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In disordered three-dimensional itinerant fermion systems close to a magnetic instability, (a) the uniform
paramagnons, becoming stronger in the presence of weak disorder, drive the system closer to magnetism
and away from the localization transition, in agreement with recent theories in d =2+e¢. However, (b)
since the paramagnons also tend to become momentum independent, they are expected to become local-
ized in the strongly disordered regime; if this situation is achieved before the magnetic instability is
reached, then the old results, according to which local paramagnon theory scales towards a vanishing-
interaction theory, could possibly be used to understand how the metal-insulator transition can occur in the

presence of a strong interaction.

One of the most interesting and puzzling problems, at
present, is to understand the metal-insulator transition in
the presence of strong interactions among the fermions.!
The latest developments, so far, are those using either the
n-orbital model in two and three dimensions,? or, in 2+e
dimensions, field-theoretical renormalization-group calcula-
tion,> generalized diagrammatically.* According to these
theories, the present status of the problem is described,
qualitatively, as follows:

(1) While the metal-insulator transition is well understood
in noninteracting systems,’ the presence of strong interac-
tions tends to develop spin alignment, and strong spin fluc-
tuations are generated which increase the conductivity and
thus prevent the localization transition from occurring at
least in the absence of spin-orbit coupling for nonmagnetic
impurities.

(2) However, these spin fluctuations tend, upon scaling,
to become momentum (g) independent so that, actually,
““local”” spin fluctuations are formed. The authors of Refs.
3 and 4 then conjecture that the onset of local spin fluctua-
tions may allow the localization transition by a possible
‘‘suppression of triplet fluctuations and the crossover to the
singlet-only regime,’’ as concluded in Ref. 4, or, alternative-
ly, in Ref. 3, the “‘localized spin-density islands will magne-
tize the remaining electrons’’ and thus ‘‘the direct exchange
of localized moments . . . leads to an antiferromagnetic in-
teraction of moments which will block the ferromagnetic in-
teraction occurring due to the indirect exchange.”’

Part (1) of these conclusions had emerged already from
perturbative theories of disordered interacting electrons;® on
the other hand, the near-g independence arose in the n-
orbital model near a magnetic instability? and has also re-
cently been derived from a different approach,’ within the
paramagnon model. Within that last model, I will show that
such a result indeed implies that the uniform (to start with)
paramagnons tend to switch, for a much stronger disorder,
to local paramagnons. Therefore, one can finally make use
of somewhat old results obtained for the problem of local
paramagnons,® which yield a scaling to an effective interac-
tion which is vanishingly small (although the interaction one
started with was actually strong). In that case, one recovers
the result obtained for noninteracting fermions,’ i.e., the
metal-insulator transition can occur, in agreement with the
conjecture of Refs. 3 and 4. Modifications due to the addi-
tion of spin-orbit coupling will also be noted.
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In the following I will use the paramagnon model as in
Ref. 7: a dimensionless, Hubbard-type, instantaneous con-
tact repulsion / among opposite spins, of order 1, so that
the system is close to a ferromagnetic instability at 7=0
(the temperature that I consider in the following). 1 will
also restrict the discussion to the case of a single parabolic
band of fermions for simplicity, although in real systems
and for quantitative estimates band-structure effects ought
to be included. Then the 7 =0 conductivity o contains two
types of corrections to the Boltzmann conductivity og:

o=o0o(l1+80,/00+80./00) , 1

where 8o /0o is the localization correction in the absence
of interactions;’® in perturbation theory!

dor/odo=— (3/47) (erro) "% (erro) i< 1, )

where 80, /0 is the perturbative correction due to the
mixed effect of interactions and disorder through the
particle-hole diffusion propagators (phDP) and the particle-
particle diffusion propagators (ppDP);!¢ it was computed, in
the Hubbard model of Isawa and Fukuyama® (IF)

doir/oo=—(3V3/16)g(err0) "2 glerro) i<l . (3)

In both formulas (2) and (3), 7¢ is the elastic lifetime and
er the Fermi energy. g is a coupling constant containing
both interactions and disorder. Let us consider the two fol-
lowing cases:

