
PHYSICAL REVIE% B VOLUME 33, NUMBER 3 1 FEBRUARY 1986
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It is shown that allowing for anharmonicity of the interatomic forces within the framework of the
Frenkel-Kontorova model may have a dramatic effect on the soliton picture arising in systems with compet-
ing periodicities. An approximate analytical treatment, as well as numerical iterations of the corresponding
two-dimensional area-preserving mapping, reveal discontinuities which indicate a disintegration (rupture) of
the entire system beyond some critical values of the characteristic parameters.

The study of commensurate-incommensurate phase tran-
sitions, such as observed in some spin- and charge-density
wave systems, nonregistered to registered adsorbed (or in-
terstitial) atomic monolayers, intercalation compounds, and
magnetically ordered structures' has recently been of con-
siderable interest both for experimentalists as well as for
theoreticians. Among the variety of phenomenological
models proposed to describe such systems, the simple
model of a chain of atoms interacting via next-neighbor har-
monic forces and placed in a periodic external (substrate)
potential, due originally to Frenkel and Kontorova (FK)'
and developed further by Frank and van der Merwe, has
proved the most suitable for the theoretical description of
various phenomena arising from competing periodicities. It
has been extended in a number of works to more than one
dimension and to nonzero temperatures, ' including soft
substrates or substrates with more complicated periodicity,
etc. A new insight into the problem has been brought by
Aubry, 4 who introduced the concept of transitions by the
breaking of analyticity, considering the effects of discrete-
ness of the lattice for a general class of models which in-
clude the FK model as a particular case.

Meanwhile, in all these studies the implications of a major
limitation of the FK model, namely, the assumed purely
harmonic nature of the interatomic forces acting between

I

the atoms of the chain, have been largely ignored. In the
present work we show that accounting for the anharmonicity
of atomic interactions leads to qualitatively new effects,
such as a possible breakdown of the collective soliton pic-
ture in the adphase even at moderate degrees of anharmoni-
city. Besides the amplitude of the periodic potential of the
substrate (measured in units of the elastic energy of a single
atom), it is the magnitude of the natural lattice misfit, and
its sign, which, in contrast to the harmonic case, appear
essential for the disintegration of the entire system into
smaller fractions and thus set clear limits on the applicability
of the FK picture.

Consider a one-dimensional (1D) string of atoms, as-
sumed to interact via Toda forces, ' the corresponding po-
tential being

V (r ) = p/P [(I/P ) exp [ —
/3 (r —b ) ] —1/P + r —b }, (1)

where p, denotes the elastic constant, P reflects the degree
of anharmonicity, and b is the equilibrium interatomic dis-
tance in the unperturbed chain. By varying P, one may go
smoothly from the purely harmonic limit of the FK model,
P 0, V(r) p/2(r —b), ' with growing asymmetry to
the hard-sphere limit: p oo, V (r ~ b ) = oo, and
V(r ) b) =0. The Hamiltonian of the system (after ap-
propriate scaling) is

H - X ((I/p)'[exp[ p(ib„~i —@„——P)] —1}+(I/p)($„ i
—@„—P) + (X/2)(l —cosy„))

where ib„denotes the relative displacement of the nth atom
from the bottom of the nth potential well of the substrate
(in periods of the substrate, a ), A. represents the scaled bar-
rier for surface diffusion, and P stands for the natural lattice
incompatibility between substrate and overlayer, P = (b
—a )/a.

The stationary configurations of (2), following from
SH/5$„= 0, must satisfy

exp[ —P(@.+i —P. —P)]
= exp[ —P(ib„—@„ i

—P) ] —XP sing„. (3)

From the form of Eq. (3) it is immediately clear that for
large enough A. and P&0, depending on P, the right-hand
side may become negative, so that no value of @„could
satisfy the equation.

In order to study Eq. (3) more closely, one may apply the
operation rule exp[+'7f(n)]=f(n + I) to @,+i and ib, -i

I

and convert (3) into6

exp[ —P(sinhV)ib] sin[P(cosh'7 —I)@]= y sin@ (4)

with y = (1/4))iP exp( —/3P) which in the limit P —0 yields
the well-known sine-Gordon equation, ' '7'@= 2y sin@.

%e consider the effect of nonvanishing anharmonicity
(pWO) by keeping the lowest-order derivatives in Eq. (4)
which then reduces to

exp( —PV'@)P'7'@= 2y sining

A first integral of Eq. (5) is now readily obtained in the
form

1 —(1+poi) exp( —Pi0) =2Py(C —cos@)

where co= Rib and C is an integration constant. For P 0
Eq. (6) yields the first integral of the sine-Gordon equation'

ru = X (C —cos@)
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FIG. 3. Invariant trajectories of (8) ~ith A, 0.43864, positive misfit P 0.05, and degree of anharmonicity P-2. The number of steps
used is 2000, a 6, and ao 1.2. Both axes are in units of 2m.

overlayer at first relaxes upon expansion from the
substrate-enforced repulsion between the adatoms.

These results of the approximate treatment are substan-
tiated further by a numerical investigation of the recursion
relation (8). Since the character of the invariant curves of
area-preserving maps, as Eris. (8), has been extensively
studied in a number of works, s it is now well established4
that these curves may either consist of a finite number of
discrete points (fixed points of order q corresponding to
commensurate configurations) or be continuous smooth

curves, known as Kolmogorov-Arnold-Moser (KAM)
curves (corresponding to incommensurate phases), or be a
chaotic trajectory whose points form a Cantor set. Without
going into details, we present in Fig. 2 results of the purely
harmonic FK model with P-0 and A. 0.43864 (P is there-
by irrelevant) to be compared to Figs. 3 and 4 where the
same A. is used, but with P-2 and P=0.05 (Fig. 3), and
P —0.05 (Fig. 4). Everywhere the phase difference cu„ is
plotted as function of the phase qh„(mod 1) in units of 2tr,
whereby points on the co and @ axes were generally chosen
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FIGr 4. The same as in Fig. 3 at negative misfit, P - —0.05.
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as starting points and typically 2000 iterations were per-
formed.

The general agreement between predictions of the analyti-
cal treatment, Eq. (6), and the numerical calculations is evi-
dent. Despite the fact that the amplitude X is always kept
equal to that of the harmonic case, the presence of anhar-
rnonicity leads to the expected drastic changes in the maps.

Compressed systems (~ & 0) manifest vanishing fluctua-
tions in ca due to the (nearly) hard-core repulsion; more-
over, at high pressure (cu & —0.4) the iteration produces
only a finite number of points. For the expanded state of
the system (ro) 0) both maps end with a chaotic set of
points indicating an instability in the system which leads to
rupture. For P ) 0 the (less vulnerable) system still bears
some resemblance to the harmonic original (cf. Figs. 3 and
2), exhibiting several open KAM curves (incommensurate
phases) at moderate expansion (ru ( 0.15). For negative P
no open curves are found to exist, although several closed

ones (higher-order commensurate phases) are still there and
the ~hole picture is, in fact, very similar to that of the
analytical treatment (cf. Fig. 1).

Although the results presented here have been derived
for a specific model, it can be shown that they are not an
artifact of the Toda potential. Since forces in nature are
largely anharmonic, the picture which emerges may well ap-

ply to many different systems in statistical mechanics,
magnetism, and other areas of solid-state physics where
modulated structures occur. For example, anharmonicity
seems to be directly responsible for the formation of cracks
out of misfit dislocations. Also its influence on dynamic
properties, such as mass and charge transfer, could impose
important limitations on some current theoretical ap-
proaches and should be thoroughly examined.
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