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A renormalizable parameter £ (0S£<1) is introduced into the interacting Bose-system Hamil-
tonian such that the zero-mode amplitudes satisfy the commutation relation [bo,b$]=l—§. The
different phases of the system correspond to specific values of £&. The normal component (phase I) is
obtained when £=0 and there are two ordered states according to the strength of the interaction:
Phase II' (0 <& << 1) is found in the strongly interacting system and is characterized by a broken
gauge symmetry without Bose-Einstein condensation, while phase II"” (§=1), in the weakly interact-
ing system, displays Bose-Einstein condensation. The continuity equation for the particle density
holds in both ordered phases to within an infinitesimal term. A gauge transformation on the field
operators shows that & “twists” the phase angle related to the zero mode, and a response to this
twisting field is defined in terms of the generalized force X(T) associated with £. For the ideal Bose
gas X(T) equals the condensate density and hence is simply related to the helicity modulus intro-
duced by Fisher et al. A renormalization-group transformation shows that the dense system transi-
tion (I-II') gives rise to a two-thirds correlation-length critical exponent, whereas a unity crossover
exponent appears in the dilute system transition (I-II"), in agreement with the experimental findings.
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I. INTRODUCTION

The renormalization-group approach to critical phe-
nomena of classical systems introduced by Wilson' was
extended by Singh to the study of the normal® and con-
densed® phases of a Bose system. Singh found that both
phases display a transition analogous to that of a classical
two-component Heisenberg model, with a correlation
length critical exponent v=0.6 (d =3) to order e=4—d,
d being the system dimensionality. This “two-thirds”
power law is a consequence of the complex nature of the
boson field as demonstrated by Fisher, Barber, and
Jasnow.* These authors have also shown that this ex-
ponent becomes equal to unity in the case of the ideal
Bose gas. The two-thirds and the linear power laws have
been confirmed by experiments performed with dense’
and dilute® *He systems, respectively.

It has been shown recently’ that Singh’s treatment of
the normal phase does not lead to Bose-Einstein condensa-
tion as the transition temperature T, is approached. For
condensation to occur, a crossover exponent vo=1 appears
which is associated with the condensate correlation
length. Moreover, a critical exponent v;=0.6 is seen to be
associated with the noncondensate. It looks as if two
mechanisms compete in the transition of the normal
phase: the complex nature of the boson field character-
ized by the two-thirds power law and the Bose-Einstein
condensation connected with the linear power law. The
former prevails in dense, strongly interacting systems
whereas the latter in dilute, weakly interacting systems.

The natural subsequent investigation should concern
the condensed side of the transition, the critical behavior
as the temperature T approaches 7, from below. This
problem poses a preliminary question on how the con-

33

densed phase is described. The two usual procedures to
treat condensed bosons are due to Bogoliubov. Firstly, the
well-known Bogoliubov prescription® that amounts to the
replacement of the k =0 Bose amplitudes, a, and ag, by
the c-number (Ny)!/?, N being the number of particles in
the k=0 state. Secondly, the introduction of a gauge-
symmetry breaking term into the Hamiltonian® by means
of a fictitious infinitesimal field coupled to the amplitudes
ag and a,. Slight variations of these methods and even a
combination of both are found in the literature.'=!> The
Bogoliubov prescription neglects fluctuations in the con-
densate occupation number altogether, and hence it is ap-
propriate for the description of dilute systems only. How-
ever, the validity of such conservation laws as, e.g., the
continuity equation, is difficult to ensure.”* In contrast,
Bogoliubov’s second method has the advantage of preserv-
ing the operator nature of the zero-mode amplitudes, thus
taking into account microscopic fluctuations of the con-
densate. Furthermore, the continuity equation is satisfied
to within an infinitesimal term.!> Based on an analogy
with magnetic systems, this scheme has, nevertheless, the
drawback concerning a physical interpretation of the
external field.

A common feature in both Bogoliubov’s approaches re-
sides in the breaking of the gauge symmetry which is the
fundamental distinction between the normal and con-
densed phases. In Sec. II a new Hamiltonian H(£) is de-
fined in terms of a real external parameter £. The normal
phase corresponds to £=0 and the phase with broken
gauge symmetry to £>0. It is shown that the continuity
equation is satisfied (to within an infinitesimal term) and
that the parameter £ produces a phase “twist”* of the
k =0 mode. We also show that the limit §—1 corre-
sponds to the Bogoliubov prescription. In Sec. III the
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renormalization-group (RG) transformation is used to
determine the critical value of £. The £ ensemble is
worked out in Sec. IV for the ideal Bose gas. We con-
clude with a discussion in Sec. V.

