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Thermal conductivity of He I near T1, from vapor pressure to 28 bars:
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We compare recent thermal-conductivity measurements near the superfluid transition tempera-
ture Tq(P) with recent complete two-loop-order field-theoretical calculations of the
renormalization-group recursion relations and of the relation between the conductivity and the
dynamic variables of the theory. The comparison involves a numerical integration of the recursion
relations, and thus contains certain dynamic transients to all orders. We find excellent agreement
over a wide range of pressure and reduced temperature when the complete two-loop theory is used.
Neglect of any of a number of ingredients of the theory results in a deterioration of the agreement
with experiment. In particular, it is necessary to use the full asymmetric planar spin model (model

F) of the dynamics, and to include singular static transients in the theory, in order to obtain a good
fit. From our analysis above Tq(P), and a calculation of the second-sound damping D2 below

Tq(P) based on the symmetric planar spin model (model E), we estimate D&. As in earlier work, we
still find small differences between theory and experiment, and attribute them to the use of model E
in the derivation of the formula for D~.

I. INTRODUCTION

Two major advances towards the elucidation of the
dynamics of the superfluid transition have occurred re-
cently. On one hand, the relationship between the thermal
conductivity A, and the variables of the renormalization-
group model' for the dynamics of the superfluid transi-
tion (the asymmetric planar spin model, model F) have
been obtained from perturbation theory to second or-
der in the coupling constants. On the other, a new set of
measurements of A,(P, t) (t is the reduced temperature [Eq.
(1) below] and P the pressure) has been mades which is
considerably more accurate and covers a wider range of P
and t than previous experimental results. For these two
reasons we are now in a position to perform a quantitative
test of the theory by a detailed comparison with experi-
ment, at least in the temperature region t & 10 ' or 10
where there exists a weak-coupling regime and where
therefore the perturbation calculations should constitute a
controlled approximation to the full model of the dynam-
ics. In this paper, we largely follow the procedures
developed earher, and present the results of such a
comparison. They indicate that there is agreement be-
tween experiment and theory at a highly quantitative level
over the entire experimentally accessible range of P and
]9

The I angevin equations of Halperin, Hohenberg, and
Siggia, ' which are known as model F [Eqs. (2.1) of Ref. 1

or Eqs. (2.3)—(2.6) of Ref. 4], are expected to contain the
full contributions from thermal diffusion and second
sound to the dynamics of the superfluid transition. Al-
though these equations ideally should provide the starting
point for the calculation of the relationship between the

physically measurable quantities [such as k(t) or its effec-

tive amplitude Ri(t)] and the parameters of the model,
such a calculation to sufficiently high order in perturba-
tion theory is difficult. Therefore Halperin et al. pro-
posed that the simpler symmetric planar spin model,
known as model E, which neglects the coupling between
the specific heat Ct and the dynamic variables, might still
be useful for a semiquantitative description of the dynam-
ics of liquid helium. Their suggestion was based on the
fact that the specific-heat exponent a is negative for the
superfluid transition, ' " i.e., that Ct goes to a constant
as T~Tt,. Indeed, sufficiently close to Tt, models E and
F (with a&0) will give the same dynamics, but since

~

tz
~

&&1 (ct = —0.016+0.003)," the close agreement be-
tween the two models breaks down for unrealistically
small values of

~
t

~
and the singularity of the specific

heat leads to very slow transients which are important in
any experimentally accessible range of t. Halperin et al.
attempted to partly compensate for these static transients
by including the full singular (albeit finite) specific heat in
the relationship between A, and its effective amplitude