(a) In the absence of spin-orbit coupling, g is

g§=81—283+8:—284 , (©)]

as given in Ref. 10 to first order in the interaction as well as
by IF to higher orders. The phDP contribution enters into
g1— 2g; and the ppDP one enters into g,— 2g4 (g, here cor-
responds to g1y of IF in the Hubbard model; as in Ref. 7, 1
have replaced the notation F/2 of IFby I, 0< 7 <1). Re-
call that g3,g4 and g,,g, are coupling constants entering as,
respectively, Hartree and Fock types of self-energy correc-
tions to the fermion Green’s functions. One gets

g1=@/3ND[-2+Q+D~"2+(1-1)""?] (5a)

g=4/3D[-2-T+2(1-1)""2] , (5b)

g=81—284=—ga=—g=—11+TIn(1.13¢;/T)]7" .
(5¢)
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Note that the ppDP contribution to g,g. is negative whatev-
er I is, between 0 and 1. Although “multiply crossed dia-
grams,”’ in the absence of interactions, contribute to de-
crease the conductivity o, when they contain interaction in-
sertions (or paramagnons here) they will contribute to in-
crease o, although by a very modest amount. Note that
from Egs. (5), there effectively appear three coupling con-
stants (rather than four): two phDP type ones g;,g3 and
one ppDP type g.=g;—2g4= —gs This is in qualitative
agreement, to lowest order, with the three coupling con-
stants in Refs. 3 and 4. Let us write the phDP contribution
differently:

81—283=8+& ., (6a)
8&=81—283/2 , (6b)
&=—1383/2 , (6¢)

so that (4) actually reads
g=8t&tsg . n

The form (6a) explicitly separates the ‘‘singlet” (g,) and
the ‘‘triplet’> (g,) contributions of the fluctuations as em-
phasized in Ref. 11 and later on in Refs. 3 and 4 [the factor
3 in (6¢) corresponds to the multiplicity in the triplet contri-
bution]. With the 7 dependences of (5) inserted into (6)
one gets

g=4/3D[-1+1/2+Q+1)""Y?], 0<I<1, (8a)
g=@/DI+I/2—-(1-1)"12] (8b)

Therefore, first, it is clear that g, is positive whatever I is;
its contribution, were it the only one, would decrease o.
However, in contrast, g, is negative and, moreover, be-
comes very large when I— 1, in which case g
[~ — (1-T1)""?] predominates over g( ~ const) in (6a)
in order to increase o and prevent Anderson localization
from occurring. Such a result was used in Ref. 7 to show
that near the magnetic instability (7 — 1) the combined ef-
fect of normal impurity scattering and strong interactions
decreases the transport relaxation rate ;' (proportional to
o~ 1) so that the pair-breaking parameter (r;!) preventing
triplet-pairing superconductivity is weakened. The above re-
marks also agree with the conclusions of Refs. 3 and 4 that
“‘triplet’’ contribution is responsible for driving the system
away from the localization transition while the ‘‘singlet-
only”’ contribution would favor it. Let us also note that the
neglect of the ppDP contribution in Ref. 4 appears reason-
able within the present model, where g., although negative
like g, is negligible compared to g when I — 1. Finally,
while, separately, g, is positive and g negative whatever 1
is, the combination g;+g, is negative for all values of I
between 0 and 1. In other words, in the Hubbard model,
i.e., for a contact interaction among opposite spins, the
T =0 conductivity is always increased no matter what the
strength of the interaction is, while for the usual long-range
Coulomb interaction!-? it can be decreased.!?

(b) In the presence of spin-orbit coupling, of importance
for some experimental cases, g is modified and becomes
gso. It was computed to lowest order in the interaction in
Ref. 13. Note that although Ref. 13 is, in principle, devoted
to the two-dimensional (2D) case, it actually computes the
spin-orbit scatterings in 3D to account for the finite thick-
ness of the film [as is clear from formulas (2) of Ref. 13
and the few lines afterwards]; gso exhibits!> a combination
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of the g’s different from that of g%!° recalled in formula

(4); the coefficients of the g’s, aside from the number of
diffusion propagators, depend on specific summations over
spin indices which are different in the presence and in the
absence af spin-orbit coupling (independent of the space
dimensionality'*). Then, from Ref. 13, one gets

(9a)
(9b)

gso=g1— (g2+g3+84)/2
=g —(g2+24)/2 ,

where 1 have used the formal definition (6b) for g;. The
relation g,— 2g4= — g4 given by IF and taken at ¢ =0 and
w=0 [Eq. (2.23) of IF], which yields g,= g4, tells us that
(9b) reads

gso=28s t+ & (10)

Note that, although 75! switches!® to 1~ =751+ 75 in the
presence of spin-orbit coupling, the lifetime does not expli-
citly appear in the I dependences of the g’s in (5); howev-
er, it is, in principle, hidden in F/2 itself in IF (or I here).