II. THE MODEL

Consider a system of bosons of mass m enclosed in a
volume V=L and interacting via a two-body potential
U(x). The model Hamiltonian is given by

_ 7 d, to2, , %0 d 4
H——medx¢V1//+4 [a%|v|*, @b

where uo=2U(k =0) is the interaction constant and the
field operators are

Y=o+,
Yo=V""2b, , 2.2)
U=V gpe

k0

where the zero-mode amplitude is defined by
bo=fao+g(No)'"?, (2.3)

together with the following condition on the ensemble
averages,

(ag)=(al)=0. (2.4)

The operators a; and a,I , including the case k =0, are the
usual Bose annihilation and creation operators, and the
parameters f and g are real and non-negative. The nor-
mal phase corresponds to f =1 and g =0, and the Bogo-
liubov prescription to f =0 and g =1. To circumvent the
zero f value, which amounts to neglecting the dynamical
behavior of the k =0 particles, Szépfalusy'* defines a
canonical transformation in terms of f =g=1.

However, from the observation that (2.3) and (2.4) yield
the relation

(blboY=fXalao)+g*No , 2.5)

we shall interpret the parameters f and g as being proba-
bility amplitudes so that

fligi=1. (2.6)

Accordingly, we introduce a real parameter £ that can
take on values in the interval [0,1], and define

f=V1-¢, g=VE. (2.7)

In this context the normal phase and the Bogoliubov
prescription correspond to the extreme values of the
range. On the other hand, Szépfalusy’s transformation
does not fit into this scheme.

From (2.2), (2.3), and (2.7), the basic commutation rela-
tions of the Bose amplitudes and fields are modified ac-
cording to

[bo,bo]=1—¢&, 2.8)
[Wi(x,56),¢0 (x",1;6)]1=8%x —x")—EV " . (2.9)

Now we proceed to determine the continuity equation

of the system. The number-density and the total-number
operators are given, respectively, by

A, 5E) =3 (x, 0, 5€) ,
(2.10)

N@©= [ d% alx,1;8) .

From (2.1), (2.9), and (2.10) one can determine the com-
mutator between the Hamiltonian and the total-number
operator,

[HENE)=Epo [ d% I(x,1;8) , @.11)

with
. __1_ d_ gt . ! g 2 't
Ix, 6=~ [ a9 x,66) | 9ix',56) | 2plx',156)
— N6 | ix,56) |2

XP(x,t;8)], (2.12)

and, likewise, the equation of motion for the number-
density operator,

a,ﬁ(x,t;§)+V-j(x,t;§)=%é’uol(xﬂ;g) , (2.13)

where J (x,t;€) is the current operator. By assuming, in
general, that I(x,t;£)5£0 in V, Eq. (2.13) reveals that the
continuity equation will be satisfied to within an infini-
tesimal term so long as £u, is infinitesimal. Hence, in
dense systems where u is supposedly large, £ must be an
infinitesimal parameter (0 <& <<1). On the other hand,
for dilute systems £ need not be infinitesimal. In particu-
lar, the ideal Bose gas satisfies the continuity equation
whatever the magnitude of §.

Now, we consider a gauge transformation on the field
(2.2), namely,

e —ioﬁ(ng)eioﬁ(g)=¢O(§)ei<1-5)9+¢]ei9 )

It is well known that the motion of a quantal fluid may be
described by a gauge transformation, ¥—ye®, where the
phase angle 0 is related to the velocity of the fluid, i.e.,
v=(#%/m)V6. From (2.14) we find that the velocity of
the k =0 particles, vq, differs from the velocity of the
k40 particles, v, that is

vy =(A/m)Veo,

(2.14)

(2.15)
vo=(1—E, .

Fisher et al.* have introduced the concept of a helicity
modulus, Y(7T), which measures the incremental free ener-
gy resulting from an imposed phase “twist” of the order
parameter. In the same spirit, one may interpret —£60 in
(2.14) as a “twisting” phase angle with respect to the
overall phase. As Y(T) is a response to an associated
twisting field, one may similarly introduce a response in
terms of the generalized force that is coupled to the pa-
rameter £. Thus, let K(£) be the dimensionless grand-
canonical Hamiltonian



33 GAUGE-SYMMETRY BREAKING AND PHASE TRANSITIONS IN . . . 1851

K(&)=B[H(E)—uN ()], (2.16)

where p is the chemical potential and B=1/kpT is the in-

J
H

—EE-(NO—(aoao))+—— [ adx |

X(T,V,u,8)=

—-5_1/2(”0)1/2(710)1/2< I¢]2¢+¢TI¢|2) ] ,

where the ensemble averages refer to the grand-canonical
ensemble specified by (2.16). In Sec. IV we will find a
simple relation between Y(T) and X(T) for the ideal Bose
gas.