Ri(t) [see Eq. (2) below], but neglecting its coupling to
the dynamic variables f and co in the renormalization-
group flow equations. This approximation„now known as
model E„was used by Dohm and Folk in their early
analysis of the thermal conductivity. Although model E,
gives a fairly accurate description of the dynamics at
small t (say, t & 10 ), it actually provides a worse fit to
the data than model E for larger t (see Fig. 8 of Ref. 6).
Therefore the full model F is required to give an accurate
description of the dynamics over a wide experimentally
accessible range of the reduced temperature. Because of
the difficulties involved in obtaining a complete perturba-
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tion calculation to second order in the coupling constants

f, w, y, and u, A.hlers et al. used a version of model F in
which the one-loop terms in the fiaw equations were based
on model F, but the two-loop terms were calculated only
approximately from model E. This version provided a
good fit to the data when an empirical three-loop term
with an adjustable coefficient was added to the flow equa-
tions. Soon thereafter Dohm and Folk' published an
analysis of the experimental data, using new (as yet un-

published) complete two-loop flow equations based en-

tirely upon model F. However, both this analysis' and
the one by Ahlers et al. retained the one-loop result for
the relatianship between Ri and the dynamic variables.
Furthermore, both of these two approximations neglected
the (transient) singular temperature dependence of the
static four-point coupling constant u (t). These last defi-
ciencies in the theory have finally been removed by
Dohm. He obtained both the flow equations and the
relation" Ri (f,w, u, y) to two-loop order completely from
model F. In addition, he calculated approximate relatian-
ships for static properties~ which make it possible to esti-
mate quite well the t dependence of the static coupling
constants u(t) and y(t) from the experimentally deter-
inined'0" specific heat. Thus, we now have a complete
two-loop model-F theory which takes static transients into
account to good accuracy.

Traditionally, theoretical predictions of properties near
critical points were expanded in the form of power laws,
and these expansions were compared with experimental
results. For static properties it became clear over a decade
ago' that, in general, at least one confluent singular term,
corresponding to singular transients in the theory, had to
be included in the expansion in order to achieve quantita-
tive agreement with experiment. A similar approach to
the dynamics of superfluid helium, using a single con-
fiuent singularity, met only with semiquantitative suc-
cess ' because in this case the transients are extremely
slow. They would be taken into account adequately only
by including an unrealistically large number of confiuent
singular terms. Therefore it was suggested by Hohenberg,
Halperin, and Nelson, 'i and independently by Dohm and
Folk, that the power-law expansion of the theory would
better be replaced by a numerical integration of the full
nonlinear recursion relations of the renormalization-group
theory. This approach would automatically include tran-
sients to all orders without any increase in the number of
adjustable paraineters. Such an analysis was indeed car-
ried out by Dohm and Folk, *' and by Ahlers, Hohen-

berg, and Kornb1it. In the present work we will follow
the general procedures developed by those authors.

In our comparison with the experimental data we will

fit the theory to the measurements by adjusting three
nonuniversal parameters. These parameters will be the in-
itial values, chosen at some reference temperature to,
which are used to integrate the flow equations from to to
arbitrary t. Theoretically, they could only be obtained
from a truly microscopic theory of liquid helium, and
thus at this time they must be taken from experiment.
They may depend upon the pressure, and thus may be
chosen independently for each isobar. We remark that the
conventional power-law analyses of properties near criti-

cal points also involve nonuniversal adjustable parameters
(the background and the amplitudes) which play a role
similar to the initial values in the procedure used by us.
In our analysis there are only three parameters for a given
P. Nonetheless, it seems important to us to determine
whether the excellent agreement between theory and ex-
periment which we will report below is merely the result
of "curve fitting, " or whether it genuinely provides evi-
dence in support of the validity of the theory. Thus, we
deliberately introduced various approximations into the
theory (see Sec. III 8). Most of these approximations re-
sulted in a deterioration of the fits to the data even though
the fits in some cases involved equally as many adjustable
parameters. Therefore we feel that the excellent fit to the
data over a wide range of t and along all isobars from va-

por pressure to 28 bars, which could be obtained only with
the complete two-loop model-F flow equations and the in-
clusion of static transients in u (t), is a significant test of
the theory.

