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Sine-Gordon kinks on a discrete lattice. I. Hamiltonian forilialism
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%e derive a complete Hamiltonian formalism for a kink on a one-dimensional discrete lattice in

which the position of the center of the kink appears as one of the canonical variables. Our method
is a generalization to the discrete lattice of the method used in field theory to introduce the soliton

as a canonical degree of freedom. The derivation is valid for a particle chain in a periodic potential
when there exists a solitary-wave solution in the continuum limit. %e show that the discrete lattice
is responsible for an adiabatic dressing of the kink and for spontaneous emission of phonons. In the
limit where the effective length of the kink is much larger than the interparticle spacing the kink ex-

periences the well-known periodic Peierls-Nabarro potential. In the case of a short kink, the discrete
lattice causes the continuum kink configuration to be adiabatically dressed, leading to a renormali-

zation of the Peierls-Nabarro potential and in turn to an enhancement of corresponding small-

amplitude oscillatory frequency. In addition, we formally derive an equation that describes the radi-

ation of phonons by the moving kink, an effect of the lattice discreteness.

I. INTRODUCTION

The striking connection between the properties of soli-
tary waves and many nonlinear phenomena in physics has
led to a host of related publications' in the past decade.
These investigations have provided valuable information
as to the applicability and limitations of this class of non-
linear entities. Recently it has been demonstrated that
systems involving a minimum distance scale, such as an
underlying lattice, give rise to interesting phenomena in
the structural and dynamic properties of solitary waves or
kinks absent in their continuum counterparts. ' ' As a
matter of fact, investigations of these properties have be-
come fashionable and challenging. Aubry was the first to
recognize the manifestations of discreteness in the static
properties of solitons, or kinks. i Through an elegant
mathematical approach he was able to demonstrate the
existence of a pinned regime in discrete kinks, as well as a
depinning transition that can occur in incommensurate
systems at some critical value of the coupling coefficient.
Furthermore, Currie et al. have demonstrated the possi-
bility of radiative damping for moving kinks that would
otherwise exhibit uniform motion under continuum condi-
tions. These initial studies prompted investigations along
two directions: pinning and radiation, as well as their in-
terrelationship. Since the kink-radiation interaction,
which leads to spontaneous emission, is an intrinsically
discrete effect, attempts to bypass discreteness in some
way and to resort to a continuum formulation have failed
either to predict such manifestations or to provide a
coherent picture of the kink's diffusive motion in the
presence of radiation. In a recent publication Combs, and
Yip (CY}, recognizing these shortcomings, made signifi-
cant progress toward achieving a fundamental formula-
tion of the problem of a kink on a discrete 1attice by using
some of the techniques employed in field theory to intro-

duce a soliton as a distinct degree of freedom.
In this paper we develop for the first time a complete

Hamiltonian dynamics for 2N+ 2 canonical variables;
two of the variables are the kink coordinate and associated
momentum, while the remaining 2N variables describe the
radiation field, as well as the deviations from the continu-
um soliton solutions. Since the Frenkel-Kontorova
model, " which is the discrete analogue of the sine-
Gordon system, consists of N particles, the introduction
of two new canonical variables requires invoking two con-
straints. Our formalism is an extension of field-
theoretical techniques to the discrete kink problem. In
essence, we apply the approach developed by Tomboulis, '

to introduce a soliton degree of freedom as a canonical
variable in field theory to the problem of a kink on a
discrete lattice. The method we develop is applicable to
any problem where a single-particle periodical potential
has a soliton solution in the continuum limit. In this pa-
per we develop the theory for the sine-Gordon potential.
We follow a nonrelativistic formulation of the kink
motion since, on the one hand, most of the relevant physi-
cal applications belong to that regime, and on the other
hand, the formal requirements of a relativistic kink Ham-
iltonian dynamics tend to obscure some of the discrete lat-
tice effects.

