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Spin-anisotropic electron-electron interactions in one-dimensional metals
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%e construct a theoretical model for one-dimensional conductors taking into account the effects of spin-

orbit coupling and electron-electron dipole interaction. New types of electron-electron interactions which do
not conserve the z component of spin are generated. Use of bosonization and renormalization allows us to
obtain correlation functions and the phase diagram. The main result is the appearance of a gap in the spin-

excitation spectrum in the whole phase diagram, which leads to anisotropic spin-density-wave and supercon-
ducting phases. '@e discuss possible experimental implications of our results.

The quasi-one-dimensional organic conductors with
tetramethyltetraselenafulvalene (TMTSF) or tetramethyl-
tetrathiafulvalene (TMTTF) chains, e.g. , (TMTSF) zX or
(TMTTF)zX, exhibit in many cases low-temperature phase
transitions from a metallic into an antiferromagnetically or-
dered insulating state. z Quite generally, this state shows
easy-axis-type anisotropy, with the easy axis along the
crystalline b direction (perpendicular to the conducting
chains). ' There is also anisotropy in the plane perpendicular
to the easy axis. Clearly the anisotropic antiferromagnetism
must be due to spin-space anisotropic electron-electron in-
teractions and thus cannot be explained by Coulomb and
electron-phonon interactions alone.

The theoretical description of those substances is often
based on the one-dimensional interacting electron-gas
model. 5 ' One frequently introduces anisotropic spin in-
teractions, however, without specifying the origin of the an-
isotropy. We try here to give a physical meaning to such an
anisotropy by taking spin-orbit coupling (SOC) and elec-
tronic dipole-dipole interactions (DD) into account. We
first derive the anisotropic electron-electron coupling con-
stants generated by such an interaction. In addition to the
usually considered anisotropies we find spin-nonconserving
couplings not previously considered. A renormalization-
group analysis shows that these couplings lead to some qual-
itative changes in the standard picture of the one-
dimensional electron gas. We finally give a brief discussion
of possible experimental implications.

For definiteness, consider a chain of molecules whose
levels are, without SOC, only Kramers degenerate. The
chain axis is along z, and the conduction band is built out of
p, -like orbitals. To have an idea of the effect of SOC let us
consider a model molecule with three nondegenerate orbi-
tals p& which have the same symmetry properties as p„,p~, p,
orbitals. Diagonalization of the molecular Hamiltonian
gives, to first order in the SOC, the eigenfunctions

functions of S„and for a 0 one has S, I +) = +
I +).

The x axis will be chosen in the direction so that IA/BI is
maximum. As in TMTSF, coupling is expected to be
stronger in the longitudinal direction, we will choose this as
x axis; this ensures that P is nearly real. Assuming inver-
sion symmetry of the crystals, the tight-binding Bloch func-
tions are

Ig+) = @k =/-'~'X e'"' &(z, Ik —) =
yk =, y(Z I) ' 4k

(3)
States I

+ k, + ) are degenerate. In the absence of inversion
symmetry this degeneracy is lifted, but this case will not be
considered here.

%'e assume that the electrons interact through a spin-
independent potential. Then I+) are no longer conserved
because they are not spin eigenvectors. As usual we are
only interested in processes near the Fermi surface. We
consider effective short-range interaction which we
parametrize using the standard g-ology notation. ' In addi-
tion to the standard interactions we find the new diagrams
shown in Fig. 1. These terms do not conserve the z com-
ponent of the effective spin I

+ ) . The g4 process leads only
to a renormalized Fermi velocity and will not be considered
here. Other diagrams generated by SOC are zero because of
time-reversal symmetry.

