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Local magnetic field distributions. III. Disordered systems
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%'e conclude our investigations of the local magnetic field distributions P(h) by examining disor-

dered spin systems. Exact analytical results are given on the Bethe lattice with random bonds and

the Sherrington-Kirkpatrick (SK) spin-glass model. Below the spin-glass transition temperature T~

of the SK model, the slope of P(0) as a function of temperature is found to be almost linear, frozen
to its value at T~, in a manner reminiscent of other freezing phenomena found for this model.
Simulations on finite-range models appear to show a correlated onset of certain features characteris-
tic of the spin-glass phase of the SK (infinite-range) model but at a temperature higher than any as-

sociated with a phase transition.

I. INTRODUCTION

This is the final paper in a series of three concerned
with the study of the local magnetic field distributions'i
and is devoted ta disordered systems. Since relatively few
exact results are known for these systems, in particular,
with regard to the nature of spin-glass ordering, the study
of P(h) in the spirit developed in I' and II2 affers useful
potential for new information on their properties. As in-
dicated earlier in I, for Ising spins P {h) contains informa-
tion both for statics and for dynamics. For vector spins it
suffices only for certain static thermal properties.

In Sec. II we shall exploit a general farmula for P(h),
developed in II, which has closed-form expressions on
Bethe lattices. Finite-temperature results are given expli-
citly for chains.

Section III is concerned with the canonical mean field
spin-glass model, the infinite-ranged Sherrington-
Kirkpatrick (SK) model. 3' Analytic results for P(h) for
temperatures greater than the ordering temperature Ts are
readily obtained by a variety of techniques. For T & Ts
the problem is much harder but we present a general ana-
lytic solution in terms of a function P(x,y) introduced by
Sommers and Dupont, amenable to numerical solution
and related to the Parisi function q(x). We also indicate
the existence of more transparent limiting results. Monte
Carlo simulations were used to supplement analytic stud-
ies and indicated the new observation that P(0) is almost
linear for T & Ts, a result analytically valid to leading or-
ders, with dP {0)ld T quasifrozen to its value at Ts.

Section IV is concerned with short-ranged spin-glass
models, studied here only by Monte Carlo simulation.
Our simulations suggest that, unlike the infinite-ranged

II. GENERAL FORMULAS
AND THE BETHE LAl I ICE

For any Ising Hamiltonian

cY= —$Jti trt0'I —$ btO't
(ij) i

(2.1)

where (ij ) denotes pairs of different sites i,j that are each
counted once in the summation and the b; are local exter-
nal fields, the local-field distribution at any site i is de-
fined as

P;(h) = (5(h —h; }), h; =b;+ g Jj cd,
J

(2.2)

where ( ) refers to a thermal average.
%'e shall normally be interested in the spatial average

P(h)=N 'QP;(h) . (2.3)

Furthermore, in this paper we shall be concerned with
disordered systems. Disorder averaging will be denoted
by ( )4. Explicitly we shall be concerned with J& dis-
order. As we shall indicate further below, P(h } is a self-
averaging quantity; that is, in the thermodynamic limit

model, there is little apparent correlation between a phase
transition temperature ' and a corresponding charac-
teristic feature in P(h}. On the other hand, however, in
all cases there does appear to be an approximately linear
P(0) behavior beneath a temperature which correlates ap-
praximately (at least) with that at which P (h) flattens. In
the SK model these correlations are also present and
correlate with the phase transition temperature Ts.
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P(h) = (Pi(h) )e, (2.4} cluster Hamiltonian is

so that a ( )e around P(h} is in fact superfiuous in
the thermodynamic limit and therefore will normally be
omitted.

In the rest of this section we shall concentrate on Bethe
lattices, allowed to have random, but quenched, nearest-
neighbor exchange bonds. For this problem a generahza-
tion of Eq. (6) of II is useful, namely,

Pi(h) (5(h —hi ) )'Zi(Ph)
Tr'e-~ '

Tre
(2.5)

where the primes denote the exclusion of the site i; Zi is
the single spin paramagnetic partition function, Zi(Ph)
=2cosh(Ph}; and the inverse temperature P=l/AT.
Equation (2.5) is potentially useful for Bethe-lattice prob-
lems because of the absence of closed loops on such lat-
tices. We shall consider explicitly two special cases of
particular interest„branching ratio z=2 which corre-
sponds to a bond-random chain and can be studied exact-
ly, " and z~ no with the variance of the exchange distri-
bution scaling as z, which relates to an infinite-ranged
spin glass. '2 Further limited results will also be con-
sidered for general. z.

The analogue of Eq. (7) of II for the self-consistent
I

(2.6)

HJ ——g Jii&nl ), (2.8}

where the i are the (z —1) neighbors of j not equal to i
The partition function associated with site i is

PH,. -PH,.
Z; =e 'C;++e 'C; (2.9)

where

C~ ——g I2cosh[P(J; +H, )]I,
)

leading to

PH] —PH;

PH

'+
-PH

e 'Cg++e 'Cg

(2.10)

(2.11)

where i is any site and the j are its z nearest neighbors,

(2.7)

H is a generating field, taken to be zero at the end, and

e 'C;+ tanh[P( JJ +H& }] e'C; —tanh[P(Ji HJ )]-
Cry

e 'Cl++e 'C;PHi —PH;
(2.12)

These equations, together with Eq. (2.8), form an infinite set of coupled transcendental simultaneous equations that
determine sets of solutions I (,cr; ) ]. In general their solution is not possible, although simplifications occur for pure sys-
tems (II) or for z =2, 5; =0. The limit z~oo, Ji-z '/ leads to the Thouless-Anderson-Palmer (TAP) equations' for
the SK (Ref. 4) spin-glass model, to be discussed further in Sec. III. Given the solution to the transcendental equations,
the average local-field distribution can be obtained from Eq. (2.5), giving

ff [2cosh(PHi+ixJ&)]
~P(k)=2cosh(Ph) f e '~E (2.13)

2F

For I b; I =0 and above any ordering temperature T,
I

[P(h)]insymm= f dJp(J)p(h+J)

IHJ] =I(crj)]=0

P(h) =cosh(Ph) f e
2&

(2.14) X I 1 —tanh(PI) tanh[P(h +J)]j,
(2.16)

as obtained using a different method by Barma. "'
We consider three specific examples of symmetric

p(JJ), each with variance —,
' J . For a bond distribution

consisting of two 5 functions

p(J(, )= —,
' [5(J;,—J/~2)+5(J;;+ J/v 2)],

we obtain

(2.17)

(2.15)

Clearly, from (2.15), if the Ji are independently distribut-
ed, P(h) is self-averaging for T ~ T, .

