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A model is presented for the calculation of the static dielectric properties of pure and dipole-dilute
bee antiferroelectric systems. The real systems display long-range dipolar and elastic interactions,
which are simulated in this paper by an effective Hamiltonian with first- and second-neighbor in-
teractions only. The first-neighbor interaction is taken to be antiferroelectric but the second neigh-
bors, although ferroelectrically ordered at T =0 K for the pure systems, are allowed to interact via
(i) a ferroelectric or (ii) a weak antiferroelectric coupling. The cluster-variation method is used to
treat this model. The results show that the dielectric properties are qualitatively different in cases (i)
and (ii). We conjecture that in orthorhombic KCN the effective second-neighbor interaction is anti-
ferroelectric. The model is also of interest for other antiferroelectric and antiferromagnetic systems.

I. INTRODUCTION

In a recent study’ of the thermodynamics of the pure
and dilute alkali cyanides NaCN and KCN, the impor-
tance of short-range-order effects in the properties of the
low-tempertaure orthorhombic phases (paraelectric and
antiferroelectric) has been demonstrated. Calculations
within the Bethe approximation, in which only nearest-
neighbor antiferroelectrically coupled pairs are correlated,
are in good qualitative agreement with experiment. This
result is somewhat surprising, and must be further investi-
gated since electric interactions are of long-range nature.

As discussed in Ref. 1, the oversimplified model Hamil-
tonian with only nearest-neighbor coupling proposed there
must be regarded as an effective one. In particular, calcu-
lated microscopic physical quantities are allowed to be
quite different from the corresponding values in the real
system. The simplification is justified because short-
range-order effects in the specific heat and in the dielec-
tric constant, and particularly deviations from mean field,
were being qualitatively investigated there. Such thermo-
dynamic properties are related to energy variations, rather
than to total energies for which dipolar lattice sums must
be carried out to convergence.?

Nevertheless, results presented in Ref. 1 deserve further
investigation, not only to incorporate longer-range interac-
tions, but also due to the presence of ferroelectrically or-
dered pairs. These may contribute differently to the
dielectric properties in connection, for example, to frustra-
tion effects.

The antiferroelectric structure* of KCN and NaCN
corresponds to a dipolar arrangement of the CN™ per-
manent dipoles such that in each body-centered
orthorhombic unit cell the central dipole is antiparallel to
the eight dipoles at the corners. In the present work we
are concerned with the effect and the nature of the
second-neighbor coupling, and for simplicity we assume a
body-centered cubic (bcc) unit cell.

We introduce a model for pure and dipole-dilute bec
antiferroelectric systems in which first- and second-
neighbor interactions are present. The first-neighbor in-
teraction is taken to be antiferroelectric but the second
neighbors, although ferroelectrically ordered at T =0 K
in the pure system, are allowed to interact via either a fer-
roelectric or an antiferroelectric coupling. The ratio ¥ be-
tween the values of the second- and the first-neighbor en-
ergies must be regarded as an effective parameter rather
than the true ratio in real systems where longer-range in-
teractions are present. While in the previous approxima-
tion! the effective coordination number of the lattice was
a fitting parameter, in the present model we have a fixed
(bee) lattice geometry, but ¥ may be adjusted to reproduce
certain features of experimental observations, like the
maximum in the paraelectric regime in susceptibility-
temperature curves of KCN.

The model we treat is equivalent to a dilute Ising
model. We calculate thermodynamic properties through a
generalization of Kikuchi’s cluster-variation method,’ for-
mulated in Sec. II, which properly takes into account the
dilution. Qualitatively different results for the cases of
ferroelectric and antiferroelectric second-neighbor cou-
pling are analyzed in Sec. III, and compared to the previ-
ous (Bethe) approximation! in Sec. IV. The conclusions
of Sec. V summarize the relevance of the present results
for the identification of the kind of second-neighbor in-
teractions in similar physical systems.

II. MODEL

We consider a bec lattice decomposed into the two
equivalent sublattices @ and S indicated in Fig. 1. Each
site corresponds to one of three possible states: States
(+ 1) and (—1) stand for a site occupied by a dipole (a
CN~ radical) oriented parallel or antiparallel to an aniso-
tropy axis, while O corresponds to a vacancy (a halogen
ion). Among the N lattice sites, Np are occupied by di-
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FIG. 1. (a) bee lattice with first- and second-neighbor in-

teractions: sublattices @ and B and the tetrahedron taken as the
basic cluster are indicated. (b) Tetrahedron in configuration
{ ijkl}.

poles. The pure (p =1) ordered system corresponds to all
a sites in the ( + 1) state and all B sites in the (— 1) state.
The nearest-neighbor interaction J, is taken to be antifer-
roelectric (positive) and couples a-B pairs. The second-
neighbor interaction J, couples a-a and B-8 pairs, and
may be positive or negative. In the case J, >0 we assume
that it is sufficiently weaker than J; so that the ground-
state structure is determined uniquely by J;.

