noise.

This has profound implications for simulations. While
continuum corrections for the resistance could be obtained
by computing the average conductivity within a correlation
length'3 (which is finite despite the fact that the average
resistance diverges), continuum corrections to the noise
must be obtained from self-averaging samples, i.e., samples
large enough to contain many correlation lengths. Coupled
with the requirement that every correlation length contains
many singly connected bonds, this means that it is almost
impossible to compute reliable exponents with the standard
simulation methods of percolation theory which almost al-
ways use finite-size scaling to compute exponents. We cir-
cumvent this problem by directly simulating the NLB model
with only singly connected bonds. This is already a good
approximation for the lattice model discussed earlier, and is
even better for continuum systems, ~here the noise is even
more dominated by singly connected bonds within a correla-
tion length.

Using the methods described earlier, '24 we thus numeri-
cally computed the noise on n & n square lattices whose indi-
vidual bonds are taken as the "links" of the NLB model.

2 4
3

3 0.88 10.01

4 0.66+0.03

5 0.57 + 0.02

6 1

2

0.97 +0.01'

1.2 + 0.1'

1.59+0.07

1.79 %0.04

1.19 + 0.01 1.62 2 0.02~

1.26 +0.1 1.74 f0.04

1.66 10.07 2.33 20.1

1.82 X0.04

TABLE II. If ~ is the neck width parameter, the conductance of a
bond scales as ~", awhile its relative noise scales as ~ ". The overall
relative noise of the sample S~ scales as 8". Uncertainty on wis at
least as large as that for K/r, which can be deduced from the data in
Table I. Additional uncertainties arise when one extrapolates from
the NLB model to real percolation clusters.

Model
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2D inverted random-void

3D random-void

3D inverted random-void
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0.87

2.1
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In other words, every bond (link) is occupied, but its resis-
tance RI and its contribution to the resistance fluctuations
(Rt ) are determined, in dimensionless units, from, respec-
tively,

L1

X —.1

j=1 ~i
(6a)

L1

(5R,') = $ (61 )
j=1 KJ

~here ~j are random numbers taken from a uniform distri-
bution on the interval (0,1). From Eq. (I), the overall
noise is given then by (assuming I = I)

(BR') = g (5R,2) /,4, (7)
I

where iI is the current in link I. Calculations are done for
various values of v and u. For each of these values, we
consider various L1 and various lattice sizes n x n. %e have
checked that for n = 32, averaging over a few samples, typi-
cally 6 to 15, gives the same result as that calculated from a
sample large enough that it is completely self-averaging. "
Most of the following results are for n =32. Our results
reproduce the NLB prediction for the resistance. RI=L1
with x =1 for u & 1 and x= u for u & 1. This is the first
numerical check that the current indeed distributes itself in
such a way that it is correct to use the typical values for the
resistance. Let us define the continuum corrected noise ex-
ponent tt as in Stt (L » g) —(p —p, ) . To facilitate
comparisons with experiments, we can eliminate the vari-
able (p —p, ) in terms of the sample resistance
R —(p —p, ) ', i.e., we write S/t —R for the scaling re-
gime L » g, with w = ttlt. (Note that Q in Ref. 6 equals
w+ 2.)

The simplest analytical approach to our problem which
seems to take into account the important interplay between
noise and resistance is the effective-medium approxirna-
tion'6 (EMA). However, the results obtained from the
EMA for the continuum noise problem are not in agree-
ment with those of computer simulations. Since the EMA
calculation is closely related to that of Ref. 11, we quote the
results here without any further details. ' For u & 1, and
v & 1, the discrete network result ~ =1 is recovered. For
u &1 and v& I, w=l/u. For I & v&1+2u,
w = I + (v —1)/u when u & I and w = u/u when u & l.

%e now discuss the predictions of the NLB model by
generalizing the arguments of Halperin, Feng, and Sen. '

The essence of the analysis was first given by Halperin' and
was contained in Ref. 6. The numerical results agree
surprisingly well for all three cases identified theoretically
below. The essence of the analysis is to look for the extra
dependence of the overall resistance noise on Lt (or p —p, )
due to the continuous distribution of the bond resistances
and resistance fluctuations. %e examine in turn the three

regimes of interest in the u-v parameter space.
(a) u& / and u+ 2u& I. Here the averages of the sums

in Eqs. (6) converge, so the average resistance and resis-
tance noise of a link exist and the exponents are those of
the standard discrete network, namely, K = 1.12 +0.02 and
(Table I) t = 1.29 + 0.01 in d = 2 and K = 1.56 +0.1 [calculat-
ed from Table I and Eq. (4)] and t = 1.94+0.1 (Table I) in
d=3.