For the special case of a one-dimensional (1D) chain
with symmetric exchange distribution, p (J,i )=p ( —Jil ),
P (h) may be written alternatively as a convolution:

+ 1
5(h) .

1 +cosh(~2gT)

For the rectangular distribution

(2.18)

P(h) =— [5(h V2J)+5(h +~2J)—]2 1+cosh(i/2PJ)
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FIG. 1. Averaged local-field distribution for an Ising chain
with nearest-neighbor bonds distributed with a symmetric rec-
tangular distribution of standard deviation J/V 2.

FIG. 2. Averaged local-field distribution for an Ising chain
with nearest-neighbor bonds distributed with a symmetric
Gaussian distribution of standard deviation J/V 2.

p(J~)=

we obtain"

—v'3/2J &Jij & v'3/2J, (2.19) peratures in Fig. 1, while Fig. 2 shows the corresponding
results for a Gaussian of the same variance —,

' J . In all
cases P(0) dips to zero at T =0. This is physically be-
cause at zero temperature the signs of J~;+i and a;o;+i
are correlated so that

coth(P I
h

I
)

1
cosh(&3/2PJ)

3PJz cosh[ P( I
h

I

—&3/2J) ]

Ih I
&v 6J (2.20}

0, otherwise .

This distribution (2.20} is exhibited for a variety of «m-
I

(2.21)

giving no weight at P(0).
As noted earlier, for general branching ratio z a general

solution does not appear possible. However, it is straight-
forward to write down the results for P(h) at T =0 and
T = 00', for symmetric p(J), we obtain

P(» T=o)=+ f, d I» I

' ' f, d (Jz (~ ((» (
&(T((»1(X ' ' X('(I Jz('

x5(
I

h
I

—
I Ji

I

—
I
J2 I

—' ' ' —
I
Jz

I
}

where p( I J; I ) is the probability of
I J; I, and

P(» T=co)= f dl~ J ding''' J d»P(»(u(»(X Xn(~z(lh —» —»—

(2.22)

(2.23)

It follows from (2.22) that at T =0, small h P (h, T =0}=2h [p (0)] (2.26)

(F(0}'Ph~
P(h, T=O)= ' +O(h'}.

2[(z —1)!]
(2.24)

P(h =0, T}=2kaT[p(0)] (2.25}

In particular, therefore, for the chain (z =2), one obtains
the leading zero temperature behavior to be linear in h for
small h. This is shown in the next section to be the case
also for the SK spin glass which is effectively a z~oo
Bethe-lattice problem, but a rather special one with J,J
variance scaling as z ', thereby introducing frustration.
However, in view of the result (2.24) for general unfrus
trated Bethe lattices, this similarity can only be considered
accidental.

Another novelty for symmetric chains is that just as the
T=o, low-h behavior is linear with slope determined
completely by [p (0)],so too the h =0, low- T behavior is
linear, again with slope determined completely by [p (0)]:

Note that the second moment of P (h, T = Do ) is z times
the second moment of p(J}. We have fixed the second
moment of p(J) to be —,J in the one-dimensional exam-

ples so that the second moment of P(h, T = ao ) is J, as
in the SK model discussed in the next section.

III. INFINITE-RANGED ISING SPIN GLASS

A class of disordered spin systems of great current in-
terest are the spin glasses. ' The Hamiltonians of these
systems are characterized by the combination of quenched
spatial disorder and frustration. ' Their low-temperature
free energies are believed to be characterized by the ex-
istence of many stochastic, fractal-like, distributed meta-
stable states. These manifest themselves in extremely long
relaxation times and (quasi)nonergodicity. The lower crit-
ical dimension for a true phase transition remains an open
question both for short-ranged bond-disordered model
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systems, such as the Edwards-Anderson' model

A = —QJJS; SJ,
fij )

(3.1)

properties of the SK model is the replica method. ' This
we discuss below in Sec. III C. However, to tie in with the
discussion of Sec. II, we first consider an alternative pro-
cedure related to the Bethe lattice.

where the J1 are finite-range quenched Gaussian random
bonds of either sign, and for real site-disordered systems
(such as CuMn or Eui „Sr,S). However, one model
which is known to have a phase transition to a spin-glass
state exhibitin~ all of the novel features of metastability,
ultrametricity, 7 etc. , is the infinite-ranged model of Sher-
rington and Kirkpatrick

= —g Jij'0'iO'J bg—0'g.

(jj) i

(3.2)

where the sum is over all pairs (ij) and the JJ are a
quenched set of random bonds drawn independently from
a distribution with mean Jo/N and variance J /N, where
N is the number of sites. The bond distribution p(JJ ) is
usually taken as Gaussian,

' 1/2
(NJ,J —Jo)

2J
(3.3}p(Jr))=

P(h) =N ' g 5 h —Q Jjnj
J

(3.4)

is expected to be self-averaging s i.e., in the thermo-
dynamic limit, an average over all sites for a particular
IJij ] is equal to an average over IJil ) for any single site

X 'g (5(h —hj))

'JP J'J A k o 3r5
(IJ)

We shall later demonstrate this to be true.
The most powerful method to discuss bond-averaged

I

although in the thermodynamic limit only the first two
moments are relevant (at least above Tz and perhaps at all
temperatures). As before, b is an external field. We shall
now discuss the averaged local-field distribution for this
model, concentrating initially on Jo b=0. ——

As commented earlier, the site-averaged local-field dis-
tribution

(o;)=tanh pg JJ tanh(pHJ) +O(X '), (3.6)

{,crj ) =tanh(pHJ) —(e;)pJJ[1—tanh (pHJ))+O(E '),
(3.7)

or, eliminating HJ,

&~, &=ta~ Pg J,,(~, ) —(~, )PQ J,', (I —&~, )')

+O(&-'), (3.8)

the second term in the large parentheses being the famous
Onsager correction. As shown by TAP these equations
lead to the spin-glass ordering temperature Tz ——J!kii, as
found earlier from the replica method.

