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We investigate the coexistence of ferromagnetism aud intermediate valence in 4f systems which

have ferromagnetic ground states in the normal-valence phase and fluctuate between a magnetic

{J&O) and a nonmagnetic ( J=O) state in the intermediate-valence phase. %e use a model which is

generated from the well-known s-f model by inclusion of a hybridization term. The alloy analogy

of the model is solved for zero temperature in the average T-matrix approximation. For the local
magnetic 4f moment mI we derive phase diagrams in terms of the hybridization V, the bandwidth

W (closely related to external pressure), the direct exchange Jo, and the s fexch-ange g (g & 0). The
hybridization V, as well as a gap reduction as a consequence of a pressure-induced band broadening,

intensify electronic fluctuations and therefore tend to destabilize the local moment, while the ex-

change integrals g and Jo favor the opposite. %e find regions of saturated (mf ——nf), reduced

(0& mf (nf), and quenched f moments (mf =0) even in intermediate-valence phases. Quasiparticle
densities of states for typical parameter constellations are derived and discussed. They show an

ever-existing hybridization gap.

I. INTRODUCTION

Intermediate valence phases of certain 4f systems stand
out for some extraordinary physical properties. ' Observed
exclusively in Ce, Pr, Sm, Eu, Tm and Yb compounds the
phenomenon of intermediate valence is due to the fact
that the respective rare-earth ions can in principle exist in
two different valence states with different numbers of 4f
electrons. Temperature and pressure variations, or alloy-
ing with proper impurities, may lead to a quasidegenera-
tion of the two valence states, giving rise to a nonintegral
average occupation number of the 4f shell. The transition
from the normal into the intermediate-valence phase is ac-
companied by striking changes in the physical properties,
which justify the high interest these 4f systems have
gained in the recent past.

In our opiniot the magnetic anomalies of the
intermediate-valence phases evoke a special fascination.
It is a momentous fact that with the exceptions of Tm
and Pr, all 4f systems with valence instabilities fluctuate
between a magnetic (J+0) and a nonmagnetic (J=0)
configuration, which must lead to some destabilization of
the local f moment. The question whether there is a par-
tial or even a total quenching of the local moment be-
comes particularly important in materials which show a
collective (ferro- or antiferromagnetic) ordering of the
moments in their normal valence ground states, e.g., EuO,
Cept, CeRh382, EuAu2Si2. How strong must be the elec-
tronic fluctuations in order to destroy the collective
magnetism? Is there any coexistence of intermediate
valence and magnetic order? The present paper aims at a
certain clarification of these fundamental questions.
Right at the outset we would like to point out that we ex-
clusively discuss here 4f systems which fluctuate between
a magnetic (J+0) and a nonmagnetic (J=0) configura-
tion, e.g., Eu and Ce compounds. The antiferromagnetic
ordering of mixed valence TmSe, which fluctuates be-

tween two magnetic configurations may be understood by
Varma's double-exchange model.

There are a lot of experimental data which seem to in-

dicate that under certain circumstances a coexistence of
magnetism and intermediate valence may be possible, par-
ticularly in Eu- and Ce-based 4f systems. High-pressure
experiments on the classical Heisenberg ferromagnet EuO
(Ref. 3) show two first-order phase transitions, a structur-
al one (NaCI~CsCl) at about 400 kbar, and an isostruc-
tural insulator metal transition at about 300 kbar accom-
panied by a substantial volume decrease of nearly 5%.
The experiments have been performed at room tempera-
ture, so that EuO is thought to be paramagnetic. One of
us has explained this pressure-induced electronic transi-
tion within the framework of an "extended" s-f model,
similar to the model we use in this paper. The basic as-
sumption of the theory was that EuO is indeed paramag-
netic at T =300 K. Very recently, however, the just-
mentioned pressure experiment has been repeated by Zim-
mer et al. resulting in a striking discrepancy to the previ-
ous one. These authors found that the insulator-metal
transition sets in already at a very much lower pressure of
about 140 kbar, and extends over a huge pressure interval.
A satisfying explanation of the latter experiment needs the
assumption that under high pressure EuO is ferromagnet-
ic at room temperature. If it is so, then the well-known
red shift of the lower conduction-band edge, typical for
ferromagnetic semiconductors like EuO, brings about an
additional gap reduction. This would explain the relative-