It became evident from previous comparisons of experi-
ment and theory, as well as from the present work, that
the dynamics of the superfluid transition is very rich.
This richness is reflected in a number of features, includ-
ing the follawing.

(i) There exists a weak-coupling regiine at large t with a
crossover to a critical (strong-coupling) regime at a small
but experimentally accessible reduced temperature t,

(ii) The value of t, has a strong pressure dependence,
changing from about 10 at saturated vapor pressure
(SVP) to about 10 at 28 bars.

(iii) Whereas the static pro erties near Ti can be
described very well for t (10 by a leading singularity
and transients in the form of a single confluent power-law
term, ' the dynamics contains extremely slow transients
which cannot fruitfully be expanded in power laws.

(iv) Although the specific heat Cp remains finite at
T~, ' '" its singularity couples nonlinearly to the dynamic,
variables and, as discussed above, the asymmetric planar
spin model (model F) (Ref. 1) which includes this cou-
pling must be used in order to obtain a quantitative fit to
the data.

(v) The confluent singularities of the various static
properties which enter as parameters into the dynamic
equations must be taken into account in order to obtain a
quantitative fit of the conductivity. These singularities
are known from independent measurements of static prop-
erties' "and have a strong pressure dependence which
significantly influences the pressure dependence of the
dynamics.

All the above features are correctly reflected in both
theory' and experimental data. It is because of this
complicated dynamics that we regard the quantitative
agreement between measurements and calculation as one
of the most spectacular successes of the renormalization-
group theory' of critical phenomena.

The remainder of this paper is organized as follows. In
the next section the data, the theoretical model, and the
numerical procedure used in this comparison are dis-
cussed. That section is of necessity rather detailed, and
some readers may wish to skip it and proceed immediately
to Sec. III, where the results of the comparison between
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experiment and theory are presented. Since Sec. III is not

very long, we felt that a summary was superfluous.

II. DATA, THEORY, AND PROCEDURE

A. Data

C+ ——A [(1/a)(t —1)+Dt~ +B]
with

A (T)=Ap(1+a, t+a, t'),
B(T)=Bp(l+bit+b2t ),
D(T) =Dp(1+1i t),
a = —0.016,
6=0.50 .

(3a)

(3b)

(3c)

(3d)

(3e)

The parameters Ap, Bp, Dp, a;, b;, di depend upon the
pressure, and for the isobars of the thermal-conductivity
data they are given in Table XI of I (see also Sec. III C 2
and Appendix E of I for further discussion of Cp). In
Eq. (2), kii is Boltzmann's constant and the bare dynamic
coupling constant gb is given in terms of measurable
quantities by"

Here cd =Si„/R, where Si(P) is the entropy per mole at

The new thermal-conductivity measurements reported
in Ref. 5 (to be referred to as I hereafter) were perfarmed
in a number of cells with various spacings. We will con-
centrate our analysis on the most accurate and precise
data of I, namely those obtained in "cell F" with a spac-
ing d=0.203 cm. In the various fits we will usually use
only those points which are quoted explicitly in Table VI
of I; but in the figures we will sometimes shaw mare
points by including same of the unpublished data which
are available in Ref. 15. We will also present some fits
based on cell-E data (d=0.452 cm), which are quoted in
Table V of I.

The theory "6' predicts that A, -t "~~, where

t =T/Ti (P) 1—
and where v is the exponent of the correlation length g. It
is convenient to remove this strong dependence upon t
from the experimental data, and to compare the dimen-
sionless effective amplitude [see, e.g., Eq. (4.6) of Ref. 4]

R i (t)= (A/kit )/g. t, (/Cp/ktt )'

with the predictions of the theory. As t vanishes, Ri„(t) is
predicted to approach a universal value Ri, . Thus, Ri„(t)
contains only the temperature dependence of the slow
transients; but these transients are very slow indeed and
Ri is not directly accessible to experimental measure-
ment. However, the comparison between theory and ex-
periment now becomes very sensitive to fine detail because
only the transients are being compared.