Since a conventional Bethe-lattice problem is unfrus-
trated, even with random bonds, whereas the SK spin
glass is fundamentally frustrated, it should be noted that
the Bethe-lattice equivalence holds only in the limit of JJ
variance scaling as z with z-moo, the frustration then
lying in the Onsager term. Short-range spin glasses can-
not be adequately' ' represented by Bethe lattices even in
a mean field sense, although TAP analogues exist on the
conventional lattice.

For T & Tz all of the (cr) are zero and Eq. (2.13) may
be used to yield

A. TAP theory

Thouless, Anderson, and Palmer' compared the
unaveraged SK model to a set of spins on a Bethe lattice
with bonds randomly distributed as in (3.3) with X re-
placed by z and argued that in the thermodynamic limit
the Bethe solution with z =X~ ao correctly describes the
states of the SK model. The SK scaling introduces frus-
tration even in the Bethe model as z =N~oo. The TAP
equations follow from Eqs. (2.9)—(2.12):

P(h)=(P(h))~ —— —cosh(Ph)exp( —h /2J }exp(—P J /2)
1 1

2m J (3.9)

1 ' (h —PJ }
exp — +exp2J 2~ 2J'

(h +PJ')'
2J

(3.10}

That is, P(h} is given by the sum of two Gaussians each
of width J centered at h =+pJ . This expression is ex-
hibited for a variety of temperatures T & Tz in Fig. 3. It
is interesting to note that exactly at the transition tem-
perature P(h) is flat at h =0 (while it is peaked for
T & Tz), although we have already cautioned in I against
converse deductions.

Furthermore, considering the temperature dependence
of P(0),

1 1 JP(0)= —exp —,T & Tz2~ J 2(k, T}2

we note that

(3.11)

dP(0)
AT

tP(0))r=r, 1 kz
exp( ——,

' ),
Tg 2m' J

(3.12}

that is, at Tz a tangent to the curve of P(0) against T
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passes through the origin. We shall later argue that this
observation may be relevant to the low-temperature
behavior.

Before passing to T & Ts we might note that the result
(3.9) for T y Ts can be obtained in a number of equivalent
ways. As well as that used above, another is the replica
procedure discussed in Sec. III C while a third employs a
series expansion with resumrnation using the X scal-
ing. ' ' ' Each of the last two of these employs the
characteristic function G (k) defined by

J P(h)

0.5

0.4-

0.3-

0.2-

0.1-

—kBT/J = 1
---- kg T/J = 2

kgT/J = ~

P(h)= f G(k)exp( ik—h),

so that

(3.13) I

-2 0
h/J

G(k) ((( t=g exp (k +Joo) )
.

j
The series expansion proceeds as follows. Rewriting

(3.14}
FIG. 3. Local-field distribution function of the symmetric

Sherrington-Kirkpatrick spin glass for T & Ts for zero external
field [from the exact expression (3.9}j. The transition tempera-
ture is T~=J/k&.

G(k) ))r 'g(ll [cos(klc)[(+to taa(ki; )]]) N 'g li cot(kl;, ) (il [(+(o tao(kls)]l
l j i I j

=N ]g 'icos(kJ;, )
'

1+i g &oj& tan(kJj) ——,
' g [&trjtr. ) tan(kJj) tan(kJ, „)]+

I j j,pN

(3.15)

where the prime indicates the exclusion ofj= m.
In the paramagnetic phase all odd spin averages are zero. Further simplifications result from SK scaling,

& J;j)g ——Jp/N, &Jr~j)g ——J /N .

For example, in the paramagnetic average,

(3.16)

&~jrrm )para Jjm+P g Jjllml+
2

(3.17)

the only thermodynmnically relevant term for use in (3.15}is the second with I =i, while similarly in higher even order
paramagnetic averages the relevant term is

&[r;,tr;, tr[, X Xo; & ~=P ~J,; ;J,; X XJ; ;, for m even .

Thus, noting also that tan(kJtj ) can be replaced by kJj in the limit N ~ ao, we obtain

(3.18}

G(k)=N 'g icos(kJti) 1 — QJ,jJt + g J~jJ( J[„J;+
1 j,m j,m, n,p

(3.19}

=exp( —kzJ2/2) cos(PJk) . (3.20)

Substituting into (3.13), we obtain for T & Ts

P(h)= exp( —P J /2 —h /2J )cosh(Ph'),
1

2mJ
(3 9')

I

field distribution

PT~(h) =N ' g 5(h —&h; ) ) (3.2 la)

as earlier. Note that there is no Jo dependence, just as the
pure mean-field result for P(h) has no width above T, .

For T &T the solution to the TAP equations is not
known exactly, although some information is available on
mappings of integrated quantities to the replica theory
and on the density of metastable states, as well as certain
perturbative and heuristic results. ' Therefore, we turn, in
this section, just to the low temperature, small-h limit. In
this liinit TAP speculated on the form of a related local-

=N '$5 h —$Jj&rrj) (3.2 lb)

P(h)=N 'g &5(h —hi)), (2.3')

indeed PTAS does not correctly provide the thermodynam-
ic qtuuitities through relations such as Eq. (21}of I. How-

It should be noted that this is not generally the same as
our local-field distribution
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ever, in the limit T~O for a system that orders, that is,
when P;(h) is of the form

P((h) =5(h —h; ), (3.22)

these two definitions yield essentially the same result. In
the T=0 limit, TAP argued that PTAp(h) should be
linear in h at small h and speculated on the coefficient of
linearity,

0.4

0.3—

Q.2—

—kgT/J = 2.0--- k T/JS
—--k T/B

ka T/

PT~p(h )=0.307h +0 ( h ) (3.23)

Hence, we might expect that at T =0, if their speculation
is correct, also 0

-6
l

-4
I

4

P(h) =0.307h +O(h') (3.24)

on the basis of a T =0 identification of the two defini-
tions. A more precise discussion of the relation between
the definitions is to be found in Sec. IG C, via another dis-
tribution function which further permits a numerical
evaluation of the coefficient of linearity.

FIG. 4. Computer-simulation results for the local-field distri-
bution of the symmetric SK spin glass, based on averages over

four different N =1020 systems (see the text).