The organization of this paper will be as follows. In
Sec. II we introduce the necessary constraints and derive
the canonical transformation to a Hamiltonian that in-
cludes the kink as two of the 2N+ 2 canonical variables.
%'c derive the equations of motion in Sec. III. In Sec. IV
we discuss some significant special cases. We compare
our approach with previous work, especially with that of
Combs and Yip, in Sec. V. Section VI contains the sum-
mary and conclusions. In the Appendix we explicitly
evaluate the integrals that appear in the Fourier expansion
of the "bare" Peierls-Nabarro potential. '
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II. DISCRETE CANONICAL TRANSFORMATION
AND HAMILTONIAN

The Lagrangian for the sine-Gordon equation is

N

I.=—g x „——,'p g (x„+i—x„)
2 n=1 n=l

'1TX~
1 —cos 2

0

where an overhead dot indicates differentiation with
respect to time, a is the period of the periodic potential,
W/2 the amplitude of the periodic potential, )u is the
force constant of the springs, m is the mass of the parti-
cles, and x„ is the displacement of the nth particle from
the nth trough of the substrate potential. When dimen-
sionless variables are introduced in Eq. (2.1) the Lagrang-
ian becomes

S
I- =«'v) 'L—=—' g Q i ——' g (QI+ i

—Qi)'
/=1 l=1

z g [1—cos(2mQi)],
410 /

(2.2)

where Qi =xi/a, the dimensionless time is r= —,co —r, the
square of the frequency co is ai~—:4)u!m, the square
of the dimensionless coupling constant 10 is I0
=(ir/2)i(a) /co, ), and the square of the frequency ro, is
r0, =2m a (8'/m). A large value of /0 corresponds to
the case where the harmonic forces between the particles
are larger than the force due to the periodic potential of
the substrate.

We now define new variables q( and their time deriva-
tives g/.'

Qi =e+fi(X»—
QI =4 +Xfl' '(X»

If we require that g& q(fI"' 0, then ——Eq. (2.5) becomes

N N
—, g Qi ———,

' g ji+ —,'MX
/=1 /=1

(2.6)

where M—:gl (fI"') plays the role of the dimensionless

mass of the soliton. Note that our requirement

gl jiff"=0 is just the constraint C2. From the defini-
tion of the conjugate momentum we have

Pl P/+ P

where

aL, aL aL,
Pi —— ——QI, pi —— , P= =MX,

BQI ()4 BX

and the kinetic energy in terms of the momenta is

X . N p2
2 Q Q I'= i g p('+

2M
.

/=1 /=1

(2.7)

(2.g)

Next we show that the transformation from the 2E QI's
and Pl's to the 2X q/'s and p/'s plus P and X is a canoni-
cal transformation when the two constraints Ci ——0 and
Cz ——0 are invoked. The old variables satisfy the canoni-
cal Poisson bracket relations

where pi is the momentum conjugate to q(, i.e.,
pi B——L/8 jI=ji. We can motivate the introduction of the
constraints in part by the following argument. Let us
suppose that we would like the kinetic energy of our new
Hamiltonian to consist of a sum of N+ 1 terms, one of
which is the soliton kinetic energy, and the remaining X
terms are a sum of N kinetic energies, one for each parti-
cle, with no cross terms between the soliton kinetic energy
and the particle kinetic energies. The total kinetic energy
in terms of the variables defined by Eq. (2.3) is then

N N

z g Ql z g tq(+2iiXfl "+X'(fI"')'j .
/=1 /=1

where
I Qi Q. I

= IPi P. }=o I Q( P. }=5). ~ (2.9)

fI =(2/n)tan '(e ') (2.3)

Ci= gfi e=0 C2= pe pi=o(1)