We finally remark that although a more general expres-
sion for X can be easily deduced in terms of f(§) and
g(&), together with their derivatives f'(§) and g'(§), Eq.
(2.17) depends on the particular choice (2.7). In contrast,
the parameter £ that appears explicitly in the continuity
equation (2.13) and, also, in the gauge transformation
(2.14), comes solely from the operator part of (2.3), viz.,
from the replacement 1—f%>—¢£. Equations similar in
from to (2.13) and (2.14) would have resulted if we let
O<f <1 and g=0 at the outset, a fact that emphasizes
the relevance of allowing for microscopic fluctuations of
the zero-mode particles.

III. RENORMALIZATION-GROUP
TRANSFORMATION

To determine the critical behavior of the system it is
more convenient to perform a RG transformation! on the
Hamiltonian (2.16) expressed in terms of the Bose ampli-
tudes a; and a).>® Elimination of the high-frequency
modes is accomplished by factorizing the Hilbert space as
ho®h,, where hy and h, are the subspaces on which the
Bose amplitudes operate within the ranges 0= |k | <A/
and A/{< | k| £A, respectively. The parameter § is a
scale factor such that {>1, and A denotes the intrinsic
momentum cutoff of the order of the thermal momentum

AT =QmtR/mkyT)~ 12 .

As bo(§) and b{S(g) operate on hg, the effective low-
frequency Hamiltonian is identical to the one found previ-
ously by Singh,2 upon the replacement a,—bo(£) and
a&-—»bg(é‘ ). Next, in order to take into account the or-
dered states, we apply the scale changes introduced in an
earlier paper,” namely,

=%k, x'=¢("'x, (3.1)
ax=ap, ag=(ap)", (3.2)
bo(£)=E""by(E), by(E)=E"4by) (&) (3.3)

where y is a non-negative real parameter and

§)—1/2<

verse temperature.
From (2.1), (2.2), and (2.16), the generalized force per
unit volume, X(T,V,u,£), is equal to

2 t 2
w1+ |91 )

(2.17)

[
bo(E)=(1—E)"2ag+(E'Ny)V/2 .

It has been shown’ that (3.1)—(3.3) re froduce the same re-
cursion relations obtained by Singh,* except that the re-
normalized mass mg of the k=0 particles now differs
from the mass of the k0 particles, m1, i.e.,

mo=C"1"Tm, m{=£""m, (3.4)

with 7=0( u3). The parameter y can take on two values
only, according to whether or not the transition exhibits
Bose-Einstein condensation,’

0 without Bose-Einstein condensation,

- d >2 with Bose-Einstein condensation . 3.5

According to (3.4) and (3.5), Bose-Einstein condensation
implies fixed-point masses mg =0and m ] = .
The renormalized version of (2.8) obviously reads

[bo(£),(bp)T(EN]=1-¢",
and from (2.2) and (3.3) we obtain the central result
E=1-(1-6)7". (3.7
The fixed-point parameter £* follows from (3.5) and (3.7),

(3.6)

(3.8)
(3.9)

«__ |€ without Bose-Einstein condensation
1 with Bose-Einstein condensation .

We notice that (3.8) and (3.9) hold for both phases, §=0
and £> 0.

Finally, we show next that.the arguments given in Sec.
III of Ref. 7, concerning the Bose-Einstein condensation
as the critical temperature is approached from above
(§£=0), may be extended to the case when T, is reached
from below (£>0). After the scale change [Eqgs.
(3.1)—(3.3)] the total particle density n={N ) /¥, and the
order parameter (/) become

( akak ) ik’x'
V 3
(3.10)

)<0‘10)+§ +§d2

k0

n=g=4|(1-¢

<¢)=§(y—d)/2<¢'), <¢ )_(g 1/2

At the vicinity of the Bose-Einstein transition point one



1852 A. C. OLINTO 33

has £ >>1, y=d, and §' =1, so that Eq. (3.10) gives
n=ng, (¥)=(ngy)'"*. 3.11)

This result represents a generalization of the previous
treatment’ because it holds whether T—T." or T—T, .
Moreover, the expression of the order parameter in (3.11)
was derived without the usual recourse {aq ) —(Ny)!/2.