ly low critical pressure. Further, the smooth transition
extending over a large pressure interval can be understood
by the following reasoning. As a consequence of an sf-
(or better d-f) exchange interaction the edge shift is
bound to the existence of localized magnetic 4f moments.
If, however, one of the 4f electrons tunnels into the con-
duction band, then the nonmagnetic (4f) configuration of
Eu3+ is left behind. This leads at least to a dilution of the
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localized moment system, possibly even to an additional
moment quenching. That means, however, that the gap
will increase since the exchange-caused edge shift will be
reduced, Electrons then flood back into the localized 4f
levels, the moment system becomes more perfect again, so
that the edge shift increases again, and so on. Therefore a
dynamic interplay between the dilution of the moment
system and the sensitive reaction of the conduction-band
density of states is to be expected, which may result in a
smooth transition extending, as observed, over a huge
pressure interval. But is ferromagnetic ordering in EuO
at room temperature a realistic assumption when normal-
valent EuO has T, =69.33 K? Contrary to the common
opinion that s-f (or d-f) hybridization destroys fer-
romagnetism, one would have to assume that it leads rath-
er to an enhancement of the ferromagnetic coupling just
in the intermediate-valence phase. To clarify the situation
we need a self-consistent determination of the pressure
dependence of the average f-level occupation (valence),
the local 4f moment and the Curie temperature T, . This
is the aim of our investigations.

There exists, indeed, some experimental support that a
gap reduction may lead to a drastic enhancement of the
ferromagnetic coupling in such 4f systems. Gignoux and
Voiron have measured the Curie temperature of
CeNi, Pti, as function of the Ni content x. CePt is a
normal valent ferromagnetic 4f system with T, =6 K.
On the other side, CeNi is an interraediate-valent Pauli
paramagnet. Roughly speaking, alloying CePt with Ni
means reducing the distance between 4f level and Fermi
edge. With increasing x the local Ce moment decreases,
but nevertheless T, shows first a dramatic increase reach-
ing a distinct maximum and then breaks down very
abruptly in the intermediate-valence phase. Similar ten-
dencies are observed in antiferromagnetic
Eu(Pdi, Au„)2Siz. Malik et al. explain the high Curie
temperature ( T, = 115 K) of CeRhsBz by a strong hybridi-
zation of localized Ce-4f electrons with conduction elec-
trons. All these experimental data flnd a qualitatively
satisfyin~ interpretation by the theory of Matlak and No-
lting, ' ' based on a "mean-field" version of an "extend-
ed" s-f model, which will be the starting point for the
present paper, too (Sec. II).

The main purpose of our investigations is to find out
what happens to the ferromagnetic order in 4f systems
such as EuO when forced by pressure, e.g., into an
intermediate-valence phase. Special attention is devoted
to the competitive influence of the s-f exchange and s-f
hybridization on the stability of the local 4f moment.
The results will be presented as phase diagrams construct-
ed in dependence of relevant model parameters. Typical
for 4f systems like EuO is a positiue s-f exchange. The
Anderson model, frequently used for describing the
intermediate-valence phenomenon, is therefore an inap-
propriate starting point for these systems because the
Shrieffer-Wolff transformation of this model leads to an
antiferromagnetic s-f exchange. It is, however, well
known that normal valent magnetic 4f systems as the Eu
chalcogenides are excellently described by the s-f model.
Thus it suggests itself to start with this model, which,
however, must be extended by a hybridization term which

allows electronic transitions between 4f level and conduc-
tion band. This "extended" s fm-odel is introduced in
Sec. II. Section III presents an alloy analogy of this
model, which is solved in Sec. IV by a T-matrix pro-
cedure. Results for the quasiparticle densities of states
lead to some phase diagrams reveahng the stability of the
local f moment. This is discussed in Sec. V.

H =Hg+Hf +H,f+H„. (2.1)

The conduction electrons are considered as s electrons
with an intraatomic Coulomb interaction U,

1 (c) (c)Hs g Tijci~j~+ 2 ~ g ni~ nl, —e (2.2)
l,J,CF l, O'

c; and c; are, respectively, annihilation and creation
operator of an s electron with spin o at site R;.
n ~ =c;~;~ is the number operator. T~j are the usual
hopping integrals being related to the Bloch energies e(k)
by

1 ik (R, —R )T"=—g e(k)elJ
If.

(2.3)

We assume a nondegenerate f-level Ef~, and a very large
Coulomb-interaction Uf, in order to guarantee that the
level is at most singly occupied

Hf = QEf~fi~~fi~+ z Uf g n~'~'ni', (2.4)
l, O

The empty f level is attributed to the nonmagnetic config-
uration J=0 [(4f) in the case of EuO], the singly occu-
pied level to the magnetic configuration J&0 [(4f) in the
case of EuO]. f; and f; are the construction operators
for f electrons with spin u; n, =f; f; is the number
operator.