/=1 /=1
(2 4)

is the single-soliton solution of the continuum sine-
Gordon equation. We will use the notation f&" to indicate
defi(X)/dX, where X is the position coordinate for the
soliton. %e now have N+ 1 coordinates: the X q/'s and
the soliton variable X. %'e seek a Hamiltonian description
with these coordinates and their canonically conjugate
momenta. The original problem had 2N-independent
variables, but we now have 2N+ 2 variables. Therefore,
we must introduce two constraints in order to achieve a
canonical transformation of the original theory. Tom-
boulis has shown that the introduction of a soliton in field
theory can be cast as a canonical transformation by using
Dirac brackets. The application of this method to a
discrete lattice involves essentially a change of the con-
tinuous field variables of Ref. 12 to discrete lattice vari-
ables. The required constraints on the discrete variables
are

Iq;,p, }=5;,—I&;,C }(IC,Cp}) 'ICp, p; }

M —
if I(

i )(X)f( ) )(X) (2.10)

where a and P take the values 1 and 2. We also set

t X,P }= 1, while all other Poisson brackets vanish.
Next we substitute Qi ——qI+f~(X) and PI ——pi+P in the

Poisson bracket relations of Eq. (2.9). When we use Eq.
(2.10), I X,P }=1, and the constraints given by Eq. (2.4) to
evaluate the Poisson brackets of Eq. (2.9), we find that the

Consider the new set of variables ql, pI, X, and P and as-
sume for the moment that q( and pI satisfy

Ie p. }=&). .

However, as a consequence the Poisson bracket of the
constraints satisfy I C),C2}= gl )

(fI"') =M(X) which
violates our requirement that C1 ——0 and C2 ——0. In
Dirac's terminology' these are second-class constraints.
To make the constraints strong requires a modification of
the conventional brackets. The Hamiltonian formalism
for a constrained system leads to a new canonical bracket
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P2
H = + —,

' g p(+ g V(q(+f(),
2 1=1 I=1

where

V(q(+f(}= z (q(+ i+f(+) q( —f()'—

(2.11a)

relations of Eq. (2.9) are satisfied. Consequently, the
transformation to the new variables ql, p(, X, and P is

canonical and the new dimensionless Hamiltonian is

0= {O,H), (3.1)

where 0 is a function of the 2%+ 2 canonical variables
and does not depend explicitly on time. %e use the rela-
tionship which follows from Eq. (2.10),

{pl,g (q) ] = — + g fl"(X), (3.2a)
Bq( M ( i Bq(

{1 co—s[2n.(f(+q() ]I,1

41()
(2.11b)

III. EQUATIONS OF MOTION

with the canonical brackets in Eq. (2.10) and {X,PI = 1.
As a consequence of the modification of the brackets in
Eq. (2.10) we find that {C),C2 I =0, as it must if the con-
straints Ci ——0 and Cz ——0 are to be satisfied.

{q( g (P») I
= — + M 2 f("(X}

p( M (. i p(

The equations of motion for q( and X are

f() )(X)
ql —{'ql HJ ~p/ g fl' (X}PI'~p/

M

X={XHJ=

(3.2b)

(3.3b)

We obtain the equations of motion for our 2M+ 2
canonical variables from the Poisson bracket relation

where the second equality in Eq. (3.3a) follows from
Cq =0. The equations of motion for pl and P are then

p(=q(= {p/»l =q(+(+f(+)+q( )+f( i 2(f(+q—() , »n—[2ir(f(+q/)1
2 0

N

fl 2 fl' q('+ i+fl'+) +q(' )+f( -i 2(f( +q( }— »n[2ir—(f('+q( }](1) (1)
M 21()

(3.4a)

P dMP={P,HJ =
2M

+ g fl ql~l+f(+1+q( i+f( ) —2(q(+—f(—} 2»n[—2ir(f/+q/}]
21()

(3.4b)

where we use Eq. (3.2b} to obtain (3.4a). We obtain the

equation for X by substituting

P =MX+MX =MX+X (3.5)

into Eq. (3.4b) which becomes

q d I'll
2

=(1/M} gf(" q(+(+f(+)+q( )+f( )

m'—2(q, +f, )—,sin[2m(q(+f()] .
21/)

(3.6)

Equation (3.6) is the equation of motion for the soliton
degree of freedom in terms of the q('s. The right-hand
side of Eq. (3.6) constitutes a "generalized potential"
which depends on X through the fl(X) and also depends
on the q('s. When we substitute the right-hand side of Eq.
(3.6) in Eq. (3Aa}, we obtain

I

q( =q(+ ) +f(+ ) +q( i+f( i 2(f—(+q()——

sin[2'(q/+f/)] —f( (X) X+ —,X i d lnM

21 dX

(3.7)

The coordinates q( in Eq. (3.7) are coupled to the kink
motion through f)".