In Eq. (2), Ct is the heat capacity at constant pressure
per unit volume, and is given by

v=0.672 (6a)

and b, is given by Eq. (3f).
The confluent singularity amplitude is related to that of

C by18'19

Dg ——0.102Dp . (6b)

Table XI of I gives Dp(P}. This completes the informa-

tion necessary to obtain Ri(t} from A(t). Values of Ri
corresponding to the experimental points for A, have been
given in I, Table VI.

The lawest-order static transient Dgt has an exponent
6=0.5 and therefore can contribute significantly even
when t is quite small. Thus it has been included via Eq.
(5) in the experimental determination of Ri. We have
neglected singular terms of order t and t', and regu-
lar transients of order t, all of which effectively look like

contributions af order t ta Ri. We expect the neglected
contributions to be small only when t is small, and there-

fore shall restrict the comparison of Ri with the theory to
values of t less than 10 . For large t it is better to make
the comparison with a high-temperature expansion of the

theory which involves A, itself rather than Rt, .
B. Model

We shall use the complete two-loop field-theoretic cal-
culations by Dohm of the relationship between the

physically measurable quantities [such as Ri(t)] and the
parameters of the asymmetric planar spin model (model
F) of Halperin et a/. ' We shall largely follow the nota-
tion and sign convention of Dohm. His complete
theoretical results are quite complicated and need not be
reproduced here. We will define only those parameters
and variables which must be identified in order to specify
precisely the fits of the theory to the data that were per-
formed by us. At the same time we will also identify the
necessary experimental input.

The independent variable / of the renormalization-
group flow equations is related to physically measurable
quantities by

e'=t p(1+Dgt p ) 'g/gp, (7a)

where tp is an arbitrarily chosen reference reduced tem-
perature {we have always used tp= 10 },and where g/gp
is given by Eq. (5). The variable / defined by Eq. (7a)
differs from that used by Dohm (which we will call /D).
The two are related by

I =—lnID+ const . (7b)

We prefer the definition Eq. (7a) because /- —lnt. The
flow equations must be integrated over several decades of
t, and uniform steps in /, corresponding to nearly uniform

Ti„(P) and R is the gas constant. Values of g& can be
found in Table X of I. The correlation length

g=gpt "(1+Dgt ) (5)

in Eq. (2) has been obtainixl" from measurements' of the
superfluid density p, /p. Its amplitude gp(P) is given in
Table XI of I for the isobars of interest. Its leading ex-
ponent is
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w(!)=w'(1)+iw "(1) .

Following Dohm, we introduce

(9)

F =f(l)w'(1) (10)
with F&0. The choice of a positive F will result in
w" &0. The dynamic variables f and w are given by the
renormalization-group flow equations

dF/dl = PF(w, F—,u, y) (11a)

steps in lnt, are natural in the numerical procedure. The
exponents v and b, and the amplitude D~ are given by
Eqs. (6) and {3f). The fixed point of interest of the theory
corresponds to 1~ao, and by Eqs. (5) and (7) this implies
t~O (i.e., g~ oo ). The scale of 1 is set by the choice of
to, and for t =to we have 1=0. In our fits we needed to
invert Eq. (7a) numerically to obtain t(1).

The effective amplitude Bi[1(t)] is given by [see Eq.
(4.12}of Ref. 4]

R i [4rtfw——'(1—2y —16y u)] '/i(1 f/4+—fMi ) . (8)

Here w' is the real part of

T~, are universally related to the corresponding quantities
above T~ by"

and

A /A'= 1.068,

Do/D o
——1.03,

(16)

(17)

A (8—1/a) =A '(8 ' —1/a) . (18)

g„(u)= 16u —160u (20)

In Eq. (19), u' is the fixed-point value of u to be given by
Ecf. (25) below. Equation (19) gives g, (u')=2 —v
With Eq. (6a) we have

The last equation follows because, for a &0, Cp is con-
tinuous at T~.

