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Linear spin-wave theory of incommensurably modulated magnets
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Calculations of linearized theories of spin dynamics encounter difficulties when applied to incom-

mensurable magnetic phases: Lack of translational invariance leads to an infinite coupled system of
equations. We reso1ve this for the case of a "single-Q" structure by mapping onto the problem of
diagonalizing a quasiperiodic Hamiltonian of tight-binding type in one dimension. This allows for
calculation of the correlation functions relevant to neutron scattering or magnetic resonance experi-

ments. With the application to the case of a longitudinally modulated magnet a number of new pre-

dictions are made: at higher frequency there appear bands of response sharply defined in frequency,

but broad in momentum transfer; at low frequencies there is a response maximum at the q vector

corresponding to the modulation vector. %e discuss generalizations necessary for application to
rare-earth magnets.

INTRODUCTION

The increasing availability of large single crystals of
rare-earth metals and their compounds has revived experi-
mental attention in the dynamics of their magnetically or-
dered phases, in particular the sinusoidally modulated
phases of neodymium, praseodymium, and CeAlz. ' There
is, however, a difficulty in the interpretation of inelastic
experiments, in that linear spin-wave theory, the normal
starting point for understanding excitations in magnets, is
not straightforward when the average moment varies
from site to site. This was recognized long ago. The dif-
ficulty is precisely what makes the materials interesting in
a wider theoretical context: In the presence of incom-
mensurable modulation the magnetic structure lacks
translational invariance and therefore crystal momentum

q is not a good quantum number. The same is true for
helical phases if we include effects of anisotropy-induced
bunching, as has been observed in the helical phase of hol-
mium. The linear spin-wave equations, which for a com-
mensurable structure may be solved by diagonalizing a
finite-dimensional matrix, form an infinite coupled set.
There have been attempts to cope with this by truncation
or by perturbation theory: such efforts have had limited
success but the approximations made are not well con-
trolled, and in some cases have led to misleading results.

Fortunately, there has been a body of work on the
mathematical physics of several closely related problems
involving quasiperiodicity, inspired by the dynamics of
structurally modulated systems and charge-density waves
and by theories of electmnic motion in a film in the pres-
ence of a transverse magnetic field. Consequently, for
the case of a "single-Q" structure, to which this paper
will be restricted, the properties of the coupled equations
are understood, and we can calculate the inelastic spin-
wave cross section in a single-magnon approximation.
While we limit this discussion to a simplified model Ham-

iltonian, the method can be generalized in a straightfor-
ward manner to incorporate a fuller description of the an-

isotropies. A number of features appear that previously
were unexpected and should be observable in experiments.
The structure predicted by the present, nonperturbative
account is a good deal richer than that of broadened mag-
nons found by previous treatments.

LINEAR SPIN-WAVE THEORY

For simplicity, we consider an exchange Hamiltonian
that is quadratic in the spin operators (later we shall out-
line the extension to higher-order anisotropies),

J q —,
'

Sq Sq +Sq Sq

—K(q)SPq)d q,

where the integral is over the Brillouin zone (BZ). To be
more specific, we take the simplified model introduced by
Elhotts for rare earths, in which we imagine competing
exchange interactions J& and J2 between nearest and
next-nearest neighbors along a single crystalline axis a, a
transverse ferromagnetic exchange Jo, and a strong uniax-

ial anisotropy favoring a single spin axis z,

J(q) =Jicos(q'a)+ Jicos(2q'a)

+Jo[cos(q.b)+cos(q c)],
K(q) =D+J(q),
ga g iq rga

In a random-phase approximation, if J(q) has a max-
imum at q=Q=Qa such that cosg = —J&/4J2, there is
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dS+
q =[Sq,A ]=QE(q')Sq++qSq —J(q')Sq+Sq q .

Within the linearized approach we replace operators S' in
(3) by their expectation values (2),

dSq
i =—[E(Q}—J(q+Q)]S+ ~

+—[E(Q)—J(q —Q)]Sq+ q .