Equations (3.6) and (3.7) constitute a complete closed
set of second-order differential equations for the 1)1 q's
and X. The discreteness of the kink gives rise to q's
which adiabatically "dress" its continuum form, as well as
to radiated phonons when the kink is set in motion. Since
the couplin//, between the kink and the q's is effected
through f(' ——(1/lz)sech[n(1 —X)/10], the dominant in-
stantaneous effect of the kink is on those q's which are
within 10 of the soliton coordinate.

IV. SPECIAL CASES

In Sec. III we derived the rigorous equations of motion
for the N ql's and X with no restrictions on the magni-
tudes of the dynamical variables or on the dimensionless
parameter /o. In order to elucidate the physical implica-
tions behind the above equations, we shall discuss in this
section three important special cases. In the first case we
consider the continuum limit, i.e., Io &~1, where all qI s
approach zero. In this case, the only surviving equation
of motion is Eq. (3.6), in which we have set ql

——0, i.e.,
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N

X+ 2X X
=(1/M) y fI"' fI+i+fI /

2—fI —,sin(2~f1)
210

l=1 l =1
(4.la)

where we used

d'fi
2 sin(2irfi)

dl2 21o
(4.1b)

where U0 1s a constant term and

12+ 2n 3

sinh(halo)

Similarly the expression for the dimensionless mass M

d'fi 2 d'fI 2 d'fI
i+ ——,+„, +, „+

(4.lc)

1S

M=—g (fI '}2= + g A„cos(2mnX),
1=1 ~0 n=1I

(4.S)

'6
2 m 2 7r

6t lo 4! lo

4

For example, for lo-ir the sixth-derivative term is ap-
proximately 3' of the fourth-derivative term. We can
express Eq. (4.1) as

where

)X2dlnM+T
1 dU

M dX
(4.2)

= ——
&
g f~ 'fI' ' ——g B„sin(2nnX) =8& sin(2nX),

We can neglect the sixth derivative compared with the
fourth when

(4.6)

where

8 U 2 1o=— 81 —— 2+ 2BXi z, &2 M 3 sinh(n lo)

where A„=4n [sinh(no lo)] '. Consequently, the X
dependence of the mass is relatively unimportant and the
constant value of the mass is inversely proportional to 10
and goes to zero in the continuum limit lo~ 00. Further,
since the X dependence of the mass is so weak the coeffi-
cient of the X term in Eq. (3.6), d in/If/dX, is small and

thus the X term can usually be neglected.
When we neglect the X 2 term in Eq. (4.2), we obtain

2

X=— sin(2irX),

since

(4.3)
is the small-amplitude frequency of the soliton in the po-
tential well. The well depth and coo vanish exponentially
as lo m, i.e.,

mn 1 -haloE.-T~e (4.7a)

Uo (X)=Uo+ —,'E, cos(2mX), (4.4}

as is shown in the Appendix. U is actually the Peierls-
Nabarro potential. Several approximate estimates of its
magnitude have been reported in the literature.
Equation (4.3) defines the bare form of this potential,
which we will denote Uo . The terms for n~ 1 decay
rapidly as n increases because of the exponential functions
in the denominator of 8„,so that the correction for n =2
is typically less than one part in 10 for 10-n where the
effects of discreteness are most important. The potential
Uo (X) can then be written

2 2 5
—&lo~o- 3n loe as lo~~ . (4.7b)

For n =10 we have coo-0.18 and the lowest frequency of
the phonon spectra, namely n /lz, is equal to unity. Thus,
if a soliton was trapped oscillating at a frequency -coo, it
could radiate phonons only by a high-order parametric
process. Consequently, a trapped soliton will behave al-
most like an undamped nonlinear oscillator.