The function g„(u) in Eq. (13) is well approximated by
Eq. (6.6}of Ref. 3, i.e.,

g, (u)=g, (u)+[2—v ' —g, (u')](u/u')', (19)

~here

and g, (u') =0.5119 . (21)
(11b)dw/dl = —P (w,F,u, y} .

In order to compare experiment with theory, the (com-
plex) differential equations (11}must be integrated numer-
ically. In Eqs. (8) and (11), u (1) is the renormalized four-
point static coupling constant of the Ginzburg-Landau-
Wilson Hamiltonian, and y(l) is the renormalized cou-
pling constant describing the coupling between the order
parameter and the entropy fluctuations [see Eqs. (2.6) of
Ref. 4 for a definition of the corresponding bare parame-
ters yo and uo]. The function M( sw, F y}is quite compli-
cated, and is given by Eqs. (4.13)—(4.17) of Ref. 4. It will
not be reproduced here. The beta functions needed in Eq.
(11),and the related Pf in

df /dl = Pf(w, f,u, y)—
= —(2F/w')Pp+[F /(w') ]Re(P ) (12)

Ro(t) =Cp (
i
t

i
/2)/Cp (t) (14)

are also too complicated to repeat here, and have been
given by Dohm.

For t&10, the static coupling constant u[l(t)]
which occurs in Eqs. (8) and (11)was obtained by numeri-
cally inverting the relation [see Eq. (6.1) of Ref. 3]

Ro(t) 1[—(2u) ' —2][2—g„(u)]
a+tt{t) 2[2—[1—2$,(u)](1+8u}+8Pg(u) )

(13)
where Ro(t} and a+tt{t) are related to the heat capacity by

The beta function P„(u) is well approximated by Eq. (6.7)
of Ref. 3, i.e.,

u 'P„(u) =u 'P„(u) —(u ') 'P„(u')(u/u ')
with

u 'P„(u) = —1+40u —960u

(22)

Ro(t) 1—
limt-o a~+)(t)

l Ao2a
a Ap

(24)

It follows that Eq. (13) yields a value of u which de-
pends only upon universal quantities and thus is indepen-
dent of the pressure. " The value is (see also Ref. 11)

u =0.0342 . (25}

We now have all the information needed to invert Eq.
(13) and thereby to obtain u(t) for t &10 . For larger t,
the specific heat is not known as well and is strongly in-
fluenced by regular transients which are not included in
the theory. However, for t &10 the influence of u on
the dynamics is quite small and thus u(t} need not be
known with high accuracy. In that temperature range we
obtained u (t) from an integration of

According to Eq. (22), P„vanishes at the fixed point.
As t vanishes, both numerator and denominator of the

left-hand side of Eq. (13) go to zero if a &0, but the ratio
has the universal value

du (1)/dl =—P„(l), (26)

aett= —d lilCp (t)/d lilt (15)

Here Cp+ and Cp refer to Cp above and below T~, respec-
tively, and are given by Eq. (3a). For t & 0 the amplitudes

A, D, and 8 are given by Eqs. (3b)—(3d). The exponents
a and 6 are the same on the two sides of T~. The ampli-
tudes A', 8 ', and D ', which with Eq. (3a) give Cp below

using Eq. (22) and starting with the small-t estimate,
based on Cp and Eq. (13},as an initial value at t = 10
Results for u (t)/u' at two pressures are given in Fig. 1.
It can be seen that u{t) calculated as described above
evolves smoothly from u' to zero as t grows from 0 to
ao. In particular, the matching of the result based on Eq.
(26} to that given by Eq. (13), which occurs at the value of
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I.O

30

Q3

o 20
E

0-6 -2
log{p t

FIQ. 1. Static coupling constants u (t) derived from Eqs. (13)
and (22) and y(t) [Eq. (27)], and the parameter g, (t) [Eq. (19)],
as a function of log~ot. The solid lines pertain to vapor pressure
and the dashed lines are for 28 bars. The arrow indicates the re-
duced temperature at which u(t) obtained by integrating the
beta-function equation (22) to higher t was matched onto the
small-t result Eq. {13).