Explicit expressions for the anisotropic interactions are

(g&ii —g&z)so= —V(V =0)J dx II fk&$ k&
—

Q «Ipklil

(gy)so= —V(q =0)Re ~ dx(Qk Q k
—$ k pk )f f f f

(ge )So V(q 0)1m~ dx (4«~4 —
k~ 0 —«~4«~)@«~4 —kI

(4)
At this order we have still g2~ =g2II, and for a repulsive in-
teraction and IA I » IBI,

(g 1 II gled )SO (ff )SO + 0 (5)

with

Here EC is the time inversion operator, I t j & are the eigen-

Notice that glII —gl& and gf depend on the SOC squared, so
at the same order of magnitude we have also to consider the
magnetic dipole-dipole (DD) interaction between electrons.
We limit the DD interaction to a single chain, thus neglect-
ing its long-range nature. The long-range character is
important in the case of ferromagnetism. Ho~ever, in
(quasi-) one-dimensional systems one is mainly concerned
with antiferromagnetic instabilities. In this case the long-
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range effect is canceled by the alternation of magnetic mo-

ments. The main effect is to introduce a short-range, but

spin-anisotropic interaction, which on a single chain is

Hoo= (pip2/r ) —3[(y, ir)(ii2r)/r ]

The main contribution of HDD is for the g2 and gy processes
(gi is expected to be much smaller because of the 2kr
transferred momentum). With our choice of axes we have

(giii —gee. )on= (kg+, —kg+ IHoolkr+, —kt+)
—(+, —ll+, —) (0,

ff (kf p kf lHoolkf + kf + ) ( 0

The new interaction Hamiltonian is

:+

FIG. 1. New interactions introduced by spin-orbit or dipole-
dipole coupling. Other diagrams are of order 1 or 2 in SOC and
vanish at zero momentum transfer either by time-reversal syrn-

metry or when antisymmetrized.

~I yr.
Hi„,= L 'X gg„dxy+ (x)iII' (x)i' (x)i]i+ (x)+ L ' X g, dxiji'+, (x)i'', (x)i[i,(x)i]i~,(x)+ (1 2)

0' cF'), &F2

0 „,8„= g (i m/L) X (1/p) e"" '~[ v+ (p) + i (p) ]
p&Q

and in A, B= . . . the upper sign refers to A. The part of the Hamiltonian bilinear in the boson operators is diagonalized by
the usual canonical transformation with parameter

'
1/2

2m@+ g[[ —1 2f 2)pg[[ gll gi II g2II ~g2l K$ K8 e Kp (10)
2ir v —g[[

p2f v

(g)
f denotes right- and left-going ferrnions and cr = + indicates spin up and down. %e use the boson representation' " of

fermion operators, introduce charge (p) and spin (o.) density operators in the standard way, and define the phase fields:

and by use of p+ (x) = —(2ir) "7(@y 8) the Hamiltonian reads

H = H~+ H +,„dxcosJSK&qb —, dx cos/8Ke82g~

2 tr A 2rra 24

2g~+
2 X r„dx V (eet'g~+ re A'8~) cos&2(K~it2$ —rK&i28 )2ma, g" 2m

H~ and 0 are standard free-boson Hamiltonians. ' 0 is in-
variant under the duality transformation P ~ 8, giq gi,
Kg~ I/Kii.

From a perturbation calculation of correlation functions
we find the renormalization-group equations for a change of
the length scale n e'o. . Introducing the reduced variables
g g/mv and expanding for small g's we have

plane one has

Q~Cr QV

(4gfgli. ) [g[t (gll gf)

~=(4lgIgiil) "' .

(13)

dgll ldi = gf gil (a'gil /2)

dg 1 l /di g i l g II

dgf/di = gfg II

4g. /di = —g.git'/g .

(12)

If g, = 0 the equations can be solved exactly. %e omit alge-
braic details and discuss only the main features. There is a
fixed line lgr I

= lg~ I and g~~
= 0 and a critical plane

gg lgiJ I + lgi'l = 0 separating the two behaviors g~[
+~. As in the standard case (gI=O)g~~ —~ corre-

sponds to long-range order of g and an exponential decay
of correlation functions like (e' '" e ' "') . Using the duali-
ty transformation P ~ 8 one finds that for g[[ +oo
there is long-range order in 8 and an exponential decay of
correlation functions like (e'~'"ie '@i"') . In both cases
there is a gap b in the spin-density excitation spectrum (or
equivalently a finite correlation length). Near the critical

8 = —i8 (t) ( [0 (r, t), O, (0, 0) ]) (14)

It is important to note the role played by the Q and 8 fields
in the different SDW and TS (n=x,y, z) operators. We

%e note that the exponent v depends continuously on g~
and g& g.