Next we consider the case where q&0 and the qi's are
generated by the presence of the soliton f~(X). When we
linearize Eq. (3.7) for qi, we obtain

~ ~

a=a+ i+e i 2q& qI
———cos(—2~f()+f(+i+f( i &fj — sin(2~f, ) —f—,"' X+—'X'
10

J

=qi+i+qi i 2ql q&
——c—os(2~—f~)+—fI —fI X+ —,X

0
(4 8)
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where we used Eq. (4.1b) and the approximate equality
follows from truncating Eq. (4.1c) at the fourth deriva-
tive. %e introduce an X-dimensional vector notation
where the components of the vector q are ( q i,qq, . . . , q~ )

and the components of the (column) vector f'" are
(fI",fz", . . . ,fN") . Then Eq. (4.8) can be expressed in
vector notation as

We obtain an equation for the time dependence of
q, (X(t)) from Eq. (4.10) for the static q, by the following

argument. From Eq. (4.10) we can interpret A,(X)f'"(X)
as the external force that must be applied to cause q, to
vanish for a given position X of the soliton. We consider

q, (X(t)) to be the static solution evaluated at the value X
of the soliton at time t. Consequently, we have

q=Aq+ —f' ' —f"' X+ —,'X
4I X

where the linear operator A is a tridiagonal matrix in-
volving the q terms on the right-hand side of Eq. (4.8). In
Ref. 19 we obtained the static solution for q in the pres-
ence of the kink. We have shown that the static solution

q, satisfies the equation

A(X(t))f'"(X(t))=q, (X(r))

=Aq, (X(r))+—f"',
4f

(4.12)

We obtain the equation of motion for 5q(t} by substitut-

ing Eqs. (4.11) and (4.12) into Eq. (4.9), which becomes

Aq, +—f' ' —A,(X)f'"=0
4.t

(4.10) 5q= A5q —f"'X

q(&) =q, (X(&))+5q(&) . (4.11)

where the Lagrange multiplier A, is a function of X and is
given explicitly in Ref. 19. The significant consequence
of this approach is that exact results for q„obtained by
molecular-dynamics simulations, agree with the solution
of the linear equation, Eq. (4.10), to within l%%uo or 2%. In
a future publication we will show that the spontaneous
emission radiation of a single kink is also small and can
be obtained from the linear equation (4.8).

We next express q(t} as the sum of two parts: one part
is a dynamical dressing of the continuum kink f that fol-
lows X(t) adiabatically and the second part represents
phonons radiated by the kink as we will show later, i.e.,

= A5q+ f'"ro sin[2irX(t)],
2m

(4.13)

where co is defined in Eq. (4.15). For convenience, we

have neglected the small term f'"[—,X (d lnMidX)] in

Eq. (4.13).
In Ref. 19 we found that the dependence of the poten-

tial V on q in the static kink case was, to a very good ap-
proximation, represented by a linear q dependence. In
Ref. 20 we will show that the contribution of spontane-
ously emitted phonons can also be treated by assuming a
linear dependence on q. Therefore, when we linearize the
right-hand side of Eq. (3.6) with respect to q and substi-
tute Eq. (4.11) in Eq. (3.7), we obtain

X+ iX =(1~M) g fr eyi+e i Wi 0i —cos—(2irfi)+ fI = — (X,q, +q)2 d lnM (&) 2 {4] 1

dX ( I2 4! M dX
(4.14)

~, , dim 1 «i »UaX+ —,'X' = — (X,q, (X))—=-
M BX

CO
sin(2irX),2' (4.15)

where UD is the dressed Peierls-Nabarro potential which
results from the adiabatic dressing of the continuum kink
f by the q's. UD retains the same functional dependence
on X as Uo, but its magnitude has been increased. This
in turn leads to a renormalization of the frequency coo in

where the subscript L means V is linearized with respect
to q. Starting with large 10 and then decreasing lo, we
find a succession of three approximations for the equation
of motion for the soliton coordinate X(t). In the lowest
approximation are have the bare Peierls-Nabarro limit Eq.
(4.2). In next approximation we set 5q equal to zero, and
so that by using Eq. (4.10), we obtain

the Peierls-Nabarro well. The higher frequency results
from a sharpening of the continuum kink fi by the qi
leading to a sinusoidal potential for X with a higher cur-
vature.