Making the substitution q: =q+ nQ, we derive the infinite
set of coupled operator equations,

+ + +
Sq+ng ~n+1Sq+(n+1)Q+ ~n —lSq+(n —1)Q &

Ch

W„=—[E(Q) —J(q+ n Q) ] .S

Thus within a linearized theory, for Q incommensurable
with the lattice, the normal modes and their frequencies
are derived from an infinite-dimensional matrix with first
off-diagonal elements only. The hierarchy (5) is as found
by Liu and Lindgkrd: Henceforth our analysis will
differ. By the assumption of a single-Q structure (2), we
note that the set (5) has a one-dimensional structure. As
(5) stands, however, the matrix is not symmetric:
Nonetheless, it may be made so if we define transformed
operators

&
+

( Pr )
) /2S +

Note that D is positive in order to stabilize the longitudi-
nal modulated phase; thus the 8"„are positive.

Then the equations of motion for operators a„+ are
those of a one-dimensional tight-binding model,

~= gin(+n+)un+(in ~n+i) &

+ +

a stable ground state satisfying

(S', }=Scos(Q r),

&S;&=—', [5(q-Q}+5(,+Q)],

provided D is sufficiently strong to ensure that this longi-
tudinally modulated phase is of lower energy than a heli-
cal phase,

D& J(Q) .

Note that the ground state has a broken phase symmetry,
i.e., there is an arbitrary phase (I) in the spin density {2)
that we have taken to be equal to zero. In principle, a
small field conjugate to this variable should be taken
which is set to zero at the end of the calculation. To the
level of the linearized theory presented here, following
Ref. 2, this will not affect the final equations; however,
this broken symmetry has consequences which we shall
mention below.

Using the equation of motion for spin operators, in
units such that A'=1,

ImX+ (q', co) = g con
f (n)

5(~—~,),.(q, q, )
(~n)'"

where n (q', q, co) denotes the set of integers such that q'
and q+nQ coincide when reduced to the first Brillouin
zone, and b+ =g"„fn(n}a„+ is the eigenmode of energy
co . If Q is incommensurable, n (q', q, Q) has at most one
element, and

~ If «) I'
ImX+ (q+nQ, co)= g 5(ro —co ) . (9)

a PJ

The set Iq+nQ), reduced to the first Brillouin zone, is a
dense set of vectors on the line through q and parallel to

It is apparent from (9) that X+ /co is the local density
of sites, "local" in the space of sites q+n Q, and thus for-
mula (9) should converge, in the limit of an infinite crys-
tal, to a measure which corresponds to the nature of the
spectrum of the operator: a smooth function of q if the
spectrum is continuous, or an infinite set of 5 functions,
i.e., "satellites, "if the spectrum is pure point.

It is instructive to recover the results for a simple corn
mensurable magnetic phase: the two-sublattice antifer-
romagnet with Q=ira. In this case the t„are equal for
any pf,

r„=r =i(q)= —&E(e)—J(q)&E(ir) —J(q+n. ) . (10)
5
2

By translational invariance the eigenoperators are

b+ g e&knu+

with cok ——2t(q)cosk. In this case, however, out of the in-
finite set of frequencies cok, only two are physically
relevant, since for all n the operator a„+ is identical to
an++i. Thus, except when k is 0 or n the factors e' " in-
terfere destructively, and the operator bk is the zero
operator. We recover, then, for Q=n.a the result that
there is a pair of frequencies

co=+2t(q) . (12)

Note that the wave vectors k are in the reciprocal lattice
to the chain of "sites" (and should not be confused with
crystal momentum q).

Returning to the income. ensurable case, the tight-

with quasiperiodic coefficients t„=(W'„W„+))' . Note
that "site n" refers to the operator Sq+„~. If (7) can be
diagonalized, the dynamical susceptibility

X+ (q', )= f '"'([S+(r),S, (0)]}dk

for spin components transverse to the direction of spin or-
dering z is determined for the momenta q' defined by
adding integral multiples of the modulation vector Q to
the starting vector q. The angular brackets ( }denote a
quantum-mechanical expectation value in the ground
state.