Because of the normally negligible overlap of 4f wave
functions, centered at different sites, the direct exchange
of the localized magnetic 4f moments should contribute
only very little. We use the direct exchange, if at all, only
in its simplified mean-field version,

Ef~ Ef z~Jomf (z—, = + l,z, = —1 ) (2.5)

If we choose the exchange constant Jo&0, then we have
to calculate the "magnetization" mf of the f level

~(~f) ) (2.6)

self-consistently, of course„within our inodel.
The most important part of the Hamiltonian (2.1) is the

intra-atomic s-f exchange interaction H,f between local-
ized 4f moments and conduction electrons. This coupling
does exist, however, only if the respective lattice site is ac-
tually found in its magnetic 4f configuration (J=S=—,

'

IL "HYBRIDIZED" s-f MODEL

%e use a model which properly takes into account in-
teractions and correlations between itinerant conduction
electrons and localized 4f electrons on a rare-earth com-
pound with a ferromagnetic ground state in its normal
valence phase:
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p. —
1 if J~O at site R;,

being inserted into the s fin-teraction

(2.7)

1 s (c) 0
Hgf —

p g gp;(z~S; n;~ +Sj cj &j~) (2.8}

g is the s fco-upling constant, and 8,=(SP,Sf,S&') is the
localized 4f spin with

(2.9)

This spin operator must be connected with the f operat-
ors f;, f;, and n ~ in a self-consistent manner, which
indeed becomes possible by the alloy analogy to be
developed in the Sec. III for the "hybridized" s-f model
(2.1}. As shown in detail in Ref. 12 for normal valent 4f
systems (p;=—1), the s-f interaction H,f causes dramatic
shifts and splittings of the Bloch band with striking tem-
perature and carrier concentration-dependent densities of
states. Similar effects should appear in the intermediate-
valence phase, too, at least as long as there are localized
magnetic moments. We are therefore convinced that H,f
plays a dominant role that concerns the problem under

study.
Finally the original s-f model has to be extended by a

hybridization term H„,

H„=V+(c; f; +f~; ), (2.10)
k, cr

which enables electronic transitions between the 4f level
and the conduction band. Since the total electron number
cannot change, we can use the condition

for EuO). This fact is taken into account by a statistical
variable p;,

0 if J=0 at site R;

into account by a respective shift of the f-level Ef to-
wards the lower edge of the conduction band, while the
bandwidth is fixed at a constant value. In our opinion,
however, applying pressure means, strictly speaking, a
broadening of the conduction band, while Ef as an intra-
atomic property should not change very much. This is a
very important point. In Ref. 13 it is shown that the
physics of the s fm-odel is strikingly dependent on the ra-
tio W/g. So, if we are sure that the closing of the gap is
indeed due to a broadening of the band, then we should

take this fact explicitly into account. The change in Why
itself leads to drastic modifications in the physical proper-
ties of the system. We have therefore fixed the distance
between 4f level and the center of gravity of the Bloch
band at a constant value, simulating the pressure depen-
dence of the gap by a pressure-dependent Bloch band-
width W(p).

It is, however, clear that the "extended" s-f model, de-
fined by the Hamiltonian (2.1), is not exactly solvable.
Approximations must be tolerated. For this purpose we
develop in the Sec. III an alloy analogy of this model.
One of us has used such an alloy analogy in the case of
the "normal" s-f model in connection with an average T-
matrix approximation' (ATA) and a coherent-potential
approximation' 's (CPA), respectively. The results are
quite convincing, as can be seen by comparison with ex-
actly solvable limiting cases as well as with other approxi-
mate theories. So we believe the alloy analogy to be a reli-
able procedure for the extended s-f model, tee. Further
support may be deduced from similar treatments of the
intermediate-valence phenomenon within the framework
of closely related models such as the Anderson model' '
and the Falicov-Kimball model. ' '

III. ALLOY ANALOGY
(2.11)n, +nf ——no ——const,

n, f= g &n '~'), The appearance of the statistical variable p; (2.7) in the
model Hamiltonian (2.1} strongly suggests an alloy analo-

gy for solving the many-body problem in the following
sense. If a t electron propagates through the lattice it will
meet three different kinds of lattice sites. It can come
across the magnetic 4f configuration, realized in our
model by the presence of a t- or a l-f electron, respective-
ly, or the nonmagnetic configuration, realized by an emp-
ty f level.

If an s electron with spin cr finds a magnetic place
(p; =1), then the normal intraatomic s-f interaction sets
in. The full analytical solution of the zero bandwidth sf-
model given in Ref. 20 tells us that the s-f interaction
splits the s level To into three quasiparticle levels,

(2.12)

(E+—' W) if ——' W +E + —' W
po(E) = W'

0 otherwise . (2.13)

in order to fix the chemical potential p.
The model contains some parameters. In order to be

concrete, we have chosen values which should be realistic
for EuO, ' e.g., g =0.2 eV, Uf ——100 eV, S =—,, no 1. ——
An important model parameter is the Bloch density of
states po, for which we use throughout the paper the fol-
lowing simple triangular shape

The center of gravity of the Bloch band defines the energy
zero (T;;= To ——0). Normal EuO has a Bloch bandwidth
W=2 eV and a gap Es between f level and conduction

band of 1.12 eV. As explained in detail in Ref. 4 the s-f
interaction takes care for a paramagnetic edge shift of
0.09 eV relative to the Bloch band edge at ——,

' 8'= —1.33
eV So the f l.evel of normal valent EuO is at Ef —2.54——
eV.