But since this is considered as an averaged constant
phenomenological parameter, one assumes one can speak of
a unique one valid in (a) and (b). Using the relation g, = g4
here requires the same approximation.

Now comparing (10) with (7), the important result is that
the triplet term has disappeared and, therefore, since g, is
positive, the overall gso can be positive so that o may de-
crease and the localization transition can be reached. This is
in agreement with the conclusions of Refs. 11 and 15; while
the spin-orbit contribution can be an antilocalization factor
in the absence of interactions, when strong interactions are
present, the spin-orbit contribution acts to suppress the trip-
let contribution, and the combined effect of spin-orbit plus
‘“‘singlet-only’’ contributions can actually allow the localiza-
tion to take place. However, from Eq. (10), since g, is posi-
tive and g. negative for 0 < I < 1, the final result now will
depend crucially on the balance between them. Equation
(5¢), as emphasized by IF, is an underestimate of the actual
g4, a better estimate was provided by IF, but only for two
dimensions. I do not elaborate on this point here, where
only qualitative features are considered. If the balance
between g, and g, is such that g, +g. happens to be nega-
tive, then the situation may be qualitatively similar to that
in the absence of spin-orbit coupling: o may be increased,
at least if (3) still wins against (2), 75! would then decrease
and triplet superconductivity could occur despite impurities
and spin-orbit coupling. Instead, if g; +g. is positive, the
impurities plus the spin-orbit contribution will be very effec-
tive in preventing triplet pairing.

To summarize this first part, the above remarks contained
in (a) and (b) are in agreement with those obtained in a
more sophisticated way in Refs. 3, 4, and 15.

Let us now forget about case (b), since it is not incompa-
tible with the occurrence of the metal-insulator transition,
and go back to case (a), which remains, by far, the puzzling
one. I then turn to what I think might be a key point in
disentangling that case. As shown in Ref. 7, the paramag-
non spectrum Imx (g, w) considered as a function of w for
fixed g, is narrower and more peaked in the presence of dis-
order than in the pure system (r5'=0): The disorder
renders the paramagnons stronger and the system is expect-
ed to become closer to magnetism (depending on the band
structure, if the interaction I, renormalized by these
stronger paramagnons,’ happens to be closer to 1 than the
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bare I one started with, as can be evaluated through the
zero-temperature enhancement of the renormalized spin
susceptibility!®). This agrees with the results of Refs. 3 and
4 that spin alignment is favored by disorder and that strong
spin fluctuations are generated. It also agrees with the
result of the n-orbital model of Ref. 2: The ¢ dependence
of the inverse Stoner factor is weakened by disorder. I
found in Ref. 7

S 1
ST l=1-T+I4—|1- ) 11)
12k7 { 3(4ero)? ] (

to be compared with a similar result of Ref. 2:

S~ =1—Jopr+Jog?|R;— Ru|1— , (12)

1
2EopF

in which ‘“R; and Rjs denote the range of exchange interac-
tion and disorder scattering, respectively,” and Eqpr
=2(E} — €})?mE,, with 2E, the width of the semielliptic
impurity band in Ref. 2 (Jopr identifying with 7). It is clear
that, for increasing disorder, the coefficient of ¢ in (12) de-
creases [as in (11)] when E, increases [the disorder in-
creases with (Eo— Er)Y?]; therefore, formulas (11) and
(12) are very similar. From (11) for instance, it follows
that the paramagnon correlation length in the disordered
case Agjs is

Adis = P Apure »
Apwre= (2V3) "N/ (1-T) , (13
p=~/1—(1/3)(4epry) =2 .