Finally, as will be demonstrated in Ref. 20, the 5q
dependence of VL leads to spontaneously emitted pho-
nons. The inclusion of 5q results in an equation of
motion for X of the form

PN
2d lnM 1 dUDX+—,X 2 +damping term = — . (4.16)

The damping term is obtained by first calculating the en-

ergy radiated by the kink, using Eq. (4.13) and then com-
paring the damping term with the calculated rate. The
damping term is highly nonlinear and complicated. Ex-
cept in the case of a very high-velocity regime, it cannot
be represented by simple X or X terms. For example, if
the kink is trapped and oscillating in the PN potential, it
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can spontaneously emit only by a parametric process in-
volving at least a cubic nonlinearity in X. The reason is
that coo is less than n /lo, where irllo is the lowest phonon
frequency. It is necessary to have a frequency at least as
large as 3coo to be in resonance with a lattice phonon.
Thus, one of the consequences of the form of the damping
term is that a kink trapped in the PN potential well will

often oscillate with almost negligible damping.

Mcv —= g t~f/"')' f—/ "e]

N
X=——2 g f//"'j/,

l=l

(5.2a)

(5.2b)

(5.2c)

V. COMPARISON %'ITH OTHER %ORK

Mcvx+ AX+ gx
BX '

where

(5.1)

Although the question of discreteness effects has been
addressed frequently in the past, to the best of our
knowledge there have been very few attempts to develop a
comprehensive farmalism to describe the dynamic and the
static properties of kinks in a discrete lattice. Ishimori
and Munakata have used a perturbative approach sug-
gested by McLaughlin and Scott, ' together with a
Fourier decomposition of the structural perturbation
source, to derive equations of motion for the kink and ra-
diation. This approach has been successful in revealing
several of the manifestations of discreteness. These au-
thors were able to account qualitatively for the "wob-
bling" propagation of the kink center as well as the pin-
ning due to the Peierls field. They have also calculated
the magnitude of the bare PN barrier. Yet because of the
complexity of the resulting equations, the ensuing analysis
and interpretations were guided by mathematical conveni-
ence rather than by a clear physical picture. For example,
the response to the constant source term in the Fourier
decomposition was interpreted as the dynamical soliton
dressing, while the remaining saurce terms led to radiative
response. Since both the Green's function used and the
constant term are translationally invariant with respect to
the kink center, the resulting kink dressing is just a renor-
malization of the continuum form, still endowed with the
manifestations of translational invariance. In contrast,
the kink dressing that is treated within the present formal-
ism incorporates the full granularity of the underlying
space. Consequently, the dressing that results from our
formalism is not limited to cases involving very "long"
solitons.

Another approach is that of Combs and Yip, who have
attempted to adopt the field-theoretical variational ap-
proach of Tomboulis. ' In essence, CY have employed a
single constraint, namely Ci. Subsequently, they obtained

an equation of motion for X by differentiating the single
constraint C1 with respect to time and then using the

~ 4

original N equations of motion for Q/ to obtain the equa-

tion of motion for X which depends on the q/. They have
N+ 1 coordinates, namely the X and the q/'s, but they
have not constructed, as we have done, a Hamiltonian sys-
tem for 2(X+ 1) canonical variables. Instead, they used a
mixed description, namely an equation of motion for X
whose q/ dependence must be found from the original 2N
Hamilton's equations for Q/ and P/. Their equation for
X, Eq. (3.10) of Ref. 4 can be written as