Usually the pressure dependence of the gap is taken

1E)=TO —2gS,

e2 To+ —,
' g(S+1}, ——

e3 ——To+ U, + —,gS,

(3.1)

with strongly spin-, temperature-, and carrier concentra-
tion dependent spectral weights:

2$+2—n, 2S+2 n, —
2(2S+ 1) 2(2$+ 1 }(5+1 n,)—
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S(1—n, ) (S+1)(1 n—, )
a, = ' —z &S')

2S+1 (2S+1)(S+1—n, }
' (3.3)

tion for S & —,', too. If we accept Eq. (3.7) and use

l
nra T(n j'+z mj), (3.8)

nc n~
(3.4)

According to Ref. 14, (3.1}—(3.4} are valid for n, & 1, as
in our case here, because we have ne = 1 in (2.11).

If the s electron enters a nonmagnetic site (p; =0) s-f
interaction becomes of course impossible. Two energy
levels are available, depending on whether there is another
s electron with opposite spin or not

then the "concentrations" y; are completely deter-
mined by n„nf, and mf, where n, and nf are in addition
connected by the self-consistency condition (2.11).

In the just-developed alloy picture the model Hamil-
tonian (2.1) is replaced by the following expression:

i+j
H= g Tjc;~j +V+(f;~; +c; f; )

as~= 1 —a3~~ a6 ——a3

6'5= To,' E6= To+ Uc

The corresponding weights are

(3.5)

(3.6)

(i) t (i)+ g(rj,~; c; +re f f; ) . (3.9)

The third term contains random variables il,'~'ji which
can be one of the eight values listed in Table I:

(S') =S
nf

(3.7)

is exact for S= —,
'

and should be a reasonable approxima-

TABLE I. The spectral weights yf of the atomic levels gi'~.

Spectral weights

/la nf -Micr
72cr =nf —W2a
3'3a= nf -W3a

s levels

(s)
g lcr —&l

(s)
'92o =&2

(s)
'93cr =&3

f levels

qg=EI. + Uj
gg=Ey +Uj
g'f'=Ey +Uj

Similar considerations for an f electron lead, according to
(2.4), to two different atomic levels Ej and Ej +Uf
with spectral weights (1—nj ) and nj,respectively.

For our coupled electron system we have to combine all
these possibilities, so that there are in the real crystal eight
different situations for a propagating electron, which are
listed in Table I.

We now replace the real system by a fictitious alloy
consisting of eight two-level components according to the
eight atomic levels rj'~j'. The constituents of this alloy
are randomly distributed over the lattice with certain con-
centrations, which we identify with the spectral weights

y; of the atomic levels bi' ' (Table I). For a propagating
electron it should then mean quite the same situation, ei-
ther to move in the real crystal or to move in this ficti-
tious alloy.

The "concentrations" y; depend in a rather complicat-
ed manner on quantities such as the average occupation
numbers n, and nj, which have to be determined self-
consistently within our model. Furthermore, the y;~ de-
pend also on the 4f magnetization (S') coming into play
via the weights a; of the normal atomic s-f model
[(3.2)—(3.4)]. This expectation value must be connected
with the magnetization mj of the nondegenerate f level.
The ansatz

(i) & (s) (s) )
gscr+ ( Qln& 98cr j

(i) ( (f) (f))
gfp Ea ( g/0 y ~ ~ ~ y gscr ] s

(3.10)

The lack of translational symmetry, due to these random
variables, is removed by the usual configuration averag-
ing, which leads to an effective Hamiltonian H, rr,

H~Heff = y [Tij+Mija(E}]ciao
iJcr

+ gM,/'(E)f; fj

+ +V (E)(c, f; +f;~; ). (3.11)

6i, (E)=(k
i [E H,rr(E)] '

i
kcr—)

'6(s)(E} 6(sf)(E)
'

6' "(E) 6' '(E)

E—M'„~'(E)
=Di '(E)

V~(E)

V~(E)

E—e(k) —M'„"(E)

(3.12)