As can be seen from Eqs. (12) g, is a marginal variable.
If g,~o the critical surface still exists but its shape and the
critical exponents are changed. %e still have two kinds of
behavior: either long-range order of @ or 8 .

The above analysis shows that, in contrast to previously
studied cases, for nonzero g~ there is a spin-excitation gap
in the whole parameter space (apart from the critical sur-
face). To assess its influence on physical properties we in-
vestigate the different types of fluctuations' [2k~ charge-
density wave (CDW), spin-density wave (SDW&, i =x,y, z),
or singlet (SS) and triplet Cooper pairings (TS)] typical of a
one-dimensional metal. Specifically, we calculate the corre-
lation functions
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2k'
Ocow= exp[ —i J2$~(x) ] cos[J2qh~(x) ]

2k~
Osow = exp[ —iJ2qh, (x)]cos[J28 (x)]

2k~
Osow = exp[ —i J2qh~(x)] sin[&28 (x)]

(15)

2k
e

Osow =
mn

exp[ —i J2yp(x)] sin[J2y (x)]

gf(08 m/K8

gf&08 0

The exponents are only given by the charge part:

aqDwp ASDw 2 Ep~ cxssp Ays 2 Ep

But the correlation functions containing 8 (respectively,
p ) for git +~ (respectively, git —~) decay ex-
ponentially, so the divergence is removed. %e are left with
the phase diagrams in Fig. 2. On the critical surface we
have g[[ 0, Ill Igii, l, g, not zero. All the exponents
are zero, even if g, is not zero as can be shown by a pertur-
bation calculation.

The presence of the umklapp scattering in a half-filled
band (g3) leads to a gap in the density excitation spectrum'
and to long-range order in the $~ field if g~~ &0. Conse-
quently, there are now (at T=O) long range ordered-SDW
or CDW phases in the right part of the phase diagrams (Fig.
2).

If we interest ourselves in the weakly anisotropic limit
(i.e., gi i = gii ) there are two possibilities:

1. git & Igtt —gfl .

„gIJ gf

TSz T S z SOMz SOWz

{SO&zj {TSz ~

gII
SS SS CON CON

{coM) {ss)

TSx TSx»&x SO&x

{so~„){Ts„)
= gII

TSy TSy SOD) SOD)

{st){Ts y)

gal
~ I

gled g f I
0

g)) ) I gIy
—

gf I

FIG. 2. Phase diagram. Parentheses indicate divergences weaker
than the dominant one.

Oss and Ors are obtained with k~-0 and replacing $~ 8~.
The asymptotic behavior is R, (q, so) —max( w, uq)

The contribution of the charge part is easily obtained. 5 For
the spin part we notice that there is always a gap in the
spin-excitation spectrum corresponding to a long-range or-
der of $ or 8 (respectively, for g~g

—~, g~g + ~). So
we have

gii&oy njvS,
glY g (0$ ~0

n, (T»~ )=a,(T«~ ) —I . (18)

Consequently, only below 5 the correlation functions
diverge rapidly. A not too weak three-dimensional coupling
then ~ould lead to a phase transition at a temperature close
to 5, so that the effects of a nonzero b, would only be ob-
servable over a narrow temperature range.

%e try now to give some qualitative estimate of the im-
portance of the effects discussed here in real quasi-one-
dimensional compounds like (TMTTF)zX or (TMTSF)2X
Although we are interested in temperatures lower than the
transverse hopping matrix element t~ this one-dimensional
model may still be valid because, as pointed out before, '
due to one-dimensional correlations the one- to three-
dimensional crossover temperature can be much smaller
than tq. In those compounds a thermally activated spin sus-
ceptibility is not observed2 ~ and anisotropy only exists in a
narro~ temperature range above the phase transition into
the antiferromagnetic (SDW) state. From the above we
then have an upper limit for 5:

h ~ T, =10-20K .

