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Analysis of extended series for bond percolation on the directed square lattice
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Series expansions for the mean size and moments of the pair connectedness for bond percolation
on the directed square lattice have been extended to order p 5. Standard Fade analysis of the mean-
size series leads to the critical probability p, =0.644701+0.000002. Allowance for corrections to
scaling gives a leading correction exponent h, ~

——1.000%0.012 and an increase of the error bar on p,
to 0.000012. The increased accuracy in the determination of p, allows a corresponding improve-
ment in the estimates of the exponents y, v~, and v~~.

I. INTRODUCTION II. ANALYSIS

The accurate determination of the critical exponents for
directed percolation is of particular interest since the
universality class of this model includes a number of other
models representing a diverse set of physical systems. '
Here we report an analysis of the first 35 terms of the mo-
ments of the pair connectedness C;(p):

S =So,o= g Ct(p) So= g Ct(p) ~

sites (x;=0)

P'z P2, 0 +xi Ct(p) and ls2 =(Iso,2= g ti Ct(p)(~} 2 (t) (2)

for bond percolation on the directed square lattice (all
parallel bonds directed in the same sense} (Table I}. These
series were obtained by supplementing the transfer-matrix
method of Blease with a weak subgraph expansion as
described previously. S and So in (1) may be identified
with the mean cluster size and mean diagonal cluster size,
respectively, and in (2), x; and t; denote the position vec-
tors of site i perpendicular to and parallel to the preferred
(1,1) direction of fluid flow, respectively.

This extension of the known number of coefficients for
these series has permitted a considerable reduction of the
error in the estimate of the critical probability p, for this
problem, which in turn has lead to improved estimates of
the leading critical exponents y, v0, vz, and v~~ and correc-
tion to scaling exponent b ~.

p, =0.644701+0.000002 .

This represents an adjustment of the central estimate and
considerable reduction in the error bounds when com-
pared vrith earlier estimates. The corresponding esti-
mates of y, vo, vi, and v~~ are shown in Table II.

Scaling arguments require that

v0= vg (3)

for two-dimensional lattices. Our results are just con-
sistent with Eq. (3) at the central estimate of p„' however,
points on the pole-residue plot for S/So from higher-
order Pade approximants tend to fall to one side of the
central value of p, and, therefore, our quoted value of vo
was obtained by linear extrapolation through p, and the
error bounds on vo only represent reasonable variations in

A. Padb-approximant analysis

Our initial analysis consisted of forming Pade approxi-
mants to the derivatives of the logarithms of S, S/So,
p2 '/S, and p,z"/S and identifying the values of the resi-
dues at p, on pole-residue plots as y, vo, 2vj y

respectively, (Table II}. The value of p, used was deter-
mined by inspection of the Pade table for the series S and
the Euler transform [in terms of z =p/(I+p)] of that
series (Table III). (Previous analysis based on fewer terms
had found the Euler transforin to give better conver-
gence. 3' ) Both tables appear very well converged and
consistent with our estimate of
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TABLE I. Coefficients of p in the moments [Eqs. (1) and (2)] of the pair connectedness for bond
percolation on the directed square lattice.
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1