(b) u& 1 and 1—2u& v & 1+2u. The average resistance
of a link [Eq. (6a)] is well defined, but the average of the

(8)

The second type of links, the a links, is such that one of the
e's (e, ) in the link is smaller than e . The current in such

b a

V a a

a a

I I
T

I I I I
' I i 1~~ i

0.0 0.5 I.O
U

I.5 2.0 2.5

FIG. 1. Comparison between the numerically simulated NLB
model noise exponent and the scaling results. For each joint on
the figure, the continuum correction to the noise exponent K K

was calculated by least-square fits on double logarithmic plots, L1
taking the values 20, 40, 60, 80, and 100 at fixed n. The n

dependence of the noise was verified. Let N be the number of
samples used for each L1 and n. Let o- be the percentage disagree-
ment between the average measured K —K and the predictions in

Eqs. (10} and (11}. For n = 50 we found for the case
(u, v}= (0.5, 1.5} and W = 3, o- & 6%, for the cases
(u, v) - (1.5, 1.0) and (0.25, 0.25) and %- 1, a & 11o. For n - 32
we took N =15 in region (II} and %=6 in region (III). There,
o- & 1/o for 0, o- & 3% for 5, o. & 6% for C and o- & 10% for ~. In

region {I), N 6 and the absolute error s (since K K in this re-
gime} is s & 0.01 for G, s & 0.03 for ~, s & 0.1 for 0, and s & 0.3
for ~. In region (I&), W-20, and at points + there is no conver-
gence.

sum appearing in Eq. (6b) for the resistance noise diverges.
However, in summing over noises of all links, one must
take into account the fact that the currents differ in each
link. The current in a link may be calculated by assuming
that the potential drop in every link is about the same, this
being a consequence of the fact that the link network is well

connected, as suggested by Halperin. '8 (Hence even when
an atypically resistive link is connected to a node, there are
other ones present which allow the potential drop to adjust
to the average. ) Let Vq be the average potential drop in a
link. Then the current in a link is Vd/g/e, . We consider
two types of links: First, n links are such that none of the
resistances forming the link is larger than the average link
resistance RI = L1. This means that the minimum value of

for any of the resistances forming the n links is
=L1 '~". n links thus occur with probability P& =1

—Lt~ . From Eq. (7), the average total resistance noise
from the n links is thus

1 'i 4t1
(SR2) P L d It (SR 2) L (ii+2u —1)/u
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a link is thus ii= Vq/(Li+e, ")= Vqe,". The contribution
of an a link to the overall noise is dominated by that single
resistance and takes the value (5R')ii = V~e, "+ ". Since
Li d~, is the probability of having an a link whose width ~,
is between 0 and e, we can integrate over ~, to obtain the
contribution. to the resistance noise from all the a links

de,
(5R~) ( = Li '~ Vg4e4"- (5R') „iL'"+'"

0

Note that both (5R~) & and (5R ~) & scale the same way.
Given that there are no continuum corrections to the
overall resistance exponent, we get for this case

v+2u —1 (10)

This result is well verified numerically (see Fig. 1). Note
that when v & 1+2u, the integral in Eq. (9) diverges. This
is in agreement with the numerical results sho~n in region
(iv) of Fig. 1, where the calculated noise magnitude changes
wildly from sample to sample without a we11-defined aver-
age.

(c) u) 1 and u+2u) 1. This case can be analyzed in a
similar way to case (b). Since the link resistance here scales
as R = Lf (this implies a continuum correction to the resis-
tance exponent'0 u —1); division between n links and a
links is given by e = L& . Thus the noise exponent has a
continuum correction,

K K =6+1

a result which is also well verified by the numerical calcula-
tions presented in Fig. 1.

To conclude, we have computed continuum corrections to
the exponent describing the divergence of the magnitude of
resistance noise close to the percolation threshold. The spe-
cial cases of the random-void and inverted random-void
models in d=2 and 3 are summarized in Table II. Full
simulations beyond the NLB model are still needed, but the
difference with the results obtained here should be smaller
than the accuracy of presently available experiments. The
special case of the two-dimensional random-void model,
(u = T, u = ~) has been used by Garfunkel and Weissman6

in explaining their experimental results.
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