t indicated by the arrow, is quite smooth. In Fig. 1 we
also illustrate the behavior of g„(t) [Eq. (19)] which was
obtained in the process of calculating tt (t). Since the cal-
culation of u (t) by the above procedure is somewhat com-
plicated, we quote values below in Table III together with
the dynamic parameters [once tt (t) is known, g„(t) is easy
to obtain from Eqs. (19), (20), and (25)].

The static coupling constant y[l(t}] which occurs in
Eqs. (8) and (11) is given by Eq. (6.8) of Ref. 3, i.e.,

(2 —g, }a,+tt
y'(t) =

2 I 2+ [2g„—1+(2—g, )aett]( 1+8u }+8P„ I

with g„P„,and u given by Eqs. (19)—(23), and the inver-
sion of Eq. (13}, respectively (for values of tt, see also
Table III}.

For small t the effective specific-heat exponent a,tt
which is needed in Eq. (27} can be obtained directly from
its definition, Eqs. (15) and (3). However, for large t, Eq.
(3} for Cz has a minimum. This is illustrated by Fig. 2,
where both data and Cp as given by Eq. (3) are shown at
two illustrative pressures over a wide range of t Beyond.
the minimum, where Ct increases with increasing t, a,ff
as given by Eq. (15}is negative. We presume that this ef-
fect is caused by the regular terms that contribute to Cp,
and that it should not be included in the evaluation of the
theory (which does not consider regular transients). In or-
der to overcome this problem, we have adopted the previ-
ously proposed empirical formula

Integrating Eq. (28a} gives our empirical estimate of the
high-temperature singular specific heat in the form

Cz Cp „——ex p( a& /t + a2/2t ) . (28b)

We obtain Cp „by matching to Ct given by Eq. (3) at
t =t The. parameters ai, a2, and Cp „ for our isobars
are given in Table I. The heat capacity given by Eq. (28)
is shown as dashed lines in Fig. 2, and can be seen to be a
smooth monotonic extrapolation of Cz at small t to
t &t

At this point we have all the information necessary to
compute y(t) The resu. lts at two pressures are shown in
Fig. 1 together with g, and tt /u'. This completes the in-
formation necessary to (a) integrate the flow equations
(11), starting, say, at tp 10 with in——itial values tpp Np',

and Fp given, and to (b}calculate Rz(t) from the resulting
w'(t), w"(t), and F(t) using Eq. (8). Our procedure will

0.2

FIG, 2. Heat capacity at constant pressure Cp as a function
of log&ot over a wide range of t. The various points are experi-
mental data discussed in I. The dashed high-temperature ex-
trapolations are our estimate of Cp in the absence of regular
temperature dependences. They correspond to Eq. (28b) with
the parameters in Table I.

a tt=ai jr +ay jt+ {28a)
0 —2

log&p t

for large t. This dependence upon t causes a,tt to vanish
smoothly in the large-t limit. The coefficients a~ and a2
were obtained by matching ae+tt and daett jdt to the small-
t results given by Eqs. (15) and (3) at a temperature t~
chosen so that aett(t~ }=0.2. The results of this compos-
ite procedure are shown in Fig. 3 for two pressures.

FIG. 3. Effective specific-heat exponent a@f———d lnCp/d lnt
as a function of log, ot. At small t, a,qf is based on Eq. {3a).
Those results become negative near t =10 ' (as shown by the
solid lines) because regular transients cause C+ to have a
minimum. Therefore, at large t, the dashed lines represent the
empirical extrapolation via Eq. {28a).
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TABLE I. Parameters for Cr and a,ft as given by Eq. (28)
for t)t .