2
4
8

15
28
50
90

156
274
466
804

1 348
2 300
3 804
6450

10547
17 784
28 826
48464
77689

130868
207 308
350014
548 271
931 584

1 433 966
2469 368
3 725 257
6 510384
9 590838

17 192 714
24 357 702
45 428434
61 388 268

119938 514

1

0
2
0
5
0

14
4

42
—20

126
—100

400
—376
1 248

—1 556
4231

—5 588
13 880

—21 912
48 985

—76404
165 712

—295 660
602237

—1 017452
2072 268

—3 935 956
7665 833

—13411588
26 634 782

—52 362292
99 567 378

—176237 580
348 090 340

—699 582 108

0
2
8

24

156
358
786

1 664
3 434
6902

13 656
26464
50 772
95 754

179442
331 294
609496

1 106 106
2004852
3 586 S74
6423 028

11 351 274
20 126 538
35 191 190
61 883 196

107 179 834
187 216 848
321 395 596
558 468 104
950 702 594

1 645 491 278
2 778 049 248
4 796424 622
8 028 750 772

13 848 760938

0
2

16
72

252
764

2094
5 362

12968
30 138
67446

147048
311940
649 860

1 325 234
2 66S 130
5 278 066

10346200
19977010
38 329 556
72 546986

136785 AAA

254 596418
473 093 498
868 060 738

1 593 517724
2 887 257 826
5 246 647 808
9400 175 212

16935 336776
30035 008 322
53 731 142 846
94 373 684 636

167 898 005 054
292 175 943 812
517568 220 986

this linear extrapolation. Since the pole-residue points for
S/Sc are still scattered about the straight line drawn, we
must conclude that, despite the extension of the known
number of terms in the series, the Pade approximants for
this series are still not well converged and the estimate of
vj must be regarded as more reliable than that of vc.

B. Correction to scaling analysis

Recently several authors have demonstrated the impor-
tance of nonanalytic correction to scaling terms in the
analysis of series expansions. For example, in analyzing
a moment of the pair connectedness we must allow for a
function of the form

pt (p)= g (x,')'~ t C;(p)

—f—Ns v) )
—

Ivy h, l-(P. P) l&+~1(p.——P) '+b(P. P)+&2(P. P) '+—' ) (I ev—e» .

Therefore, we have analyzed the series of Table I with the
methods of Adler et al. ' The former method involves
minimizing the effect of the correction, due to the first
nonanalytic term, on the evaluation of the dominant ex-
ponent and is a generalization of the transform of
Roskies; whereas the latter method gives us a corroborat-

I

ing estimate of hi.
In the former method the series pt (p) in p is

transformed to a series in

y = l —(l —p/p, )a,
and different Pade approximants to the function
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TABLE II. Estimates of the critical probability p, and dom-

inant exponents.

Standard Pade
analysis

Correction to scaling
analysis

pc
r
Vo

Vg

0.644 701+0.000002 0.644 701+0.000012
2.27721 +0.00001+90hp, 2.27721 +0.0003+156hp,
1.094 +0.002 +33hp,
1.097 +0.001 +64 hp,

1.733 2(5)~0.000 1+68hp,

Ga(y)=h(y —1) [lnIzt ~(y)]=h —K/(1+X) (6)

evaluated at y=1 are inspected for convergence. Here,
h =y+mvll+Ivt and

4)/ha=a,p, a, (y —1) ' (7)

and we expect the Pade approximants to be best con-
verged for the correct value of p, and b =bi, in which
case E becomes analytic and an accurate estimate of the
dominant exponent is obtained. For a model where nei-
ther p, nor b, t is known, one searches for the best conver-
gence in the (p„h, h} space, since 5 is the variable pa-
rameter, not b, t. Here we use the value of p, from the
D ln Pade analysis as an initial guess, since if 5t is close
or equal to unity, this should be accurate. %e note that a
very strong check of the validity of our results is if the
same value of 5& and p, is obtained for all quantities
studied.

The second method used is believed to be most reliable
for b, t close to 1.0. It involves studying Pade approxi-
mants to the logarithmic derivative of B(p), where

d( t, (p)
B(p)=hpt (p)+(p, —p)

dp
(8)

This logarithmic derivative has a pole at p, with residue
h +5~, thus, here the input into the calculation is p, and
h. Again a search for regions of convergence of the dif-
ferent Pade approximants is made in the (p„h,ht) space
and the 6i estimates from this method should be con-
sistent with those from the former one.

Plots of the (y, hi) plane for the S series have been
made for a range of p, values centering on the estimate
from the Pade analysis. The plots for p, =0.644701 are
presented in Fig. 1; that of Fig. 1(a) being obtained by the
method of Ref. 7 and that of Fig. 1(b} from the general-
ized Roskies transform.

In Fig. 1(a) we observe an intersection region
0.975 & d & 1.025, 2.27 & y & 2.28. In Fig. 1(b) there is an
intersection region consistent with that found in Fig. 1(a)
and a second region of convergence a little below b, = 1.4.
Data obtained for other values of p, by the generalized
Roskies transform of the mean-size series shows that the
point (p, =0.644701, 5=1.00) corresponds to a sharply
defined local minimum in the rms deviation of the y
values obtained from a range of fourteen Pade approxi-
mants each of which uses at least twenty nine-series coef-
ficients. However, this point is not unique and other local
minima may be found close by (but with larger rms devia-
tions) which lie on a well-defined line in the (p„b, ) plane
and, depending on which on the values of b is chosen as

&A&LE 111. Pade approximants to the mean cluster size (S) series (a) and Euler transform of that series [z=p/(1+p)] (b).
8=interfering defect.