IV. IDEAL BOSE GAS

It is instructive to work out the model described in Sec.
II for the ideal Bose gas. From (2.1)—(2.3) the corre-

sponding dimensionless grand-canonical Hamiltonian
reads
Ko(&)=—Bubibo+ 3, Ble) —p)ajay 4.1)
k0
=Ko(£=0)—EBu(Nog—alao)
—Bul(1—)ENo]ag+al) (4.2)

where €} =#?k%/2m and K,(£=0) is the usual ideal-gas
Hamiltonian. Of special interest is the generalized force
(2.17), which by taking into account Egs. (2.5) and (2.7),
becomes

Xo(T, V1) =Bu(No—{(bibo)) /(1—=EVV . 4.3)

It is straightforwad to calculate the contraction in (4.3)
from the Hamiltonian (4.1), namely,

(biboY=(1—E)e— -8B _1)—1 (4.4)

In order to see the consistency of this result we take the
limits £—0 and £—1 in both Egs. (2.5) and (4.4), which
give, respectively,

(alag)=(e B —1)~! (£-0), 4.5)
No=—(Bu)~"! (£—1). 4.6)

Equation (4.5) is the familiar distribution function of the
zero-mode particles, and (4.6) is the occupation of this
mode when T—T, (u—0). Equation (4.6) might have
been also obtained if, instead of £—1, we let u—0, and
this observation is fundamental to the consistency of the
present formalism. In fact, for T> T, one has u <0 and
&=0 and, for T <T,, u=0 and £>0. Inside the critical
region (T=T,), £ may not vanish but 4 must be close to
zero. Hence, the limit £—1 in Eq. (4.6) implies that
p=0, and this equation is meaningful only to the extent
that N, diverges. Consequently, in what follows the limit
u—0 must come first.

We now substitute (4.4) in (4.3) and obtain an expres-
sion for the generalized force,

Xo( T, V,u, &)=V =" Bu[(1— ) 'Ny— (e ~1=8B _1)=1]
4.7)
=1/(1—E)V (u—0). 4.8)

In the limit of infinite volume, Eq. (4.7) shows that X,
vanishes when T > T, (§=0), while Eq. (4.8) reveals that

X, is finite for T X T, if, and only if, £—1. Therefore, we
write

XO(T)EVlim ;iHI]XQ(T,V,;L:O, & . (4.9

We proceed now to determine N, as a function of £. The
basic equation is (2.5), and if we are able to determine the
contraction {(agyay), then Ny will follow. The difficulty
in calculating this contraction resides in the symmetry-
breaking term of the Hamiltonian (4.2). However, follow-
ing a well-known argument due to Bogoliubov,? the term
proportional to (N,)'’? in the Hamiltonian may be
neglected in dilute systems. This is particularly true in
the present case for (Ny)!/? in (4.2) is multiplied by
[(1—£)E]'/2, which is small in the interval 0 £<1, and
(ag+ag) vanishes on the average according to (2.4).

Therefore omitting the symmetry-breaking term of (4.2)
it is easy to show that the partition function is given by

1
Zo(T, Vo, ) =Zo(T, V1, E=0)e PNo( o~
4.10)

The zero subscript in the ensemble average means that the
average is taken with respect to the £ =0 ensemble. Equa-
tions (4.2) and (4.10) yield the ensemble average of an

A

operator 4, i.e.,

A - ta A —_ at
(A)=(e Eﬁﬂao“oA >0<e £Bu. o"0>0—1. 4.11)

Clearly, (A )=(A4 ), if 4 is uncorrelated to aJa,. Equa-
tions (4.10) and (4.11) can be simplified either by a cumu-
lant expansion or, alternatively, using Wick’s theorem on
the exponential expansion of the ensemble average com-
mon to both equations. The result is

—éBuat
(e TPy — (1+€Bulalag)o)",
subject to the condition

|(ézInz)/(1—2)| <1,

(4.12)

(4.13)

where, for convenience, we have introduced the fugacity
z=eP* and'®

(alag)e=M=2/(1—2) .

Condition (4.13) obviously holds for z and £ less than uni-
ty. As T—T, from above, Eq. (4.14) reveals that the
fugacity approaches unity as z=1—M ~!, M >>1. In this
limiting case the inequality (4.13) still is satisfied because
thené<1/z=14+M"1.