We study the thermodynamics of this system within
Kikuchi’s cluster-variation method (CVM),’ which ap-
proximates the configurational entropy so that correla-
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tions among sites within a chosen “basic cluster” in the
lattice are fully incorporated. The method is expected to
converge to the exact result when the basic cluster is in-
creased.® Previous applications of the CVM to site-dilute
Ising systems have been done in the pair approximation,
equivalent to the Bethe method.!”?

For the present model, the simplest cluster which
preserves the symmetry of the system and includes both
first- and second-neighbor pairs is the tetrahedron indicat-
ed in Fig. 1. This approximation in the pure bcc lattice
has been previously used in the study of binary alloys’~!!
and metamagnetic systems.'? In the case of first-neighbor
antiferromagnetic interactions only,’ it yields a Néel tem-
perature only 2.2% above the series-expansion result.
Here we take parallel dipoles to interact via a first-
neighbor repulsion J; >0 and a second-neighbor interac-
tion J,=vJ,, where ¥ may assume positive or negative
values. The energy of a tetrahedron configuration {ijk/}
[see Fig. 1(b)] is therefore (in units of J;)

€ =1j +jk + Kkl +1i + 2y ik +jI) (1)

where i,j,k,! may assume values 0 and *1 according to
the state of the site. We define the probabilities of the dif-
ferent possible configurations of the tetrahedron and
smaller clusters according to the notation in Table I. Of
course, only the tetrahedron configurations are indepen-
dent parameters; the others are given in terms of ap-
propriate summation rules’® involving {oij}-

The CVM entropy in the tetrahedron approximation is
obtained through a convenient scheme.!* We incorporate
a reduced uniform field h=H/J,, and write the
Helmholtz free energy of the system in reduced units as

¢0=(E_TS)/(NkBT)':BZ(eijkI_hmijkl)wijkl +62$((D,'jk1)~3 [E_Z’(u;jk)+2.Z(uk1,-)+2$(17jk1)+zf(ﬁ,,-j)]

+3 [Zz(yik )+ 2L () } + 3L (xij)+ 2L (xp))+ 2L (xpg)+ 3,-L (xy)

-+ [Z«Y(pi)+Ef(pk)+2‘,f<ﬁ})+2f(in] , (2a)

where my;; =(i +j +k +1)/4 is the polarization per site
for the ijkl cluster, B=J,/(kgT), and the summations are
performed over all pertinent indices, which may assume
values —1,0,and + 1. The operator .Z is defined as

ZL(q)=¢q(lng —1) . (2b)

TABLE 1. Notation for configuration probabilities (see Fig.
.

Tetrahedron: a-B-a-B Oijkl
Triangles: a-B-a Ujjk
Triangles: B-a-B Ujki
Second-neighbor pairs: a-a YVik
Second-neighbor pairs: SB-B8 Vi
First-neighbor pairs: a-8 X;j
a sites Di
B sites Pj

[

Expression (2) is valid both for the pure (p =1) and for
the dilute (p < 1) cases. Yet, in the pure case only one
constraint, za),,“: 1, must be considered in the minimi-
zation problem, while in the dilute case additional con-
straints are needed to specify the distribution of vacancies
in the lattice.

We define an “arrangement” as a given distribution of
vacancies in the tetrahedron cluster, irrespective of the di-
poles orientation. Calling i= |i|, two configurations
{iyj1kql1} and {i j,k;l,} belong to the same arrange-
ment when ?1 =?2, 71 =72, 21 =£2, and /I\l =72. The sum
of all tetrahedron configuration probabilities in the same
arrangement is equal to the total probability zp?;ﬁ for

that arrangement, thus
Z'w,-jk, =1/J;~;"‘v~ . (3)

In (3), 3’ indicates summation over nonzero indices for
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all dipolar configurations in the same arrangement. We
consider here the case of a quenched random distribution
of vacancies, where

¢AAAA= f+}+£+i(l—p)4_(?+;+i;+i) . 4)
The constraints (3) are incorporated to the free-energy

minimization problem through a set of Lagrange multi-
pliers Aﬁ i72 %0 that we define