Pade
N

[N/N —2]
p, Expt.

[N/N —1)
PC Expt.

[N/N]
Expt.

[N/N + 1]
Pc Expt.

[N/N +2]
PC Expt.

11
12
13
14
15
16
17
18

0.644 70 2.2771
0.644 70 2.2771
0.644701 2.2772
0.644 700 2.2770

0.644701
0.644700
0.644701
0.644701

2.2773
2.2771
2.2772
2.2772

0.644699
0.644701
0.644700
0.644 701
0.644700

2.2770
2.2772
2.2772
2.2772
2.2772

0.644709
0.644701
0.644 701D
0.644701
0.644 701

2.2778
2.2772
2.2772
2.2772
2.2772

0.644 694
0.644703
0.644700
0.644700
0.644 701
0.644 706

2.2767
2.2774
2.2772
2.2772
2.2772
2.2774

[N/N —2]
z, Expt.

[N/N —1]
ZC Expt.

[N/N)
Expt.

[N/N +1]
C Expt.

[N/N +2]
~C Expt.

11
12
13
14
15
16
17
18

0.391987
0.391 987
0.391 987
0.391 987

2.277 19
2.277 17
2.277 19
2.277 25

0.391 987
0.391 986
0.391 987
0.391986

2.277 32
2.277 13
2.277 20
2.277 10

0.391 984
0.391 988 2.277 47 0.391 987(5)

0.391 987 2.277 33 0.391 986 2.277 03 0.391 986(5)
0.391 986(5) 2.277 16 0.391986 2.277 14 0.391 986(5)
0.391 986(5) 2.277 15 0.391 981 2.276 22 0.391 987
0.391 987 2.277 18 0.391986{5) 2.277 17 0.391 989
0.391987 2.27724

2.276 72
2.277 37
2.277 16
2.277 16
2.277 19
2.27744
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Table II, we note that an estimate taken from pz" and p, z
'

plots would give
~
5i —1

~
& 0.08.

III. DISCUSSION

Our estimate of the correction exponent b, , is so close
to unity that it might be supposed that only an analytic
correction is observed [i.e., we are looking at the term
with amplitude b in (2)]. If this is the case, then the re-
sults of standard Pade analysis (Table II) should be com-
pletely reliable (as in the case for the d=2, S = —,

'
Ising

model). If hi is merely close to 1.0, then the exponent
values will deviate from standard Pade estimates in a
manner determined by Eqs. (10)—(12). We have also
analyzed the sa~e series by the method of Baker and
Hunter. ' The results obtained are less well converged but
are consistent with the above conclusions.

We may compare the b, i estimates with those of Adler
et al. 7 and those obtained from Reggeon field theory
(RP1').""~ Adler et al. concluded 1.00 & 5 i & 1.04, us-
ing much shorter series and p, =0.6446+0.0002. The fact
that the center of this range of Lki is higher than the value
given here is consistent with the observation that our esti-
mate of 6, i increases as the assumed p, decreases and that

our revised estimate of p, is higher. The value of
b i ——1.04+0.02 obtained from Rl I' and quoted by Adler
et al. is not consistent with b, i

——1.000 (analytic correc-
tions only); however, this value was obtained from
b, , =Avll with A, =0.60+0.01 (Ref. 11) and vll

—1.736
+0.001 (Ref. 12). If we use the value of A. =0.57+0.03
given in Ref. 11, we obtain b, , =0.99+0.06. Thus, any in-
consistency appears to be within R~ l' and not between
Rk' I' and directed percolation.

The closeness of b, i to unity suggests a tantalizing pros-
pect. Most of the exactly soluble systems have analytic
corrections. If directed bond percolation in two dimen-
sions has indeed analytic corrections, the model may well
turn out to be exactly soluble.
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