H~ possesses the full symmetry of the lattice, but is now
non-Hermitian and energy dependent. The latter compli-
cations are introduced by the self-energies M~~j'~ and Mg
of the s and f electrons, and by a renormalization of the
hybridization matrix element V (E). M,j", M,/', and V
contain all interaction processes taking place in the under-
lying electron system. After having determined these
terms, explicitly done in Sec. IV, the further procedure is
straightforward. All the information we are interested in
can be deduced from the configuration-averaged one-
electron Green function 6i, (E},which is here a 2 X 2 ma-
trix being easily derived from (3.11),

3 4r nolo
YSa nfW2cr

3 6a=nfW3cr

f7a —( 1 —nf )( 1 —a3 )

yS ——(1—nf )(1—a3a)

(s)'9m =&I
(s)

'/so =&2
(s)'96 =&3

(s)
'g7o =&S

(s)
'QS =&6

qg=Ej
gP=Ej
gg=z~

&P—E&
qg=EI.

Mg~
' are the k-dependent Fourier transforms of M,"~',

and Di (E) is a short-hand notation for

Di, (E)=[E—e(k) —M,"'(E)][E—M„'~'(E}]—V.'(E) .

(3.13)

The imaginary parts of the respective s and f Green func-
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tions determine the s- and f-quasiparticle densities of
states p"f'(E),

(3.14)

following form:

H,rf= QH, g = g(K +X ) . (4.8)

From these densities of states we get the average occupa-
tion numbers n, f,
n, f = f dEp"f'(E)I1+exp[P(E —p)]]

P=, (3.15)

which we need to fix self-consistently the spectral weights

y; of our fictitious alloy. Furthermore, via
sslf s —g z nf, they answer the question under what
demands on model parameters such as V, W, Jo, and g
collective magnetism occurs.

IV. T-MATRIX AND SELF-ENERGY

H= QH. = g(K.+Q.), (4.1)

The remaining task is the determination of the self-
energies Mi'f'(E) and the renormalized hybridization
V (E). We use a T-matrix procedure" similar to that of
Ref. 12. First we decompose the Hamiltonian H (3.9) in
an exactly tractable part K and another part Q, which
contains the random variables

G (E)= 1

E —H~
(4.10)

Configuration averaging does not affect R (E), but it
does affect G (E),

l l

E H, ff (—E) E —K (E)—X (E)
4.11

From (4.9) to (4.11) we get the Dyson equations,

G =R +R Q G

( Ga) =Ra+RaXa(Ga),

(4.12)

(4.13)

which can be connected with the corresponding T-matrix
equations:

Ga =Ra+RaTaRa,

(G )=R +R (T )R

(4.14)

(4.15)

We denote by R (E) the one-electron Green function of
the effective medium

Ra(E) = 1

a

and by G (E) that of the "full" system,

Ka = g (Tig+~sa~ij)ciacja+ g ~tcrfiafia
isJ l

+V+«iafa+f W»
i

(i) g (i)
Qa = g (Usaeiaeia+Ufcrficrficr) r

(i) (i)
Us,fo ='gs, fo Bs,fn .

(4.2)

(4.3)

(4.4)

A combination of the latter four equations then yields

X.=(& T.&-'+R.)-',

T =(Q ' —R

(4.16)

(4.17)

If we switch off all atomic scatterers except one, then the
full T matrix Ta passes into the atomic scattering matrix

(i)E~,

8
(s)~scr= g 1'iai)ia r (4.5)

while for the relatively sharp f level an "atomic limit" an-
satz is more obvious. We therefore determine Bfa from

] 1 —P1f Elf+E —Bf E —Ef E —Ef —Uf

Bf is then energy dependent,

Eja(E Ef Uf ) +Enf —Uf-
Bf ——

(E Ef Uf )+nf Uf— —

(4 6)

(4.7)

Since K is thought to be already configuration averaged,
the Hamiltonian H,rr (3.11) can always be written in the

Here we have introduced "effective media" Bs fa for s and
f electrons, respectively, which can be chosen so that K
is already a good first-order approximation of the full
Hamiltonian. On the other hand, the problem arising
with Ka has to remain exactly solvable.

For the s electrons, which move in a relatively broad
conduction band, a so-called "virtual crystal approxima-
tion"' should be a reasonable ansatz,

](c) [(U(c) )
—i R )

—i

where U~' is a 2X2 matrix
(i)gg' —B,

(i)
Pff~ Bfg

(4.18)

(4.19)

built up according to (4.4) by random variables. The con-
figuration averaging of the atomic T matrix reads as

(r ) g y r( ) (4.20)

In order to determine the self-energy Xa by Eq. (4.16) we
need the full configuration-averaged T matrix (T ).
This cannot be done rigorously. %'e apply the well-known
"average T-matrix approximation' (ATA), "which is per-
formed in detail in Ref. 12, where it has been shown to
give quite reasonable results for the "normal" s-f model.
Furthermore, it has been shown by Schwartz et al.2' that
the ATA yields results of comparable quality as the com-
monly accepted CPA. On the other hand, ATA is
mathematically much easier to treat than CPA. %ithin
ATA the T matrix (Ta) reads as'
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W I'|.V).