8. Computer simulation

To complement the analytic study we have performed
Monte Carlo simulations for an SK model with bond
probability distribution

P (Jl ) = —,
' (1+Jo/~N J)5(Jl —J/~& )

+ —,'(1 Jo/~N—J)5(JJ+J/~&) . (3.25)

As pointed out earlier, we expect (3.3) and (3.25) to give
the same results in the thermodynamic limit in which
only the first two moments of P(J&J) are relevant, but
(3.25) is advantageous for computer simulation since J&J

can be represented by a single binary digit, thereby reduc-
ing the memory storage required and increasing the execu-
tion speed of the simulation.

The results reported here are for Jo ——0 and for averages
over four different N =1020 systems. Details of the
simulation procedure are to be found in Ref. 20. Briefly,
however, in all cases the systems were first run to approxi-
mately equilibrate the system as measured by its energy,
with P(h) measured over the subsequent 200 Monte Carlo
steps per spin (MCS's). The initial equilibration involved
at least 50 MCS's, with measurements below Ts involving
an initial equilibration at Tg and, in some cases, at lower
intermediate temperatures. Significantly below Ts (at
least) these run times are not sufficiently long to explore
all the metastable states believed to characterize the free
energy phase space ' but rather are likely to be representa-
tive of a typical low-lying metastable state. Indeed, for
any one sample (specific set of {J&J I ) repeated simulations
lead to little variation in the observed P(h), while one
mouM expect the actual metastable state reached to be dif-
ferent in each case, thereby suggesting that the states
reached are typical. Nor is there much variation at any
one temperature from sample to sample, thereby indicat-
ing self-averaging.

For T & Ts good agreement with (3.9) is found. Figure
4 shows results for four different temperatures, including
two with T & T, exhibiting the growth of a zero field dip
for T (Ts.

The data at T =0 were accumulated by taking 40 dif-
ferent {J& I configurations and searching for one state in
each that was stable against single spin fhps. Kirkpatrick
and Sherrington and Palmer and Ponder have already
studied the zero-temperature problem in detail, so no at-
tempt was made to be more careful in searching for local
minima. Those authors, in fact, report lower values for
P(h =0, T =0), and it is believed that for an infinite sys-
tem, P(0,0)=0. However, even using states stable against
only single spin fiips, the small h slope obtained from this
simulation, 0.31/J, is in good agreement with the TAP'
prediction of 0.307/Jz discussed in the previous chapter.
Hence, the slope appears to be less sensitive than the inter-
cept to the particular local minimum one is in.

As the temperature is reduced from Tg/2 to 0, most of
the change in P(h) occurs for small h. The large-h re-
gions are relatively stable. This suggests that the forma-
tion of the h =0 dip may be an important characteristic
of the spin-glass phase, as indeed was suggested long
ago 4,25

In view of the analytic observation (3.12) and the belief
that P(0)=0 at zero temperature we have compared the
experimental P(O, T) with the linear extrapolation of Eq.
(3.11);viz. ,

(3.26)

As indicated in Fig. 5, the fit is remarkably good, deviat-
ing only for T-0 where, as we have indicated above, we
believe the numerical results to be overestimates. The
phenomenon of observables in the SK spin-glass freezing-
in to their values at T is not new, cf. the constancy of the
zero-field susceptibility below Tg (Refs. 6 and 26) and the
Parisi-Thoulouse (PaT) hypothesis, but to the best of our
knowledge the suggestion that dP(0)/dT should freeze is
new. In the next section we provide an analytic demon-
stration that the freeze-in of dP (0)/dT is exact to the two
leiuhng orders in r=(Tg —T)/Tg, corrections not arising
until O(r ). This incompleteness of the approximate
freeze-in is again reminiscent of the PaT hypothesis.
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C. Replica theory

In this section we use the replica trick to study the
local-field distribution of the SK spin glass. The method
used is an analogue of that used by Parisi to calculate
the average overlap distribution function and as extended
for other observables by Elderfield. ' Our starting point
is to express P(h) in terms of the characteristic function
G (k) as defined in (3.13) and (3.14).

The replica procedure is introduced via the identity (for

any operator 0)

0.3—

0.2—

0.1—

0.0
0.0 0.5

o A

+ r

1.0

(o)= Tr(Oe B ) Tr(Oe BH)(Tr e IH)

Tr e IIH —
(Tr e PH )m

—+ 1
(3.27)

whence, introducing replica labels a=1,2, . . . , n =m +1
and taking the limit n ~0, one obtains

T

FIG. S. P{0) for the symmetric SK model as a function of
temperature for T & T as obtained by computer simulation (see
the text). compared with the linear extrapolation Eq. (3.26).

n

( 0)= lim Tr„O ' exp —P g H
n~O a=1

(3.28)

the trace being over the n replicas indicated by the super-
script labels a. For the case under explicit consideration
here,

= —g JiioICTI
(ij )

G (k) can thus be expressed as

(3.2')

n
6 (k) = lim —Q Tr exp +ik g Jjo '. + g g J Io o I

j B ijl) a=l

Averaging over the I J~ I distribution with the usual symmetric SK scaling, Eq. (3.3), results in

J2
(G(k))d= lim —QTr„exp 2 g g (vibrio cr + g g oio;oi-

i 2+kB T (Im) a, i7=1 B I a= 1

(3.29)

(3.30)

where ( )e denotes the average. It is immediately clear that there is nothing special about site i in the exponent, so
that self-averaging is valid, as stated earlier. Equally, there is nothing special about the labeling of one replica as 1.
Rearranging,

G(k)= lim . —QTr„exp
1 J nE

n 0 i)i,. "
4kB2 T2 2 kBT ' 2' T

J2 2 k2J2+ 2 ~ g g O'I cTI+ikkB To'I +
Z&kBT (,)

7 (3.31)

where (aP) denotes a pair of different indices. Applying a Hubbard-Stratonovich transformation leads to

1 J Xn k2J 2G(k)= lim —+exp z
— 1 ——

a 0 j)i,. 4kB' T2 2 E

J N
2k, T

' l/2 +2J2d~(all), exp y (~(aP))2
2kB T (aP)

J2 J2 ikJXTr~ exp i 2 g g g(rioI+ 2 z g q g(riol+ikkBT(r, ' + o;
kB T (aP)+(al ) l kB ~ {al) I B