We now let A4 =a:§a0 in (4.11). From (4.12) and using
Wick’s theorem on the numerator, we obtain finally

(4.14)

(alag)=z/(1—z+&z1nz) . (4.15)

An equation for Ny can then be obtained by substitut-
ing Eqgs. (2.7), (4.4), and (4.15) in (2.5), i.e.,

(1—8)2(z5—2) '=(1—8E)z(1 —z+£&zInz) "' +£N, .
(4.16)

As z=1 we can make the approximations Inz=z—1 and
z5~1 —&(1—2), and (4.16) amounts to
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No=1/(1-§) (z=1). (4.17)
Equation (4.17) implies that £&—1 (T £T,) in order to be
consistent with Eq. (4.6): Both equations must provide a
diverging N,, which is compensated in the limit of infin-
ite volume to give a finite density. Hence, dividing (4.17)
by the volume, taking the limits ¥V— o and §—1, and
considering Eqs. (4.8) and (4.9), we finally conclude that
in the thermodynamic limit,

Xo(T)=no(T)=n(T)—n(T)

=n(D[1—(T/T.)*?] (TZT,), (4.18)
where the latter equality comes from a known property of
the ideal Bose gas,16 n(T) is the overall particle density,
and no(T) and n(T) are the densities of the condensate
and noncondensate, respectively. For a given temperature
T<T, n|(T)=n(T,z=1) is the saturated density of
the excited particles for that temperature. At the critical
temperature n; =n, so that X, vanishes and, for tempera-
tures below T, X, equals the condensate density.

We remark that X(T) is simply related to the helicity
modulus Y(T) mentioned in Sec. II. Fisher et al.* found
that the helicity modulus is proportional to the superfluid
density py, i.e., Y(T)=(%/m)%,. For the ideal Bose gas
one has p; =mn,,* and (4.18) gives

Y(T)=(#/mXy(T) . (4.19)

We conclude this discussion by showing that the ther-
modynamic properties of the present (§>0) system are
the same as those of the customary (§=0) ideal Bose gas
treatment. This is obviously the case when T > T, for
the normal phase is given by §=0. For T < T,, we calcu-
late the pressure from the partition function (4.10),

P(§)=P({=0)+AP(8), (4.20)

AP(E)=V " kgT{In[(1—2)/(1 —z +£2zInz)]+ENglnz)
4.21)

——V " %kgTIn(1—§) asz—1(TZT,). (4.22)
In the thermodynamic limit the contribution (4.22) van-
ishes. The internal energy increment, AE(£)=E(§)
—E(£=0), whether determined directly from (4.11) or
from the usual derivatives of the partition function (4.10),
is also found to vanish. Therefore, both £>0 and £=0
systems have the same equations of state.

V. DISCUSSION

From the preceding sections we may define the phases
of a Bose system in terms of the parameter £ as follows.

Phase I: £=0, gauge-symmetry invariant.

Phase II': 0<§& << 1, gauge-symmetry broken without
Bose-Einstein condensation.

Phase II": £=1, gauge-symmetry broken with Bose-
Einstein condensation.

Phase I is the normal component while the ordered state
corresponds to either phase II' or IT"”.

According to our formulation, a natural criterion for
the existence of phases II' and II"” far from the critical
point consists of a finite X in the thermodynamic limit,
for 0 <€ << 1 and £=1, respectively. In Sec. IV it was ex-
plicitly shown that the ideal Bose gas is of type II”
(T <T,). Although Eq. (2.17) allows a calculation for in-
teracting systems, the dense case remains a very difficult
problem.

However, the existence of both phases, II' and II”, may
be inferred from their behavior within the critical region.
The phase transition I-II' is characterized by a
correlation-length critical exponent equal to two-thirds,
whereas a unity crossover exponent appears in the transi-
tion I-II".” From theoretical>’ and experimental®$ re-
sults, phase II' is typical of strongly interacting systems,
whose transition is governed by the complex nature of the
order parameter, while phase II" is found in weakly in-
teracting systems where the order-parameter fluctuations
are negligible.

As indicated in Sec. II, the different ranges of £ values
related to the ordered phases are defined upon the require-
ment that the continuity equation (2.12) is valid to within
an infinitesimal term. It is a feature of the present formu-
lation that the infinitesimal term depends on the interac-
tion constant, in contrast to an analogous term resulting
from Bogoliubov’s approach of an external field coupled
to the zero-mode amplitudes.”!* A physical interpreta-
tion for this latter field is difficult to ensure. On the oth-
er hand, the parameter £ may be regarded as the fraction
of the k =0 particles that are not described by the opera-
tors ag and ag, or, alternatively, the fraction whose fluc-
tuations are negligible. Hence, phase II" corresponds to
an entire condensation of the zero-mode particles, whereas
phase II' corresponds to an infinitesimal condensation.

Finally, it is worth mentioning the recent conjecture
that Bose-Einstein condensation is not a necessary condi-
tion for the appearance of superfluidity.!”!® Further in-
vestigation on the possibility of superfluid behavior in
phase II' is of interest in this context.
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