Expanding operators Sq+ in terms of the eigenmodes
and using the boundary condition (2), we find
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binding Hamiltonian is aperiodic with the nth off-
diagonal element

t, =—&(Q)I I+acos(q, +ttQ)+pcos[2(q, +nQ)]J'~'n

X(1+acos[q, +(n +1)Q]

a(x+Q)=e'& a(x) where k= i—

Equation (14) can therefore be written in operator
language,

Ha (x)=Ea(x),

+p cos I 2[q, + (n + 1)Q] J
)'~2, ( 13) where

where a= —Ji/I("(Q), P= —J2/X(Q), and q, =q a.
The Hamiltonian (7) differs from Harper's equation,
which is the lattice equivalent of Mathieu's equation, and
which has been analyzed by Aubry and others, ' in that it
has no site-diagonal term. In our case it is the off-
diagonal term that is modulated. The same methods used,
essentially adapted from those applied to random systems,
can be applied here. In particular, we can define a com-
plex function k(E), the imaginary part of which is the
Lyapunov exponent, the real part the integrated density of
states. Siraply by multiplying matrices we can rapidly
calculate a density of eigenstates and see whether states
are extended or localized (on the lattice of sites n)." The
difference equation for eigenvectors of (7),

E~n tnQn+]+ En —]~n —I ~

rewritten as

&n —]
a„+i (E/t„)a„——— a„

tn

(14)

is iterated starting from arbitrary boundary conditions
(ao ai).

The Lyapunov exponent is defined numerically by
T

A,(E)= lim

and the integral of the density of states

I(E)= f p(E')dE'= lim
00 N'. N

by counting the number of sign changes X(E,N) of the se-
quence of real numbers (ao,ai, . . . ,a~). Note that this
procedure does not involve diagonalization of the matrix,
but gives only spectral information, i.e., it determines
X+ (q, t0) averaged over q. In order to calculate eigen-
vectors and thereby the structure of X+ (q, ro) as a func-
tion of q, however, we need to diagonalize a tridiagonal
matrix.

H(x, k)=t„(x)e''()" +e '&~t„(x) .

A classical Hamiltonian equivalent to (15) is therefore

H(x, k) =2(cosk)t„(x)

2SIC( )

2
(cosk)[1+a coax+ pcos(2x)]'i

(15)

&& I 1+acos(x +Q)+ pcos[2(x +Q)] I
'~

The semiclassical approximation should be valid in the
limit Q~O and wave functions with k &&Q, i.e., for a po-
tential varying slowly on the scale of lattice spacing and
k. In fact, it appears to explain qualitatively numerical
results where these conditions are but barely fulfilled.

To construct a semiclassical wave function we first con-
sider energy contours of the function H(x, k). In Fig. 1

we draw these for k in the range [0,2m] and x in the range
[0,4ir]. Q is chosen to be small, i.e., the phase is nearly
ferromagnetic. a is taken to be —0.386; p is fixed by the
choice of Q. These parameters were chosen as a simpli-
fied model of neodymium. For larger a there may be fur-
ther extrema of H, giving greater complexity to the con-
tour diagram. The classical equations of motion have or-
bits that are either closed, or open in the x direction.

The closed orbits occur around minima A, A' of the
surface H or maxima. The contour 8 separates the closed
from the extended orbits whose energies are smaller in ab-
solute value. To lowest order eigenfunctions correspond-

SEMICLASSICAL DISCUSSION

The essential properties of the Hamiltonian (7) can be
understood within a semiclassical picture, as has been
used by Harper~ and Wilkinson'o for the case of a Hamil-
tonian with a diagonally modulated term. Introducing the
continuous variable x by

q+ Q —q+
(~Q ~)

and treating the a„ in (14) as functions of the continuous
variable x, we note that