(3.32)

Since, for any function f(o),
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Trexp g f(oi) =exp[Kin Trexp[f(a)]), (3.33)

(3.34)

the traces being single-site. G (k) is thus given by

where the first trace is over X sites and the second is single-site, the integrals in (3.32) are extremally doininated in the
limit N ~ ao. In this limit the q are precisely those of standard spin-glass theory, as determined from extremal domina-

tion of the free-energy functional; i.e., from the n ~0 limit of

J2
Tr o cd~exp

k T2
gq( i'9 ai'

(aP) 8 (aP)
P

J2
Trexp I I g q' ~'cr o~

4T (a(s)

G(k) =exp
J ( )

ikJ'
lim Tr„exp, , g q' i')o oi)+ o'+ y„q(~"o

2 ~ ~o 2" kI) T (~i)) kii T
(3.35)

where q' ~' is given by (3.34) and where the identities

(3.36)
P(h)= —exp

1 1

2 2n J
I

(h —J /k»T)

2J

(h +J'/k T)'

2J
1 J2

lim —Trexp I, g q(~~)rracri =1
p 2N kaTI ( p)

(3.37)

have been used to identify the constant of proportionality.
A constant magnetic field is incorporated by using

q' ~)=q, for all (uP), (3.39)

as obtained earlier in Sec. III A.
For b+0, q' ~' is nonzero at all temperatures. For

T & Tzq, the de Almeida —Thouless temperature, q' ~'

is rephca symmetric, that is

P (h )= f exp[ ik (h ——b)]G (k), (3.3g) so that q satisfies the self-consistency equation

with the expression for G (k) modified by the inclusion of
an additional term Pb g o in the argument of the ex-
ponential of Eq. (3.35) and similarly in the exponentials of
Eq. (3.34).

Before turning to the general case, we consider first,
two special cases; (i) T & T» and (ii) P (0).

1) FOI T & T» aIld b =0 q
i Is zero alld (3.35) simpli-

fies to

exp( —z /2) tanh [P(Jzv q +b)] .

(3.40)

The de Almeida —Thouless temperature is given by the
simultaneous solution of Eq. (3.40) with P=P&r
= ( kII Tgr )

' and

(PzQ) f exp( —z /2)
2K

G(k)=exp( kJ /2)cos(kJ—/ksT) Xsech [pAr(Jzv q +b)]=1 . (3.41)

and hence Replica symmetry leads to a simplification of (3.35),

dz Z2
G(k)=exp( kJ /2) f —exp ——lim XTr„exp p(b+Jzvq +ikJ q)

2 s~o
I

X g o +p(b+Jzv q+ikJ')a'
a+1

(3.42)

k J(1—q) f" dz z
exp

2 — v 2Ir 2
J

expIPo[b +J~q+ikJ (1—q)] I

2cosh[p(b+Jzv q )]
(3.43)
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P(h)=, dz eexp[ —P2J2(1 —q)/2] ~,»2 cosh(Ph)
exp

—(h b——zJv q )

2~J(1—q)'~2 —~ cosh[p(b+zJv q )] 2J2(1 —q)
(3.44)

1
exp

(h b} p J
( 1 ) d e»2

~2 2

cosh(Ph)
cosh I p[b (1 q)—+hq +Jzv'q (1—q) ] I

(3.45)

One may readily check that this P(h) yields conventional replica-symmetric results, such as, the magnetization per

spm,

m= I' ta h= e '~2tanh +zJ q (3.46}

the internal energy

I' +b tan—e)

and the average local exchange field

2
(1—q ) —bm, (3.47)

QJrrrj)= J dhP(h)(h h) ()1—(1 =r)m . —
~

ij j
i,j

(3.48)

Since replica symmetry is unbroken only for T & TAT these results are valid only in that temperature region. We note,

however, that if one (incorrectly) extrapolates (3.44) or (3.45) to zero temperature, one obtains the T =0 local mean-field

distribution obtained by Schowalter and loein

(2nJ ) '~ exp[ —,'(h —b+5)—/J ], h & —b,

Psehowalter-Klein(h) = ' 0

(2m J )
'i exp[ ——,(h b —6) /J—2], h & 6

where

(3.49}

b, =(2/ir)' Jexp[ ——,'(b/J) ] . (3.50)

In view of the observation (3.12) it is tempting to wonder if dP(0)/dT is equal to P(0)/T at TAT for all b. Explicit
calculation demonstrates, however, that this is not the case.

(ii) Returning now to the case of b =0, but without restriction to replica symmetric q' ~', P(0) is given by

r(o)= I o(h)

1

(2~)'"J
p2J2

lim Tr„exp (pJ) g q' I'a o~ (J/k —T) (2+3 /2)
2 e~o 2"

(aP)
(3.51)

where

A = g q'~"o~o'
~1

(3.52)

To order r replica-symmetric theory suffices to give

P(0}= —exp( ——, )[1—r+ 0 (~ )], (3.54)
1 1

(3.11')

p2J2
P(0)= —exp

2n
r

Xllm 1 (pJ}4 ' (pJ)
n~0 2 2 g (q{trl))2

For T ~ T&, q' ~'=0 and this immediately reproduces

P(0)= —exp( —P J /2) .
2n

For T & Ts a careful treatment of the q'o~' behavior is
needed. For small r=(Ts —T)/Ts perturbation analysis
may be employed. Noting that to order ~, q' ~'=~, we
obtain for P(0) to order ~,

i.e., to demonstrate the absence of corrections to the linear
extrapolation (3.26) to order r To proceed .further we
use the Parisi ansatz within which

1

lim g f(q' ~') = —f dx f(q(x)), (3.55)
n~O

where q(x); 0&x &1 is the Parisi function and f(q) is
any function.

To the order needed to get P(0} correct to order r,
q(x) is given by '

q(x)= —,(1+3m)x+O(H), x &xl
(3.56)

+ —,~ +O(H) (3.53)
where

=q(l), x &x,
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(3.57)

(3.58)

glV1Q

= —r —
3 ~+& +O(r ), (3.59)

q(1)=~+r —r'+O(r4),

x i
——2r —4r + 0 (r ),

so that
r

lim g (q' ") = —f q (x)dx
n -+0

they must be compensatory to the r term to obtain the
apparent linearity over the temperature range observed
and to extrapolate to P(0)=0 at T =0. We also note at
this stage that below we demonstrate that the leading
low-temperature behavior of P (0) is linear in T.