I

12eV

1

I

0.5 V(e V j

~,(f0-3eV)

j ---j

I
/

/

I r-o I

0.1

FIG. l. Phase diagram for the local magnetic f moment mf
in terms of s-f hybridization V and Bloch bandwidth IV. The
solid line separates the regions of saturated {mf——nf) and re-
duced (0&mr &nt} f moment. To the right of the dashed-
dotted phase line mf is zero. The inset shows the f moment as
a function of V for three different bandwidths. Parameters:
T=O, S=7/2, g =0.2 eV, Jo ——0,005 eV, Ef———2.54 eV,
U, =2 eV, Uf ——100 eV.

---—W=2 6V
35@V

eV

0.2 0.4 0.6 V(eV)

FIG. 2. Phase diagram for the local magnetic f moment ~f
in terms of s-f hybridization and direct exchange Jo for three
different values of the Bloch bandwidth 8'{,8'=6 eV;———,%=3.5 eV; ———,8'=2 eV}. Other parameters
as in Fig. 1. As a guide to the eye the reduced moment regions
{Onymy &nf } are hatched. To the left of these regions the mo-
ment is saturated, to the right totally quenched.

( T )ATA ((t )—1 R +R .I)—1 (4.21)

(4.22)

Ri (E) is the diagonal element of R (E) in the spatial
representation,

R;1 (E)= (iver
~

R (E)
~ j ) . (4.23)

As a special consequence of our approximation the self-
energy is diagonal in the %annier representation, and
therefore k independent in the Bloch representation.

If we define

X, (E) X,f (E)
X (E)=(«.) '+R;;n n tier X E Xf E)

so that with (4.16) the self-energy X can be expressed by
the atomic Tmatrix (t ), only

XATA ((t )—1+R .I)—1

in (3.12), we have only to replace Mz~ by B, , MIf' by
Bf~ and V by V. With ( t~ ) and Re the quantity
X~(E), in (4.24) is completely determined. Inserting
(4.25)—(4.27) into (3.12) then provides us with a formal
solution in terms of n~, n„rnf, m„which is iterated to get
the required self-consistent solution.

V. DISCUSSION OF THE RESULTS

The n-.ain problem that we want to discuss concerns the
stability of the local 4f moment in situations, where the

g(eV)

09

and, furthermore,

M'„".(E)=M."=B,.+X,.(E),
Mg~~(E)=M~~ =Bf~(E)+Xf~(E),

V~(E)= V+ X,f~(E),

(4.24)

(4.25)

(4.26)

07-

05 -.

03 -.

ir=o [

then we get the final result (3.12) from (4.11) by some ma-
trix inversions. More concretely, first we determine the
averaged atomic T matrix (t ) by use of y; and rt,"~
from Table I, B,~ from (4.5), and Bf~(E) from (4.7) in
Eqs. {4.18)—(4.20). Second, R;;~(E) follows from (4.2)
and (4.9),

Of -.

k k

aC 05 V(eV)

0'=3.5 eV

2eV

R;;~(E)=—g R 1 (E),1
(4.28)

where R1 (E) has formally the same structure as Gg {E)

FIG. 3. Phase diagram as in Fig. 2, but now in terms of s-f
hybridization V and s-f exchange g for two different Bloch
bandwidths 8'{,8'=3.5 eV; ——- —,8'=2 eV). Oth-
er parameters as in Fig. 1.
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system is driven by pressure or temperature variations or
by alloying with proper impurities into an intermediate-
valence phase. For this purpose we have investigated the
influence of relevant physical quantities on the average f
moment at T =0. As already mentioned in the Introduc-
tion, model parameters, which are not believed to have a

direct relation to the phenomenon, are chosen appropriate
to EuO. Relevant model parameters with respect to the
stability of the local f moment are above a11 the sfhy--
bridization V and the Bloch bandwidth 8', which simu-
lates the pressure dependence, and also, of course, the ex-
change constants g and Jo.
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FIG. 5. Logarithms of the quasiparticle densities of states log&opt", ~ as functions of energy for four different Bloch bandwidths 8'
and V =0.3 eV. Other parameters as in Fig. 1. Solid lines for p'~, broken lines for p"'.