FIG. 1. Energy contours of the classical Hamiltonian (16)
with parameters a= —0.386, Q =0.8160, and P=0. 1410. A
and A' are equivalent minima; 8 is the separatrix separating
closed and open orbits. The straight lines E =m/2 and 3m./2
are contours of energy O.
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f~ p(2n+1}=+(—1)"
( pr )

1/2

where the normalization C is given by

2' X

2nSE (Q) . o 1+a cosx +P cos(2x)

Therefore there is response for vanishing energy,

X+ (q', co)
lim Im
07~0 N

l 1

[( gr )
i /2] 2

1

[&(Q)—J(q')]'

Thus there is a "quasielastic" band which has maxima at

Q and 2m. —Q and which is relatively broad in energy,
since it appears in the region of open orbits. These excita-
tions have the greatest amplitudes where the spin density
is least.

It is tempting but incorrect to identify these low-energy
excitations with the phasons whose existence follows from
the broken phase symmetry of the ground state [Eq. (2)].
The present operators generate rotations of the spin-
density wave out of the easy axis and not a shift in its
phase. The phason operator, in contrast, would generate

ing to a finite set of closed orbits occur at discrete energy
levels, in essence those given by Bohr-Sommerfeld quanti-
zation. %ithin a %'KB approximation these levels are
broadened into a band, the width of which depends on
overlap of wave functions localized close to equivalent
closed orbits, around A and A', for example. The width
is therefore exponentially small for Q approaching a com-
mensurable value. If there is more than one such sharp
level, corresponding to the quantization of more than one
closed orbit, the overlap, and hence the bandwidth, is
larger for those arbits of lower frequency since the states
are less tightly bound. Since there are always orbits open
in the x direction, we might expect, by comparison to the
diagonal problem, that all eigenstates are extended when
tunneling is taken into account. This was verified by cal-
culation of the Lyapunov exponent numerically: Over
any interval where I(E) changes, A,(E) was found to be
zero for the expected numerical accuracy. There is na
"breaking of analyticity"' and all eigenstates can be writ-
ten in the form justified by perturbation theory:

f~(n)=e' "4(ng) .

The contribution of the mode a to X+ at q'=q+nQ is
proportional to ~4(ng)

~

.
Open orbits of the classical picture become, with the in-

clusion of quantum-mechanical interference, a relatively
broad continuum which develops gaps from the periodici-
ty in the x direction. The envelope 4 for states corre-
sponding to open orbits is relatively featureless.

Another feature suggested by Fig. 1 is the special na-
ture of the zero-energy contour, an axis of symmetry. In
fact, we can explicitly determine the two degenerate zero-
energy eigenstates

fa 0(2n)=( —1)"
( gr )i/2

low-frequency response in the longitudinal response func-
tion. To the order of the present calculation, fluctuations
in the transverse correlation functions are not coupled to
longitudinal response, although, of course, such coupling
should appear at higher order. The low frequencies here
appear purely because of the existence af low spin densi-

ties, and therefore restore forces in a linear approxima-
tion, close to the nodes of the spin density (2}.

Strictly speaking, it is probable that all the "bands"
described here are not mathematically continuous bands:
It has been conjectured' that the spectrum af quasi-
periodic operators such as (14) is a Cantor set with an in-
finite number of gaps, each of finite but increasingly tiny
measure. There is likely, then, to be a certain vagueness
in our definition of the number of bands observed, in that
if we could define energy to increasingly higher accuracy
we might distinguish an increasing number of distinct
bands. In practice, this is not a serious constraint as the
ignored structure is so fine: Operationally we have effec-
tively included a "resolution" of the order of 10 2 times
the couplings. This should certainly outdo any experi-
ments.

We emphasize that numerical procedures may not dis-
tinguish the multitude of tiny gaps, but they do not miss
the exponentially narrowed bands. Although the function
A,(E) may vanish an a tiny interval, over the same interval
I(E) changes sharply, and thus the interval over which it
changes can be defined with great ease. While we expect
that the complement of the spectrum is dense, and there-
fore increasingly accurate computation should reveal fur-
ther gaps within a previously defined band, the same is
not true of the spectrum: a gap should remain a gap.