Pressure
(bars}

svp
6.85

14.73
22.30
28.00

0.071
0.075
0.071
0.084
0.063

10 a)

1.451
1.922
1.697
1.529
1.344

10 aq

—0.284
—3.089
—2.124

1.076
—0.518

Cp„
(J mo1e 'K ')

8.121
6.535
5.527
4.812
4.387

be to carry out this integration repeatedly, each time ad-

justing the initial values until a fit to the data is obtained.
The equations of model F given above simplify consid-

erably when y=to"=0. This simplification yields the
two-loop flow equations for the symmetric planar spin
model, model E of Halperin et al. ' As discussed in the
Introduction, for

~

t
~

& 0 model E is not expected to give
an exact description of the contributions of thermal dif-
fusion and second sound to the dynamics of the superfluid
transition, but it provides a semiquantitative approxima-
tion. %'e will see below in Sec. III 8 to what extent model
E can be used to fit the data. There we will actually use
model E„which retains the heat capacity in the defini-

tion (2) of Ri(t} but omits its coupling to the dynamic

variables in the flow equations and in Eq. (8) for Ri.

D. Method of analysis

The comparison between the experimental results and
the theoretical predictions was carried out with a non-
linear least-squares fitting procedure in which the initial
values too and Fo(fo, too) at some temperature to were ad-
justable parameters. This was done by fitting the theoreti-

cal value R ~" ' obtained from Eq. (8) to the experimental

results R i"~' obtained from Eq. (2). The parameter to
was chosen to be to ——0.01 and only data at reduced tem-
peratures smaller than to were used in the fits in order to
avoid large uncertainties due to regular transients at large
t. The procedure involved the following steps:

(i) The fiow equations were integrated numerically with
the chosen initial values of top wo and Fp Usiilg a
fourth-order Runge-Kutta method for ordinary differen-
tial equations. Since Eq. (11b) is complex, complex arith-
metic had to be used.

(ii) The deviations between the experimental R P' and

the theoretical R ~" ' were then evaluated.
(iii) The initial values were adjusted so as to minimize

the squared deviations given by the variance

~ (R exit R theor)2gr
kyl l

i=1

(to')' =0.0421,

(w "}'=0.0000,

F' =0.1866,

(29a}

(29b)

(29c}

C. Fixed point in two-loop order

The fixed-point values w' and F' of Eqs. (11) are ob-
tained by setting P F( t,oF, uy }and P~(w, f,u, y) equal to
zero, using u =u' as given by Eq. (25), setting y =0, and
solving for w and F. We find

W=(A, /R i)/(M, )i . (31)

where W; is the weight attached to point i, X is the num-
ber of data points, and It: is the number of adjustable pa-
rameters (for model F, K= 3).

The weight for each data point was taken to be the in-

verse square of the probable error, i.e., W=1/(5R~),
where 5Ri is the a priori estimate of the probable error of
R i"~'. We have 5A, /A, =5Ri /Ri, where M. is the prob-
able error of A, . Thus

f' =0.8256, (29d)

In general, the precision of the data was about 0.1%, ex-
cept for small r, where temperature resolution ( = 5)& 10
K) limited the precision of the data. Hence the probable
error of A, was defined to be

where in the last equation we used Eq. (10). With Eq. (8)
we then obtain the fixed-point value

Rg ——1.074 (29e)

of Ri. In order to see how important the two-loop contri-
bution to R~ is, we set M3 equal to zero. This yielded
Ri =1.200. Thus, at the fixed point the two-loop terms

in Ri contribute only about 10%, as already estimated
by Dohm.

Our results in Eq. (29) differ somewhat from those of
Halperin et al. ' who used two-loop model-E flow equa-
tions. The fixed points of models E and F should be iden-
tical. We traced the difference to a somewhat different
value of u' in their calculations. They had u'=0. 1,
which gave (w')'=0.018, for instance. When we used
our u' [Eq. (25)] with their model-E flow equations, we
obtained the results (29a)—(29d).