(iii) We now turn to the general case of h =0. For
greater completeness we allow for the inclusion of a con-
stant external field b, but continue to restrict discussion to
(J~J') =0 (although extension is straightforward). Thus,
we use the generalized definition

(3.61)
P(0)= —e '~ 1 r ———+O(rs) (3.60)

whence, as before,
Thus, a Parisi ansatz removes corrections to (3.26) to or-
der r but deviations from the hnear extrapolation appear
to order r . We shall not attempt here to go to higher or-
ders but it is clear from the Monte Carlo simulation that

l

P (h ) = f exp[ —ik (h —b) ]G (k),
27T

where now, averaging over the IJJ I distribution,

(3.62)

G(k) =exp
kiJ . 1 1

"
2 zi (~) ~ ikJ ) ~ ikJ b

lim —— g Tr„exp kBT'J'g q' ~)o op+ g q' "o — o'r+ go.
2 n o n 2"„, "

)tt) kBT ~ kBT kBT

(3.63)

y has been introduced to indicate the fact that the "test"
replica is arbitrary.

Our further analysis is based on the Parisi ansatz, ' in
which the n Xn matrix q' @ (q' '=0) is first subdivided
into (nlm, ) m) Xm) submatrices with q'~~)=qo in all
but the n lm) submatrices along the principal diagonal of
the original matrix, with then each of the m ) X m ) "diag-
onal" submatrices split further into (m) lmi) m2Xmi
smaller matrices with q' ~'=q

~ in all but those on the di-
agonals of these mi Xmi submatrices, and the subdi-
vision procedure continued indefinitely in an analogous
fashion with finally the limits

and
mk+ i

(3.64)

qk~q(x), 0&x &1

being taken.
In the present problem particular attention must be

directed at each stage at the submatrix containing the yy
element. To illustrate this, consider first the lower level
Parisi ansatz in which a single subdivision into m) Xm)
matrices is made. We start by explicitly removing the ef-
fects of the off-diagonal submatrices, writing

G (k) =exp
k J . 1 1

2 2 2 2

lim —= QTrexp, 2 qo go n+ —
z z g (q —qo)o ~

'
2 ~ (aP) a P

2 n o n 2" „'2kBT I kBT ( ti)

B z~y a
(3.65)

so that now the second term in the exponential is nonzero only in the diagonal submatrices. Within the restricted ansatz
being employed in this illustration, q( ~' =q ~ everywhere within these submatrices, so that

' 2

y (q'B' —q')a & —,
'
(q, —q, ) y y„a' —m,

(aP) D a

where gn refers to a summation over the diagonal submatrices. Hence, using a Hubbard-Stratonovich «ans«rm«i«,
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G(k) =exp
k'Jz "zo ~0

2

exp2' 2
r '2

P2Jz l

X lim ~ Trexp (q& —qo) g cr~ +p(b+zoJ~&z+ikJ2qo) g ~~
n~0 2n a=1 a=1

'
n/m& —1

Tr exp
2J2 m& m&

(q, —qo) g a +p(b+zoJ~q()+ikJ'q, ) g 0
2 a=1 a=1

+ikpJ (1—q~)or (3.67)

where we have indicated explicitly the special character of the submatrix containing the yy element of q'~~'. With fur-
ther Hubbard-Stratonovich transformations there results

G(k)= lim exp
n-+0

k J " dzo Zo
2

exp
2 1T'

exp ——cos +z qo+i2J pl —g0 +i
27r

n/m
&

—1

r

I exp ——cosh '
I p[b+zoJV qo+z~ J(q, qo)' +ik—J~q)] I

217

X cosh| P[b +zoJ~qp+z( J(q j qo)'/ +ikJ—] (3.68)

To obtain P(h ), variable shifts zo~zo —ikJ~qo, z& ~z& ikJ (q—, —qo)'/ are performed, followed by integration over k
and the limit n~0, giving

ON ~SPy 1P(h}= f dyP'(y} g 2 &/z
exp

s +, 2cosh y [2nJ2(1 —q&)]'/

where

[h b —SPJ2(1——q ~ ) —y]'
2JZ(1 —q i )

(3.69}

cl dzo —zo /2 M dz ] —z /2 1/2P (y)= e e ' 5(y b zoJ~qz—z&J(q—, —qo) )—
21K 277

—s~/2
Xcosh '(Py) f e ' cosh '[P[y+(zz —z&)(q, —qo)'/ ]I

271

The full Parisi ansatz requires infinite subdivision. K subdivisions yield the approximation

(3.70)

G(k)= lim exp
n-+0

k J e) dzo oo dz 1
(1—qx }

2 v Zn ~- ~2m

dzx

~2~

x zP
X exp g ——+ikJz; (q; —q; ~)' —(m;+ ~

—m; )p;1/2

i=0

X2cosh p b+ikJ (1—qx)+ g z;J(q; —q; &)'/
i=0

(3.71)
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where

e-i=o
Pl ) =7k, N1g+] = 1

(3.72)

(3.73)

t

e ' '=Tr, , exp (PJ) g (q' ~' q;)—& S~+P b+ g zI,J(qk —qk
(aP) k=0 a

In the continuous limit, therefore,

Pih)i= f exp —ih(h —h) — [1—p(1)]
dk . (kJ)

(3.74)

CO dzo ' [z (x)] zo
2

&&
J' &z(x) J' exp —f dx — +iielzev'q(0)yihl f dxz(x)&e'(x)

1

1 X
X X, +SOJ $0+J COZ N

1

g2cosh P b+ikJ [1—q(1)]+zoJv'q(0)+J f dxz( x)v' q'( x)
I

(3.75)

where (()(x,y) satisfies the differential equation

B J', B'
P(x,y) = — q'(x)

z P(x,y)+xx 2 Byz
P(x,y) (3.76)

with the boundary condition

$( l,y) = in[2 cosh(Py)] .