A.. Phase diagrams {T =0)

Figure 1 shows the dependencies of the local moment
on the s-f hybridization V and Bloch bandwidth W. As
motivated in the Introduction we have fixed the distance
between f level and the center of gravity of the Bloch
band at the constant value of 2.54 eV ( To ——0, E~= —2.54
eV). An external pressure p alters the Bloch bandwidth
IV, so that the W dependence is implicitly a p depen-
dence. For the model density of states of Eq. (2.13) the

gap between 4f level and lower conduction-band edge
would be closed exactly at 8;=3.82 eV if there were no
interactions. This value is indicated as a dotted line in
Fig. 1. The hybridization and more importantly the s-f
interaction, ' give rise, however, to certain edge shifts, so
that the gap actually closes already at a smaller 8'.

We have found three ( IV, V) regions for the local mo-
ment mf. One region belongs to the saturated moment

mf —Elf another to a reduced moment 0 & mf ~ nf, and a
third to a completely quenched moment mf ——0. The gen-
eral trend is that an increasing s fhybridization V as well-
as a decreasing gap, i.e., increasing 8' tend to destabilize
the local moment up to a total quenching. This is not
surprising, since both parameter changes intensify the

electronic fluctuations between f level and conduction
band. More surprising may be the relatively large ( IV, V)
region, where the f moment remains unaffected by the
electronic fluctuations (below the solid line in Fig. 1).
Particularly for small V we observe a stable T =0 mo-
ment far into the intermediate-valence phase, so that elec-
tron transitions into the conduction band result only in a
dilution of the localized moment system. An additional
moment quenching (m~&ny) happens for ( O', V) values
above the solid phase line in Fig. 1. On the right-hand
side of the dashed-dotted phase boundary a nonzero fmo-
ment is no longer possible. There is an interesting bulge
of the phase line just in the transition region between nor-
mal and intermediate-valence phases. This is a conse-
quence of the dynamic interplay between the alteration in
the s-f exchange, caused by the electron tunneling into the
conduction band, and the sensitive reaction of the quasi-
particle density of states as explained in the Introduction.
To illustrate this we have plotted in the insert of Fig. 1

the moment my as a function of the hybridization V, and
that for three typical bandwidths, corresponding to the
normal valence phase ( IV=2 eV), to the intermediate-
valence phase ( IV=8 eV), and to the transition region
( W=3.5 eV). The just-mentioned dynamic interplay is
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FIG. 6. Same as in Fig. 5, but now the original f peak (upper row) and the immediate surrounding of the hybridization gap (lower
ro~) on a larger scale.

especially much in, evidence in the transition region, where
it gives rise to very-long-range tails in the nif curves. It is
an interesting detail that for small enough 8' ( ~& 2 eV)
the local f moment cannot be totally quenched, no matter
how large Vis.

The phase diagram in Fig. 1 is drawn for constant s-f
and f-f exchange couplings g and Jo, respectively
(g=0.2 eV, Jo ——0.005 eV). The influence of the direct
exchange Jo can be read off from Fig. 2. Inc~easing Jo
stabilizes the local moment, but ferromagnetism is possi-
ble even in the limit JO~O, as a consequence of a nonzero
s-f exchange The dep. endence on the s-f coupling g,
shown in Fig. 3, reveals some interesting aspects, because

g has obviously two consequences. Firstly it stabilizes,
similar to Jo, the f moment. But on the other hand, the
s-f exchange interaction takes care for a red shift of the
lower conduction-band edge of about ,' gSmf /nf, —leading

therewith to an additional gap reduction. Smaller gap,
however, means more electronic transitions, which desta-
bilize the fmoment. These two competitive consequences
of the s-f exchange are best observable for Bloch band-
widths 8', which are close to 8', =3.82 eV, the value at
which the gap closes in the noninteracting system. For

the example W=3.5 eV, plotted in Fig. 3, the magnetic
region is maximal at g =0.2 eV, but decreases strongly
with a further increasing of the s-f coupling. For g ~ 0.2
eV the system undergoes an exchange-induced transition
into the intermediate-valence phase.

B. Quasiparticle densities of states ( T =0)

The just-discussed phase diagrams are in the last
analysis direct consequences of the corres onding
behavior of the quasiparticle densities of states p' (E) and
p' '(E), defined in Eq. (3.14). Figures 4—7 exhibit some
typical examples. Figure 4 demonstrates the infiuence of
the hybridization V on the densities of states. The left
column shows p"(E) (broken lines) together with p' '

(solid lines) for a Bloch bandwidth &=3 eV and for
three different hybridization inatrix elements V, which be-
long to the regions of a saturated f moment mf —nf
( V=0. 15 eV), of a reduced moment 0&mf &n~
( V =0.33 eV), and of a quenched moment mf ——0
( V =0.55 eV). The relatively sharp peak at lower energies
corresponds to the original f level Ef, being more and
more smeared out with increasing V. The right column in
Fig. 4 shows this peak on a larger scale. The Fermi edge
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is always at the upper edge of the spin-up peak. The rela-
tively broad part of the spectrum, shown in the left
column, refers to the original conduction band. Because
of the hybridization H„both densities of states p" and
p~~' occupy exactly the same energy region, but usually be-
ing of different orders of magnitude. For the large hy-
bridization V=O. S5 eV spin-up and spin-down spectra
coincide, so that there is no resulting fmoment. With de-
creasing V the low-energy peak becomes sharper, and the
spin-up and spin-down parts are shifted against another
giving rise to a nonzero moment my. At V =0.1S eV the
total spin-down spectrum lies above the Fermi edge, the
moment m~ is saturated.