It is immediately apparent from the above equations that
the incomplete set of constraints employed in the CY ap-
proach leads to the dependence of the coefficients on the
right-hand side of Eq. (5.1), namely Mcv, A, , and g, on the
q/'s. In contrast, in the present formulation the applica-
tion of the twa constraints Ci and C2 leads to the follow-
ing: First, the expression far the mass M does not contain
the term g& f/' q/ in Eq. (5.2a) and therefore depends

solely on the f/ "s which, in turn, depend on 10. Secand,
the coefficient /(, vanishes, as we will show below. Third,
the expression for the coefficient g does not contain the
terms g& f/ 'q/ of Eq. (5.2c), and finally the q/ depen-

dence of dV/dX in Eq. (5.1) is determined by our Eq.
(3.7), which is not equivalent to Eq. (3.8) af Ref. 4. We
shall now demonstrate why these terms of Eq. (5.1) vanish
in our canonical formalism when both constraints CI and
C2 are invoked. We first multiply Eq. (3.7) by f/ '(X),
sum over l, and use Eq. (3.6), resulting in

g& f/ "(X)q~=0. Next we differentiate Ci with respect to
te

=0= g f/ "(X)q'/+X g f/' '(X)q/
dt l=1

N

-0+X g f// (X2)q/ . (5.3)

Thus, as long as X+0, Eq. (5.3) implies A, =O. If we dif-
ferentiate Ci with respect to t, we obtain

=o= g f/" 4'/+x g f/"'e =o+x g f/"'a
(=1 1=1 1=1

(5.4)

where Cz ——0. Thus, as long as X&0, Eq. (5.4) implies
that Mcv ——M because g/ f/ 'q/=0. Finally, if we dif-
ferentiate g& f/' 'q/=0 with respect to time, we obtain

—,gf/"e=o=x gf/"'e+ gf/"4
/=i /=i /=1

=X g f,' 'q, +0,
/=1

(5.5)

where g/f/ 'j/=0 becaus«C2/dt=0 and g/f/"'q/=0.
Consequently, we see that the difference between the two

equations for X vanish when we use both constraints Ci
and Cz, and a fuB Hamiltonian theory for the 2%+ 2
canonical coordinates is employed. The fact that the mass
of the kink and the parameter g (which is proportional to
d lnM/dX) are independent of the q/'s is important for
the following reason. Consider the case where a pulse of
phonons g/ c/q/ is scattered off the kink. If M depended
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on the ql's, the mass of the kink would be determined in

part by the scattering pulse even when the pulse is spatial-

ly separated from the kink, instead of by the f~'s alone as
in our Eq. (4.5). In Ref. 4 the authors have referred to the
presence of A,(t) in the context of a generalized Langevin
equation. However, as we have shown above, A,(t) van-
ishes. In Ref. 20 we will show that X(t) does satisfy a
highly nonlinear generalized Langevin equation by
evaluating the radiation damping of the kink and using
the fluctuation-dissipation theorem to obtain the proper
fluctuation force.

Finally, the comparison that Combs and Yip have made

between their equation for X and the equivalent equations
that result from the theories of Refs. 22—26 holds for our
equations as well when the mass Mcv is set equal to M, A,

is set equal to zero, and g, fi "qi is set equal to zero in g.
Further detailed discussions concerning each of the above
points are given in Refs. 19 and 20, which are specifically
devoted to addressing these questions.