Adis is shorter compared to Apyre, Since p < 1 for finite 5L,
and is closer to the Fermi wavelength Ar when the disorder
increases. Obviously (11), obtained as a perturbation ex-
pansion in powers of (er7o) ~!, holds as such only for weak
disorder; an extrapolation to the strong disorder regime,
when er7o~ 1, would imply the calculation of higher-order
terms. For the same perturbative reason [g < (ef7o)? from

(3)] p remains larger than V1—1, and A remains larger
than Ar. Therefore, at this stage one can just note that the
coefficient of ¢? in (11) is still positive (corresponding to a
nearly ferromagnetic instability when 7 — 1), but decreases
when the disorder increases. In this weakly disordered re-
gime, the paramagnons are just stronger as shown in Ref. 7,
the system is closer to becoming magnetic, and all the con-
clusions recalled above in (a) apply: o is increased, triplet
superconductivity is favored, and the metal-insulator transi-
tion prevented. However, in the following, I would like to
point out some (possibly crucial) consequences, with a
crossover towards a finally different situation, if one sup-
poses that these pessimistic perturbative results persist in
the strong-disorder regime.

More precisely, let us examine what could happen if a
more elaborate calculation of p in the strong disorder regime
e€rr0< 1 would show that p still decreases when 75! in-
creases, and that it eventually vanishes: either the magnetic
instability is reached before the ¢ dependence disappears
—then the system would switch to an unconventional mag-
netically ordered phase (possibly of spin-glass type!’) before
the metal-insulator transition—, or the ¢ dependence disap-
pears before the magnetic instability is reached.

(i) Firstly, the coefficient of ¢g> would vanish: The
paramagnons would become ¢ independent (the Kramers-
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Kronig relation would require that if the momentum depen-
dence is lost in the real part of the spin correlation function,
then it would be also in the imaginary part). Then the uni-
form (to start with) paramagnons would switch to local
paramagnons (as inferred in Refs. 3 and 4). This sounds
reasonable: If the electrons tend to localize, the paramag-
nons which are formed out of these electrons are expected
to localize also. These remarks will be further used below,
after (ii), to offer a possible explanation of the localization
transition in the presence of strong interactions. (Such spin
fluctuations, with no ¢ structure, are similar to the
Gutzwiller-Brinkmann-Rice-type spin fluctuations.!?)

(ii) Increasing the disorder further, €r7 < 1, if the coeffi-
cient of ¢g? may eventually become negative, this would cor-
respond to a magnetic instability at finite g, i.e., of an anti-
ferromagnetic type. This was indeed remarked in the n-
orbital model of Ref. 2. Such a possibility, although very
qualitative here, might be important in view of some experi-
mental results. For instance, the compound Ce(In,Sn;_,);
studied in Ref. 19 behaves at very low temperatures, for low
x values, as a strongly enhanced paramagnet with all the
characteristic features of a nearly ferromagnetic Fermi
liquid; however, when the In concentration x increases (and
thus the disorder increases) above a certain concentration
x., the compound orders with a (complicated) antiferromag-
netic structure. Less clear-cut examples could be cited:
CeAl; behaves as a nearly ferromagnetic paramagnet down
to 0 K, while CeAl, orders antiferromagnetically; liquid *He
is a nearly ferromagnetic Fermi liquid as well as a nearly
solid,” but switches, above a certain pressure, to an antifer-
romagnetic solid. I do not claim that these cases are identi-
cal, but it is striking that, very often, nearly ferromagnetic
itinerant systems, when they order, do so with some kind of
antiferromagnetic structure.

I now ignore (ii) and come back to (i), and to the main
point that I wish to raise here. Let us suppose that, in the
strongly disordered regime, the momentum independence of
the paramagnon overtakes the closeness to magnetism:
Crudely speaking, suppose that a formula analogous to (13)
holds in the strongly disordered regime and that p vanishes
before 1 — I, can do so, with ,., the renormalized interac-
tion defined earlier. Then, uniform paramagnons become /lo-
cal ones before the magnetic instability is reached. The
problem of local spin fluctuations, i.e., local paramagnons,
is not new,?’ but has been studied, so far, as follows: a host
of itinerant fermions interacting through the above
Hubbard-type contact repulsion 7, with 7 between 0 and 1
was considered; then the effect of the randomly distributed
impurities was just supposed to modify the value of
I— I'=T+AI locally, with AT>0 or <0. The problem
was treated as a uniform paramagnon one with the Stoner
enhancement (1—17)~! everywhere, plus, on the impurity
sites, local paramagnons with the local Stoner enhancement
(1—AI)~!, but the fact that the impurities also introduce a
mean free path for the host electrons was never taken into
account. Had it been, it would have been precisely the
problem we are concerned with here. On the other hand, in
the literature concerning localization of interacting electrons,
a possibly different value I’ among the electrons when they
interact on the impurity sites has not been taken into ac-
count.