$=¢o+B X M [‘/’ff;:f— 2 oy | - 5
Yo

At a given p, the minimization of ¢ with respect to
{@iji} gives

jjkl =eXp[B(?\?jAﬁ——K,-jk, )/6] Ak (6a)
where

Kijki = €ijkg —hmyjg (6b)
and

Ay =piBypich)"** a1y ) 172
X Yaed) ™ Oxaxigxin) T (6¢)

This reduces to the Kikuchi-Sato superposition relation’
in the pure case, where A;;; is the only relevant Lagrange
multiplier. We obtain A?fﬁ through Eq. (3), which com-

bined with Eq. (6) yields
-1
exp(Bl?;m/&-_— E exp( _BKijkI /6)A,-jk1 ] 1/);«;,?? )

The system of equations (6)—(7) is solved by the “natur-
al iteration method”:'* initial values are chosen for the
set of tetrahedron configuration probabilities {w;jq }, sum-
mation rules (such as u; = 3,0, ) are used to obtain all
Lagrange multipliers, which are then used in Eq. (6a) to
yield new values of {w;j;}. The process is iterated until a
convergence criterion is satisfied.

From the converged values of the probabilities, the stat-
ic susceptibility (in arbitrary units) is calculated numeri-
cally through the definition

d(P,+Pg)
X(p,T)= ah
='l.1n})[(p1——p_1)+(ﬁ1—ﬁ_.1)]/h , (8)

where P, is the polarization in reduced units of the v sub-
lattice.

III. RESULTS

A. Pure materials (p =1)

The only free parameter in our model is y=J,/J;. In
the bec lattice with first- and second-neighbor interac-
tions, the ground state is antiferroelectric if

y=L/Ji<%. &)

Since our motivation is the antiferroelectric ordering in
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NaCN and KCN, we restrict ¥ to that range. A different
structure,‘s'16 called B32, corresponding to an antifer-
roelectric arrangement in each of the two sublattices, is
stable for y > .

Experimental data!? for pure KCN show a maximum
in the static susceptibility X at a temperature 7* which is
about 7% higher than Tc0=33 K, the ordering tempera-
ture, while for NaCN, T*= TCo‘ In the present model we
get T*=T¢, for y<0, ie., for ferroelectric second-
neighbor coupling, and T* > Tc, for0<y < Z. This indi-
cates that in KCN the effective second-neighbor interac-
tion is probably antiferroelectric (therefore leading to a
frustrated ground state) while for NaCN it is probably
ferroelectric.

The effective interactions are not easily calculated from
first principles, since the low-temperature ordering of
these materials involves a complex elastically dressed elec-
tric transition.?

B. Dilute materials

We consider initially y >0, i.e., antiferroelectric first-
and second-neighbor interactions. In Fig. 2, the static
susceptibility versus temperature calculated from (8) is
presented for several values of the dipole concentration
for y=0.5. In the pure limit (p =1), T‘=1.05TCO, a
feature that is not clearly resolved in the figure, and
kpTc,=4.6J,. Note that at high dipole concentrations, X

increases very slowly as T decreases in the disordered re-
gion. At the ordering temperature T¢(p), the susceptibili-
ty shows a cusp, which is typical of antiferroelectric sys-
tems. In the T—0 K limit, the susceptibility diverges for
any p < 1, which corresponds to the paraelectric contribu-
tion of isolated dipoles. As the dipole concentration de-

p=0.3

p=0.65

p=0.8 p=09 p=1.0

102 X
H

FIG. 2. Static susceptibility of dipole-dilute systems for the
indicated dipole concentrations p for ¥ =0.5. The pure material
transition temperature is T¢ O=4.6J 1/kg.
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creases, the paraelectric contribution increases both above
and below T¢ (e.g., the p=0.3 curve). For p <0.2, no or-
dering transition occurs, and the system shows a simple
paraelectric behavior (e.g., the p =0.1 curve).

An interesting feature of the susceptibility in the mixed
materials is the appearance of a bump around
T/Tc,=0.1, which we associate to isolated second-

neighbor pairs. In the pure ordered materials, second
neighbors are frustrated (parallel), but in isolated pairs
they may become antiparallel at low T. This anomaly in
the X-versus-T curve corresponds to the partial short-
range ordering of second-neighbor clusters, which occurs
at a temperature of the order of J,, independent of p.

In Fig. 3 we present results for ferroelectric second-
neighbor interaction with y=-—0.5; in this case
kpTc,=11.2J,. Note that the ordering cusp is much
more pronounced here than in Fig. 2 due to the faster in-
crease of X as T decreases in the disordered region. The
absence of second-neighbor frustration is clear in this
case: the negative second-neighbor interaction in fact
reinforces the type of ordering favored by the positive
first-neighbor interaction. Thus, no anomaly of the kind
described in the preceding paragraph occurs. The
paraelectric behavior due to isolated dipoles, i.e., the
divergence of X as T—O0, is also obtained here for any
p < 1. It is not indicated in the figure for p >0.5 because
the increase occurs for extremely low values of T'/T,.