RESULTS OF NUMERICAL ANALYSIS

It is only in the frequency dependence that sharp struc-
ture is displayed: the q dependence is smooth. This is a
consequence of the fact that the states are extended in q
space: if they were localized (positive Lyapunov ex-
ponent) the structure would be of sharply defined excita-
tions in q with a dense set of satellites, corresponding to
the point spectrum. In practice, we calculate the spectral
weight af eigenmodes by the procedure outlined above
with of order 10000 modes; we then determine the
momentum dependence of X+ (q, co) in each frequency
range by a straightforward diagonalization of a tridiago-
nal matrix corresponding to a few hundred modes and
fold the results together. This procedure gives an accurate
calculation of X+ (q, co} with modest computing time.

In Fig. 2 we show the function Im[X+ (q,c0)/co] calcu-
lated for the case of modulation with small Q. It is veri-
fied that in addition to the smearing out of spin-wave ex-
citations of the ferromagnetic state Q=O, as prixficted by
perturbative theories, there are two qualitatively new
features for Q close to the commensurable vector Q,
(here 0).

(i) In the high-frequency region at least one band of
response is extremely sharply defined in energy. In the
limit 5Q=

~ Q —Q, ~

~0 the total weight vanishes as 5Q,
the energy width as exp( —const/5Q). The frequency is
comparable to that of band-edge magnons in the com-
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FIG. 2. Imaginary part of the dynamical susceptibility as cal-
culated for the same parameters as Fig. 1. The energy units are
such that SE(Q)/2—:1. The arrow labeled E~ corresponds to
the energy E~ ——1.481 of the classical separatrix 8 of Fig. 1.
The sharp resonance at higher frequencies is bounded by ener-

gies [2.2411,2.2547]. The dips in intensity at lower frequency
would descend to zero if the plotting resolutions mere finer.

mensurable case. The momentum dependence of the
dynamic susceptibility at these energies is quite charac-
teristic: it is effectively the density of a particle in the
bound states of a potential giving the closed classical or-
bits of Fig. 1. For the case drawn, the extreme band has a
maximum at q'=ir; for an almost antiferromagnetically
ordered case Q=m, the two local maxima in f(q) give a
two-peaked structure for the highest frequency. We can
approximate the potential close to its minima or maxima
by a harmonic form. Thus as 5Q-+0 the extremal bands
are evenly spaced in energy, with momentum dependence
corresponding to the spatial dependence of linear
harmonic-oscillator wave functions. As the energy ro de-
creases, the bands broaden in energy and have more maxi-
ma as a function of q, corresponding to the structure of
less highly bound states.

(ii) A quasielastic, i.e., low-energy, feature that has a
broad maximum at the incommensurable vectors +Q.
The total weight vanishes as 5Q and the energy width is
not exponentially small. As we have stressed, these are as-
sociated with the regions of low spin density in which the
linearization of the equations of motion is least likely to
be accurate.

GENERALIZATIONS AND CONCLUSIONS

The model (1) studied here is rather simplified: for
satisfactory application to rare-earth systems it is neces-
sary to include terms higher than quadratic in the crystal
field. The main complication is that two mechanisms in-
duce third-, fifth-, . . . , order couplings to the tight-
binding model (7): (a) terms in the Hamiltonian (1) of
higher order than quadratic in the spin operators, and (b)
higher harmomcs in the ground state (2). In addition,
crystal-field terms that break axial symmetry add opera-
tors Sz in the equation of motion for S~ and vice versa.
To include cubic or hexagonal anisotropy, it is therefore
necessary to formulate the tight-binding model in terms of
pseudo-spin- —,

' operators. This renders numerical calcula-

tion slightly harder but no different in principle. Of
course, it is quite possible that with these modifications
there may emerge a pure point spectrum: This will be sig-
naled by a positive I.yapunov exponent in the region of
nonzero spectral measure.