In conclusion, we have seen in this paper that, from Refs.
3 and 4 as well as 2 and 7, as shown above, the uniform
paramagnons are expected to become localized when the



33 THREE-DIMENSIONAL ANDERSON LOCALIZATION IN . .. 1951

disorder becomes strong, in that case these new local
paramagnons add to the local ones that were present to start
with (due to the difference AT in the interaction values on
the impurity sites). Therefore, both types of paramagnons
tend to merge into a unique one of local type. Then it seems
reasonable to consider the system, at this stage, as an
overall system of only local paramagnons. If that is so, then
one could use what has been done in the past® in the theory
of ‘‘local paramagnons’ on nearly magnetic impurities:
When these impurities were far from being magnetic it was
shown in Ref. 8 that interactions among local paramagnons
(“‘mode-mode coupling” contributions) render these impur-
ities even farther from becoming magnetic. In other words,
the system is expected to scale to a situation for which the
effective local interaction would tend to zero, i.e., a weak
coupling theory (a correspondence was proposed in the
second of Ref. 8 between such a vanishing interaction and
the J= —o Kondo impurity case). In that vanishing-
interaction limit and if the problem we are concerned with
here effectively reduces to a problem of local paramagnons
with effective, vanishingly small, local interactions, then, in
(1), 80y./009 would become first smaller and eventually
negligible compared to 8o, /0o, i.e., one would recover a
situation similar to the noninteracting case of Ref. 5, where
o is decreased compared to o and the Anderson localiza-
tion occurs for a certain amount of disorder.

To summarize this last part, the uniform strong spin fluc-
tuations present in a disordered nearly magnetic fermion
system tend to become localized under the influence of
strong disorder; then, since the local spin-fluctuation theory
tends to scale to a free one, one can expect this strongly in-
teracting system to actually behave as a free one for which
Ref. 5 tells us that the Anderson localization can be
reached. Note, however, that in order to become possible,
the metal-insulator transition does not require that the ef-
fective interaction have reached its zero-value fixed point.
The interaction may still be finite, but such that
80, < |80, as mentioned above. Such a situation might
be illustrated by the Si:P case,'®?' where one has experi-
mental signatures of the presence of interactions when one
reaches the metal-insulator transition from the metallic side.

The importance of spin fluctuations has been stressed
elsewhere'®?? but what is new here is the proposed cross-
over for increasing disorder from an effective interaction
first strengthened by disorder, to one which becomes weak-
er according to Ref. 8 and thus allows the localization tran-
sition to take place.

One more remark is in order: If one reaches the zero-
value fixed point of the effective interaction before the
metal-insulator transition is achieved, then the transition
may follow just because of the localization theory’ for free
electrons and independent impurities; but even if, depend-
ing on their concentration, the impurities can no longer be
considered as independent from one another, one may still
get localization of the electrons. It has indeed been shown
long ago?® (in a very simple way within the first Born ap-
proximation) that interference effects among scattered
waves of free electrons on coupled impurities always decrease
the conductivity; a local order among the impurities acts as
a localizing factor for the electrons. As suggested by
Friedel, this might apply to the case of amorphous quench-
condensed Al,Ge;-, mixtures? where the metal-insulator
transition may be reached by weak annealing of metallic
samples initially close to the transition. In other words, one
can qualitatively understand the occurrence of a metal insu-
lator transition even in the presence of interactions either
among the electrons or between impurities.

Finally, I emphasize that in two dimensions, the nearly
magnetic fermion system cannot be understood the same
way, since it is still an open problem both in the pure case?
and the disordered one.?

Note added. Since this paper was submitted, a short sum-
mary was presented, but without detailed explanations, at
the International Conference on Magnetism, San Francisco,
1985.
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