IV. COMPARISON
WITH THE PAIR-APPROXIMATION RESULTS

The dielectric constant of dipole-dilute antiferroelectric
systems has been previously calculated! within a simpler
scheme in which the basic cluster was taken to be a
nearest-neighbor a-f pair. Several features—such as the
slow increase of X under cooling, the maximum of X at
T*>Tc, for pure KCN—not predicted in mean-field

theory, were obtained in that approximation. A semi-
quantitative fitting with the measured behavior of KCN
and NaCN was made by adjusting three parameters of the

1 1 1 1
0.8 10 T/,

FIG. 3. Same as Fig. 2 for y=—0.5. The pure material
transition temperature is Tco =11.2J,/kp.

model. For the effective coordination number (z.), the
fitting yields z.¢=3.4 for KCN and z.=4.1 for NaCN,
which is an indication of partial cancellation due to the
presence of further-neighbor interactions, since in the real
lattice z=8. Lower values of z. are associated with
higher values of J,, which competes with J,, in the sense
that the two interactions do not favor the same ordered
structure if they are both positive. Because z.g is smaller
for KCN than NaCN, we should expect a higher J, for
KCN, which is also the conclusion reached in Sec. IIT A.
Within the range 0 <y < %, T* is at most ~5% higher
than T¢; we do not have the same fitting flexibility for

the tetrahedron cluster than for the a-B pair, since the
coordination number is fixed in the present model. The
measured difference for KCN (about 7%) should be con-
sidered approximate because of the experimental difficul-
ties described in Ref. 1. Therefore we do not attempt any
quantitative fitting here.

For the dilute materials, the main improvements of the
present model over the previous approximation' are:

(i) The correct T—0 limit behavior for X(p=£1,T); in
Ref. 1, X always goes to zero in this limit instead of
diverging, as a consequence of the additional—average
coordination number’—approximation assumed there. In
the notation of Table I, it consists of taking xq;=pp; for
any pair containing a vacancy (note po=1—p). If this
condition is relaxed, the correct formal limit is obtained
even in the pair approximation.” However, because of di-
pole freezing effects, experimentally X is actually seen to
go to zero at low T for all concentrations in the dilute
cyanides,'® even for very low (<10%) dipole concentra-
tions, when the full paraelectric behavior is formally ex-
pected. This effect has been discussed in the literature in
connection with a dipole-glass phase conjecture.'’

(ii) The more pronounced cusp in X in Fig. 2 as p de-
creases; this is a feature that is also observed in experi-
mental curves,'® but not obtained in the previous approxi-
mation.

(iii) The “signature” of the second-neighbor frustrated
interactions, which is not present in the experimental
curves, probably due to the freezing effects discussed in
@).

V. CONCLUSIONS

The results of this paper bring about the interesting
possibility of the identification of the nature of the
second-neighbor interaction from the dielectric properties
of dilute antiferroelectric materials, in particular from the
dependence of the static susceptibility X on the tempera-
ture 7. For example, in the case of antiferroelectric first-
neighbor interactions (J, >0), a bump in the ordered re-
gime of the X-versus-T curve is associated with dilution
and with the frustration of second-neighbor antiferroelec-
tric (J, >0) interactions. This anomaly is indeed more
likely to be found in similar magnetic systems, where
freezing effects do not inhibit the response. Another ex-
ample is the appearance of a maximum in the X-versus-T
curve of the pure systems in the paraelectric regime in the
case J,J,>0. Comparison with experimental results
leads us to conjecture that J, >0 for KCN, which is con-



33 DIELECTRIC PROPERTIES OF DILUTE bee . . .

sistent with a low value of the effective coordination num-
ber in a previous approximation,' since J; and J, favor
different ordered structures.

The qualitatively correct predictions of other features
of the X-versus- T curves—the divergence as T—0 for the
dilute case and the cusp at the ordering temperature—
indicate that the cluster-variation method (CVM) may be-
come a valuable tool for the study of the general formal
problem of site-dilute Ising systems. The CVM has two
clear advantages over effective-field (EF) approximations,
which are frequently used?*—2} for the thermodynamics of
dilute Ising models: (i) while EF results usually depend
only on the coordination number of the lattice, the CVM
takes into account the geometry of the problem in a more
complete way, and (ii) the CVM results are expected to
converge to the exact solution when the size of the basic
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cluster is increased. Therefore, further applications of the
CVM to such problems are under investigation.
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