In that part of the spectrum, which belongs to the origi-
nal conduction band, we observe a red shift of the lower
edge with decreasing V, just as the temperature does in a
normal ferromagnetic semiconductor. The original f peak
shifts in the opposite direction, so that the gap is substan-
tially reduced with decreasing V. For normal valent, fer-
romagnetic 4f systems such an edge shift is well known as
a temperature effect. Cooling a ferromagnetic semicon-
ductor like EuO from temperatures T & T, down to T =0
leads to a red shift of the conduction-band edge, which

has just the same order of magnitude. The results of Fig.
4 are, however, found for T =0. Here the hybridization
undertakes the role of the temperature. Decreasing V
forces the system from a nonmagnetic into a magnetically
saturated state.

The structure in the upper part of the spectrum is
mainly due to the s-f interaction, which splits the original
Bloch band in several quasiparticle subbands, as is already
known from the normal s fmodel. ' Sinc-e the Fermi
edge lies in the lower part of the spectrum, this structure
does not directly influence the phase diagrams of Figs.
1—3.

Figure S shows the 8' dependence, and therewith the
pressure dependence, of the quasiparticle densities of
states for a hybridization V=0.3 eV. For 8'=1 eV the
4f system is still in its normal valence phase. The larger
scale in Fig. 6 makes clear that the f moment is saturated
(my=a), because the Fermi edge is again at the upper
edge of the open-up peak. For W =3.5 eV the system is
just in the transition region between normal and inter-
mediate valence. The original f level is already smeared
out to a narrow band, and the f moment is reduced (see
Fig. 6). For W=4 eV the 4f system is now in its
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intermediate-valence phase, but with a nonzero magnetic

f moment. The latter becomes smaller with increasing
8'; at 8'=0.8 eV the moment is totally quenched. %e
observe an ever existing hybridization gap, which is the
smaller the deeper the original f level has been shifted
into the conduction band. The immediate surrounding of
the hybridization gap has always dominant f character,
particularly just below the gap.

To simplify the comparison of the results, presented
here for the "hybridized" s-f model (2.1), with the previ-
ously published results for the "normal" s-f model, ' we
have plotted in Fig. 7 as an example the s density of states
p~'(E) as function of energy on a linear scale. The simi-
larity is obvious, but here appear some additional satellite
peaks originating from the hybridization.

The fact that as a consequence of V 4f electrons can
tunnel into the conduction band leads to nonmagnetic f
levels and therewith to additional quasiparticle subbands.
The high-energy peaks close to t.'6= U, and e3 —Ug+ g gS,
respectively, have been omitted in Figs. 4—6, because they
are not decisive for the phase diagrams.

VI. SUMMARY

We have used a "hybridized" s-f model in order to in-
vestigate the possibility of a coexistence of ferromagne-
tism and intermediate valence in systems which fluctuate
between a magnetic and a nonmagnetic 4f configuration.
The model should be realistic for systems which have a

ferromagnetic ground state in the normal valence phase
and, furthermore, a positi Ue exchange coupling between lo-
calized 4f electrons and itinerant conduction electrons.

We have constructed three phase diagrams for the local
magnetic f moment mf at T =0. Phase boundaries
separate regions of saturated (mf ——nf ), reduced
(0(mf cnf ), and quenched ( mf 0——) moment. The gen-
eral trend is that increasing hybridization V leads to a
destabilization of the f moment up to a complete quench-
ing. The same follows from a pressure-induced broaden-
ing of the conduction band, i.e., a gap reduction. There
exist, however, parameter regions in which a coexistence
of ferromagnetism and intermediate valence is possible.
A direct exchange Jo, if present, stabilizes the magnetic
moment. The infiuence is, however, not too dramatic.
Ferromagnetism may appear even in the limit Jo~0, if
only the s-f exchange g is unequal to zero. Increasing g
stabilizes the moment, but also leads, on the other hand,
to a gap reduction, which must be interpreted of course as
a destabilizing effect.

The T=0—quasiparticle densities of states show a
complicated structure as a consequence of the hybridiza-
tion and the s-f interaction. In intermediate-valence
phases an ever existing hybridization gap is observed.
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