&z(x) denotes the functional differential product

S'z (x)= g [dz (x)/V 2n )

(3.77)

(3.78)

and the prime denotes differentiation with respect to the argument.
Equation (3.75) can be further transformed to express P ()'i) simply in terms of the function P (x,y) introduced by Som-

mers and Dupont. To this end we first integrate by parts,

i X X

X X, +ZOJ q0+J uz u q' e = n 2COS +S qO+J ms CO q' m

B—f dx x P(xy)
y =b+zOWq(0)+y f deieztzh)&q (eee)'

—J xxz x q'x
1 B (x,y)

0 By
y =b +zJO~qO+Jf deeez(hh& q'(eee)

(3.79)

Substituting into (3.73), using the differential equation (3.76), and changing the functional integration variable to

g(x) =z(x) —PJx&q'(x) (x,y)
By

'
y -S+zoy~qo+J f'd~z(~)v'q (~)

0

(3.80)

&(Ii) can be re-expressed as
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P(h)= f expI —ik(h —b) —(kJ) [1—q(1)]/2J

T

x f &g(x) f exp —f dx [g(x)] /2 —zo/2+ikJzo&q(0)+ikJ f dx z(x)v'q'(x)

1

cosh p(b+zoJV'q(0)+J f dxz(x)v'q'(x)+ikJ2[1 —q(1)]
1

cosh p b+zoJv'q(0)+J f dxz(x)v'q'(x)

which by comparison with Ref. 5 leads to

P(h)= f dy P (l,y) f expI ik—(h —b) —(kJ) [1—q(1)]/2]
00 CQ cosh(Py)

Here PsD(x, y) is the Sommers-Dupont function ' which satisfies

8 J 8 8
PsD(x, y) = q'(x) PsD(x, y) —2xP m (x,y)Psn(x, y)x 2 Qy2

where

(3.81)

(3.82)

(3.83)

a J', a'
m (x,y) = — q'(x)

Bx 2 y

with boundary conditions

m (x,y)+2xPm (x,y} m (x,y) (3.84)

(3.85)

(3.87)

m {l,y}=tanh(Py},

exp[ —(y —b) /2q(0)J ]
[2nq(0)]'r J

PsD(x, y) has recently been interIrreted ' as the probability density (in y} of finding the local magnetization m (x,y) for
states with mutual overlap q (x). '

Performing the k integration in Eq. (3.82} finally yields

p(h)= f d p (1, )
cosh(Ph} exp[ —{h —y) /2J [1—q )]]

I
—(pJ)r[l —(1)]/2) .

cosh(py) I2mJ [1—q(1)]I
'r2

In fact a simple extension gives the joint local-field, local-spin distribution

P(h, st N 'g(5, ,5 h b —+1(,u)— (3.88)
J

P(h, s) = dy PsD( l,y)
00 e~ exp( —Ih —y —sPJz[l —q(1)]] /2J [1—q(1)])

cosh(Py) t 2~J'[I —q (1)])
'" (3.89)

P (h }is related to P (h„s) by

P(h)= g P(h, s) .
s=+1

(3.90)

'gJ,,(~, &= f-
f,J

1

=PJ 1 —f dx q{x) m

The established identities ' ' ' ' for magnetization,
inter' energy, and mean local field follow immediately:

m = f dh p(h)tanh(ph)= f dypsD(l, y)tanh{py),

=PJ [1—q(1)]m

+ dx&so &a ~ —b . (3.93)

(3.91)

—= ——,
' f dh P(h}(h +b) tanh(ph)—co

2

2
(3.92)1 —f dx [q(x)]z bm, —

At low temperatures pJ [1—q(1}]is of 0(T). Hence,
as T~O, P(h}~Psn(l, h). At zero temperature
Psn(x, y) has been evaluated numerically at a number of x
values, including x =1, by Sommers and Dupont. They
find that P{1,y) at T=0 has a y-+0 slope of 0.31+0.01,
in reasonable accord with the simulations of Palmer and
Pond and ourselves and with the speculations of Thou-
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less et al. '

Furthermore, it follows from (3.87) and other properties
of PsD(x,y) that

1=(PJ) f dy P( l,y) sech (Py),

yields

(3.97)

P(h =0, T)=A,T+O(T'), (3.94)

PJ [1—q(1)]=aT+O(T ) (3.95)

a result which we stress is valid for arbitrary external
field. To see this, we note that

I' 1,yT
T~O —ce

(3.98)

Hence, limT 0[P(l,yT)/T] must be well defined in the
limit T~O,

leads to

P(l,yT) exp( —y /2a)P 0 =Thm dy
T~O —(o T v'2ma

L

exp( —a/2)
coshy

while, furthermore, the marginal stability condition'

(3.96)

a= lim J f dy
' sech2y y 1,P(l,yT)

T +co T (3.99)

and the coefficient )f, of the linear T term in (3.94) must
be a positive constant. We have not, however, determined
the numerical value of A, .

The expression (3.87) also suffices to put bounds on
P(0} in the spin-glass phase in terms of lesser Parisi in-
formation. For example, '

P(()) f d P(l,y) ~ exp( —Iy —spJ [1—q(1)] I/2J [1—q(l)]) ( I[1—q(1)]/2 J~I n (3.100)
cosh (Py) ', +i I2nJi[l —q(1)]j'r

P (g, f J;~ f ) = (5 Q —))( ' x h h; (3.101)

where the 1,2 superscripts refer to two real replicas of the
system with identical sets of exchange bonds IJJ J.

) (J )
refers to a thermodynamic average against

gJ

4 IJ(iI=4 'IJ(J I+A IJ~J]

= —g J,J(o",trj'+tr;trj) b$ (o';+tr—; ), (3.102)

(iv) Finally„ in this section, we return briefly to the
question of self-averaging in view of the current interest
in non-self-averaging, ultrametricity, ' etc., in spin
glasses. We have already indicated that P(h) is self-
averaging, in accord with the observation that quantities
such as the internal energy and the magnetization are
self-averaging even in spin glasses. '

Non-self-averaging field distributions involve replica
overlaps, such as,

IV. FINITE-RANGED ISING SPIN-GLASS MODELS

In view of the results in the preceding section on the
SK model, we were motivated to investigate P(h) for
some short-ranged models, with particular regard to any
analogue of the linearity conjecture for P(0) and the tem-
perature for fiattening of P(h) near h =0. These studies
used Monte Carlo simulations on simple-square and
-cubic lattices, again taking a distribution p (Jj )
= —,

' [5(JJ—J)+5(JJ+J)] because of its bit storage ad-
vantages. %e note that it has been suggested that this
model should exhibit a phase transition in 3D ' at
Tg —1.2 J while in 20, Tg is believed to be zero."