The methods developed here are also applicable to exci-
tations in spiral phases when "bunching" occurs, i.e.,
when a nonuniform turn angle is induced by applied-
magnetic-field or crystal-field anisotropies. If bunching is
seen in static studies, as it has been in holmium, the
spin-wave equations should be modified from those of the
regular helix. When this is done ' the transformation to
a rotating frame of coordinates that successfully decou-
ples the equations for the undistorted helix fails to
separate modes of different momenta. Again the coupled
set of operator equations may be brought into a form
similar to that presented here and solved by the same
methods. In this case preliminary calculations' ' ' indi-
cate that the spectrum is pure point.

We emphasize that the one dimensionality of the equa-
tions for the three-dimensional phases considered is a
consequence of the "single-Q" ordering that couples exci-
tations only in a one-dimensional line in the Brillouin
zone of the paramagnetic phase. Higher harmonics of the
ordering (2) that appear as the modulation "squares up"
will not affect this effective one dimensionality, nor,
indeed, the qualitative features of our results. From slight
extension of the arguments given, we would expect the ef-
fect to be sharpening of the momentum dependence of the
high-frequency response and diminishing of the weight of
the lower-frequency response. Another generalization
relevant to certain phases of neodymium is of a Q vector
not parallel to a symmetry direction: this preserves one
dimensionality, but introduces further incommensurable
periods to the effective Hamiltonian.

The same simplification of one dimensionality will not,
of course, occur for a "multiple-Q" magnetic structure
for which the spin density has components of nonparallel
but equivalent wave vectors Q. A triple-Q structure has
been proposed, for example, for neodymium, but static
diffraction experiments have, so far, failed to distinguish
the possibilities because of the similarity of the diffraction
patterns of a single-domain multiple-Q structure and a
multiple-domain single-Q structure. The dynamics asso-
ciated with the different possible orderings should be dis-
tinct. While comparison of the two possibilities by
dynamic measurements would require a theory like the
present one for the triple-Q structure, a theory that is
currently lacking, it is already suggestive that the high-
frequency feature (i) described above is enhanced by the
effective one dimensionality. The feature should be dis-
tinctive through the fact that it occurs at a frequency that
varies transverse to, but not parallel to, Q. This suggests
that the two possibilities, single or multiple Q, could be
separated by a dynamic measurement. Naturally, proper
interpretation of experiments requires a fuller treatment
of crystal-field splittings, both in the manner outlined
above and by introduction of standard basis operators'
that preserve the "excitonic" nature of magnetic excita-
tions in the presence of large crystal-field splittings.

lt is well known that modulated magnetic structures
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also occur in transition metals, such as chromium. In this
case the itinerancy of the electrons means that a
localized-moment model as employed here is inapplicable,
strictly speaking. The present calculations do show that,
however, even neglecting itinerancy, the excitation spec-
trum of a modulated magnet is richer than hitherto as-
sumed. While we would refrain from applying the present
theory to chromium, it is clear that the recent excitations
discovered' should be interpreted with this in mind.

In this paper we have discussed linear spin-wave equa-
tions for sinusoidally modulated structures. A number of
interesting new features occur in the spectrum in addition
to the broadened spin-wave bands. %e emphasize that
these conclusions, while exact consequences of the linear-
ized equations of motion (5), are based on those equations
and are not directly on the Hamiltonian (1). In applying
the theory it is important to remember that fluctuation
corrections to (5) may blur some of the sharp features we
predict. Furthermore, static structures corresponding to

(2) are generally stabilized by entropy considerations and
are therefore stable at finite temperatures. Thus thermal
fluctuations are significant and should be taken into ac-
count by including a thermal averaging in the dynamical
correlation functions. While a detailed discussion of fluc-
tuation effects is clearly beyond the scope of this paper, it
is clear that a correct treatment of the linearized theory,
as we have sought to present here, is the initial step in
such a direction.
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