IV. SUMMARY AND CONCLUSION

In this paper we have developed for the first time a
rigorous Hamiltonian system of equations that introduces
the coordinate of the kink center, X, and the N qi's as
N+ 1 canonical coordinates. With our Hamiltonian for-
malism we are able to treat, in a systematic manner, prob-
lems in which the discrete nature of the kinks dominates
the physics of the manifest phenomena. We have outlined
the procedure for introducing a nonperturbative static
dressing q, (X) to the bare (continuum) stationary soliton.
In obtaining the static dressing solutions we have intro-
duced for the first time the prescription for an external
force that has the correct distribution among the chain
particles to balance the Peierls forces and thus to leave the
kink stationary, without distortions, at any position in the
PN well. Subsequently, we have shown that this dressing
can be transformed adiabatically to follow the motion of
the center of the kink, namely q, (X(t)). The introduction
of the dynamical dressing allows the separation of the
purely radiative terms in q, namely 5q. The details of
each of these phenomena will be discussed and analyzed
in separate publications, ' ' in which the underlying
physical subtleties are adequately exposed. In addition,
we will evaluate the damping of the kink motion due to
the spontaneous emission of phonons by solving the cou-
pled equations, Eqs. (3.6) and (3.7), in a manner similar to
the approach used in calculating radiation damping in
electromagnetic theory, in a future publication. For the
calculation of the spontaneous emission we will use the
fact that the equation for 5q, Eq. (4.13), is linear in 5q. A
second important problem that we will treat within the
present formalism is the scattering of an external beam of
phonons off a discrete kink using Eq. (4.14), where 5q is
determined by the external beam. The dominant term in
the scattering is linear in 5q, in contrast to the continuum
kink case where the scattering requires nonlinear terms in
6q. %e wiB show that the scattering can be described in
terms of scattering off a single particle, described by X(t),
which in the case of scattering from a periodic lattice of
kinks will lead to umklapp processes. Finally, we would

like to point out, that although we have confined our dis-
cussion to systems with a single kink, the procedure out-
lined in this paper can be generalized to include many
kinks interacting with each other.
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g(x)= g f(i —x) .
l =—co

(Al)

This function is obviously periodic in x with period 1.
Hence, we can expand it in a Fourier series

g(x)= —,Ao+ g A„cos(2nmx)+ g B„sin(2nmx) .

The coefficients of the series are given by

1/2
A„=2 f g f(i x) cos(2n—irx)dx .

(A2)

(A3)

If we interchange the order of summation and integration
and then change variables according to z =i —x + 1, with
a corresponding change in the limits of integration, we ob-
tain

i +1/2
A„=2 g f f (z) cos[2nm(i —z) Jdz . (A4)

But

cos[2 nn (i —z) ]=cos(2n nz),

sin[2nm(i —z)]= —sin(2nnz)

and the integrand is independent of i We can .therefore
evaluate the sum since it is just a sum of integrals of the
same function over adjacent intervals:

A„=2 z cos 2nm.z z,
8~ = —2 Z sin 27l&z GZ . (A5)

We notice from Eq. (A5} that g (x) has the same parity asf(x).
The expressions of the form of Eq. (Al} are those for

dUldX in Eq. (4.3) and the dimensionless mass in Eq.
(4.5):

(4.3)

where, for example,

APPENDIX

In the discrete problem we frequently have to evaluate
functions having the general form



33 SINE-GORDON KINKS ON A DISCRETE LAITICE. I. . . ,

(i) d 2 i eel —X)jlo—tail eXn
These integrals can be found in the tables, and after some
algebraic manipulations the following result is obtained:

=—sech —(1 —X)l m'

Ip Io

Since d U/dX is odd in X we can write

dU = g B„sin(2nnX),
e=1

where from Eq. (A5),

8~=— z z sm 2ns'z z .
3! —oo

One integration by parts gives

(A6)

(A7)

n n (2n —1/lt))8„=
3 sinh(nolo)

The mass is given by Eq. (4.5):

The Fourier coefficients are then

(A1Q)

(4.5)

8 = [f'"f' ' ——'(f' ') ]cos(2nez)dz . (A8)—CO

sec mz p cos 2nm z,
CO

1'0
(A 1 1)

Substituting the expressions for the derivatives we get

ng8„= f [3sech (trz/lo) —sech'(trz/lz))
61p

&(cos(2ntrz)dz . (A9)

giving the final result

4 4n
Ap —— , A„=

trip sinh(n trlz )
(A12)
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