Results for P(h) in 2D and 3D are shown in Figs. 6
and 7 where there are plotted the weights w, of P(h)
where P(h) = g, w, 5(h —s};weights for —s are the same
as those for +s. There appeared to be no significant
sample-to-sample variations, confirming our argument

where the [I~ I are a particular set of exchange bonds.
P(Q, IJ~J ] ) is not self-averaging, that is

&[P(Q, I J;;I)]'&. ..e[&P(Q, I J;;I)&, ,
]" . (3.103)

The origin of this effect is the same as that for the Parisi
overlap distribution function

r

P(q, fJ~J f)=(5 q —S '$rr, 'rr;

h=O0"- —~—h=+2J
~

— . h=+4J

0.3-

Wh 02

0.1—

namely, the real-replica coupling which occurs in the ef-
fective averaged Hamiltonian when IJJ I is averaged over.
It may be evaluated by extension of the above and Refs.
17 and 30. Further field analogues of conventional mag-
netization overlap distributions can be envisaged readily,
but will not be pursued here.

0 I i i I i I I i

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
e

FIG. 6. Weights of 5(h —s) for the JJ nearest-neighbor Ising
spin glass on a square net.
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h=O
0 4- —+—h =+2J—+--- h =+4J

~ — - h=+SJ
0.3-

Wh o2

0.1—

terms of the Sommers-Dupont function PsD(x,y) but to
date only numerical solution of that function has proven
possible.

The Monte Carlo studies of the short-ranged spin-glass
systems suggest that quasifreezing of dP (0)/dT to a value
leading to extrapolation of P(0) to zero at T =0 is corre-
lated with flattening of P(h) around h =0 irrespective of
whether or at what temperature a thermodynamic phase
transition occurs.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
ACKNOWLEDGMENTS

FIG. 7. Weights of 5(h —s) for the kJ nearest-neighbor Ising
spin glass on a simple-cubic lattice.

that P(It) should be self-averaging in the thermodynamic
limit.

Several points are of note. First, there is much qualita-
tive similarity between the P(h) results for 2D and 3D,
despite their different triinsition characters. Second, both
curves show regions of roughly linear P(0) versus T
behavior, although not extending down to T =0 (Ref. 48)
and with their upper "limits" beyond the believed transi-
tion temperatures. Third, although in 3D P(0) and P(6)
cross tantalizingly close to the probable transition tem-
perature, P(0), P(2), and P(4} become approximately
equal at a significantly higher temperature while a simi-
lar "flattening" occurs in 2D at a finite temperature of or-
der 0.8 J.

It would thus appear that the correlation in the SK
model of the flattening of P(h) around h =0, the onset of
an apparent freezing of dP(0)/dT and linear extrapola-
tion of P(0), and the onset of ultrametricity with the
phase transition temperature Ts may be special features
of this infinit-ranged model. On the other hand, howev-
er, it is interesting to note that both in 2D and in 3D the
temperatures at which quasilinearity of P(0) commences
and at which P(0) and P(2) become equal are comparable
with one another.
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APPENDIX: VECTOR SPIN GLASS

In this appendix, we note analogous results to those of
Sec. III for a classical m-vector SK spin glass, restricting
discussion for simplicity to the case of zero external field
and T & Ts. The model has Hamiltonian

~= ——,
' g J,,S,'S, (A 1)

where the S are m-dimensional unit vectors and JJ is dis-
tributed as in (3.3). The quickest way to proceed is to be-
gin with the vector generalization of Eq. (2.5),

H'

P;(h) = (5(h —h; ) )'Zi(PA)
Tre-&H

Since ( )' represents a thermal average with respect to

V. CONCLUSIONS

In this paper we have extended our studies of the local-
field distribution P(h) to disordered spin systems, re-
stricted in the main text to Ising models but extendable to
classical vector spins (see the Appendix), concentrating
analytically on systems on Bethe lattices and the
Sherrington-Kirkpatrick infinite-ranged spin glass. Fur-
ther Monte Carlo simulation studies were performed on
short-ranged spin glasses.

In all of the cases studied P(h) is Gaussian at high
temperatures and has P(0}~0as T~O. In the case of
the SK model in zero applied field we find that at T =Tg,
the spin-glass ordering temperature, P(h) becomes flat
around It =0, dP(0)ldT=P(0)/T, and to a good ap-
proximation, dP (0)ldT freezes to its T =Ts value for all
temp ratmm b low Ts.m P(h) is obt in~ analytically in

J P(h)

1.2- —kBT/J = 1
---- k T/J = 28

k T/J = ~B

0.4-

h/J

FIG. 8. Local-field distribution P(h) =4m.h P(h) for the
symmetric Heisenberg Sherrington-Kirkpatrick spin glass for
T & Tg =J/3k~, as obtained from Eq. (A6} with m =3.
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a Hamiltonian in which all the bonds into site i have been
removed, then for T y Ts,

Equations (A3)—(A5) make up the components of (A2},
and thus,

' n/2

(5(h—h;) )'=P(h, T = ce ) = e
2mJ

P(h) =—1 m

mJ
I ( —,'m) exp( 13 J —/2m)

Z (Ph) =(25 ) ~(Ph)' ~tI, (Ph) . (A4)

Finally, if we let Fz denote the free energy of an Iil-

particle m-vector SK spin glass, then we can write

T ~[ PH']/T—r[e —PH] e n N i—

(A3)
The last step follows from considering the addition of N
randomly oriented m-dimensional vectors. Zi(Ph) is, as
before, the paramagnetic partition function

Xexp( —lt m/2J )(ph)' r I~i2 &(ph) . (A6)

P(h)=
2+/

e P2J2/~rn

To illustrate this result, we show in Fig. 8,
P(h) =4ml't P(h) for the Heisenberg ( m =3) case.

We note that for small h,
m/2

(A5)

X 1 — 1 — +O(h )
2J m2

(A7)

with corrections of order 1/N.
and hence the coefficient of the lt term vanishes at
k~ Ts ——J/ttt as in the SK Ising spin glass.
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