It has been argued6 that for (TMTTF) 2X and for
(TMTSF)2X compounds one has gi & 0. Consequently, in
our (simplified) model SOC alone would lead to a SDW,
fluctuation, whereas the DD interactions give a dominant
SDW» divergence, in agreement with experiment (our y axis
is roughly the crystalline b axis). Thus dipolar interactions
may possibly play a major role in determining the magnetic
anisotropies [notice that in the renormalization equation
(12) the SOC contribution in gf and gi nearly cancel them-

We are renormalized to g[[- —~ and find the usual
CD%, SS phase diagram. 5

gll & lgll gfl

The renormalization depends on the relative importance of
u=g, and (gf)oo. The DD would lead to gag

whereas SOC would lead to g~g +~ [notice, therefore,
that a numerical study of the equations shows that
g[[ ——~ needs u && (gf)on, i.e., a strong SOC].

For g, = 0 with small modifications'2 one can see that the
spin part of our Hamiltonian (11) gives the partition func-
tion of a two-dimensional Coulomb gas of charges and mag-
netic monopoles. This model is related to the two-
dimensional eight-vertex and Ashkin-Teller models, as well
as to the one-dimensional XYZ spin chain. '3 "

%e have demonstrated here that spin-orbit coupling or
electron-electron dipolar interactions lead to spin-dependent
and -nonconserving electron-electron interactions. Their
main effect is the opening of a gap in the spin-excitation
spectrum in the whole phase diagram, except on the critical
plane. This leads to completely anisotropic (xeyCz) spin-
density-wave and triplet-superconducting phases and to an
anisotropic spin susceptibility. The importance of these ef-
fects is governed by the spin-excitation gap 5 . In a real,
quasi-one-dimensional system, generally there are phase
transitions with a nonzero critical temperature T„due to
the existence of some kind of interchain coupling. If
T, & 5, we would expect, due to the gap in the spin-
excitation spectrum, an anisotropic, thermally activated spin
susceptibility, as well as a strongly anisotropic ordered phase
belo~ T,. On the other hand, we note that for T && 6 the
exponents are reduced:
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selves to lowest order [cf. Eq. (5)]]. This has been pointed
out previously, based on the observation that the magnetic
anisotropy of (TMTTF)2X and (TMTSF)2X are very similar,
whereas SOC is much weaker in sulfur [(TMTTF)2X] than
in selenium [(TMTSF)2X] compounds.

It is beyond the scope of the present paper to do molecu-
lar calculations of spin-orbit coupling effects. %e rather try
to obtain a semiquantitative estimate. The results of Ref.
16 and a Hartree-Fock calculation for Se atoms" show that
the SOC is of order of 5% of the bandwidth in (TMTSF)2X
compounds. The prefactor in the matrix elements [Eq. (6)]
contains the long-range part of the three-dimensional
Coulomb interaction, ~here screening by adjacent chains
has to be included, 's and for (TMTSF)2X this prefactor is of
order of the bandwidth. So the SOC energies are some
10 of a bandwidth. As the diagrams of Fig. 1 depend on
the SOC squared the overall values of gi[] —giq and g~ are
probably of the order of 1 K, but an order of magnitude
smaller in the sulfur analogue compounds (TMT1'F)zX due
to the much weaker SOC. The magnitude of the DD term
is hard to estimate: Although it is usually weaker than the
SOC in the DD interactions the electron-electron distance
intervenes, which can be smaller than the atom-electron

one. From these numerical estimates we expect 4 to be
considerably smaller than the above upper limit 10-20 K.
A small 5 can also be deduced from the small spin-flop
field H,f. A simple argument gives gp. ~H,q=h, and the

experimental values of H,f then imply 4 = 0.5 K. Conse-
quently, we conclude that spin anisotropies play no major
role in the one-dimensional regime of (TMTTF)2X and
(TMTSF)zX compounds. The anisotropies observed above
T, are probably due to three-dimensional fluctuation effects.
In that case, the much larger coherence volume can consid-
erably enhance anisotropies. However, we expect the mi-

croscopic origin of anisotropy to be the same both in the
one- and three-dimensional regime.

%e finally remark that there are large regions of coex-
istence SDW and TS fluctuations in our phase diagram (Fig.
2). The possible importance of coexisting supraconducting
and SDW fluctuations in (TMTSF)2X compounds has been
pointed out before ' ho~ever, the question of the possible
triplet character of these fluctuations is still open.

A detailed version of the present paper will be published
subsequently.

%e thank S. Barisic for an interesting discussion.
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