5A, /A, =max(10, 5&&10 /b, T),

where 5T was the temperature difference employed in
each measureinent (hT is given in Tables V—VII of I for
this purpose).

The fits yielded the best values of the adjusted parame-
ters, the probable errors in these quantities, and the devia-
tion cr from the fit. By suitable choice of initial condi-
tions, the fits converged in 6 to 20 iterations. Nonethe-
less, it would have been very computer-time consuming if
the complete set of experimental data for each isobar had
been used. Thus, only about ten data points per decade, as
given in Table VI of I for cell F, were used in the fits.

All the calculations were performed on a Digital Equip-
ment Corporation VAX11/750 computer in FORTRAN,
using complex arithmetic. Typica11y, six iterations with
35 data points required 30 min of CPU (central processing
unit) time.
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TABLE II. Parameters derived from fits of the two-loop model-F theory with static transients to data with t & to ——10 . The
lower limit of the reduced temperature ranges over which data were used is t;„,and f0=f (to), wo =w'(to), too' = to "(tp). The stan-
dard deviation from the fit is cr [Eq. (30)], and N is the number of points used in the fit. The parameters in the first five rows are our
standard fits.

1

2
3

5
6
7
8

9
10
11

Cell

F
F

F
F
F

F
F

P
(bars)

SVP
6.85

14.73
22.30
28.00
6.85

14.73
22.30
28.00
SVP
22.30

log lot min

—6
—6
—6
—6
—2.6
—2.8
—3.1

—3.3
—6
—6

fo

0.612(2)
0.424(2}
0.289(3)
0.205(1)
0.155(1)
0.430(3)
0.298(7)
0.206(2}
0.158(1)
0.597(7)
0.208(9)

0.644(2)
0.722(2}
0.795(5}
0.899(4)
0.919(4)
0.713(3)
0.771(28)
0.900(9)
0.911(5)
0.662(3)
0.897(9)

1.398(19)
1.219(24)
1.072(50)
0.919(38)
0.552(29)
0.939(169)
0.891(145)
0.263(146)
0.368(110)
1.340(31}
0.626(54)

1.01
1.10
2.00
1.18
0.81
0.11
0.29
0.58
0.46
1.23
1.45

36
32
36
36
36

5

9
11
13
33
26

0.43
6.S5 bars

E. Numerical tests

It is apparent from Secs. II 8 and IID that the numeri-
cal procedure is quite complicated. Thus a number of
tests of our computer code were performed in order to
check its reliability. A partial test of our flow equations
is given by finding the roots which gave the fixed-point
values (29a)—(29d). As mentioned above, the results agree
with those obtained from the much simpler model-E flow
equations. In addition, (w")' is known to be equal to
zero. We found typically

~

(w")'
~

=O(10 ") from our
numerical procedure.

As a test of our integration procedure, we integrated the
complete flow equations with u (t) and y(t) and with typi-
cal initial values from to=10 2 to tm;„=10 and
t;„=10 ', and obte.ined

w'(t;„)=0.05857, 0.04473,

w "(t;„)=0.00078, 0.00021,

F(tm;„)=0.2210, 0.1923,

(32)

where the first value corresponds to t;„=10 . These
results still differ from the fixed-point values; but the
differences are still decreasing as t decreases and illustrate
the slowness of the dynamic transients. The results are
close enough to the fixed-point values to convince us of
the reliability of our numerical procedure.

There are a number of analytic results which may be

0.33—
1.5

0.23
&~~ 0.39

28.00 bar

1.0

0.29—
0

0.19-6 —2
logio t

FIG. 4. Fits to the data of the complete t~o-loop model-F
theory with static transients. The solid lines represent fits using
data over the entire range t & to ——10 . They are our standard
fits. Standard fits to the data at other pressures can be seen in
Fig. 8 below. The dashed lines represent extrapolations to small
t of limited-range fits, using data only for t larger than the
value indicated by the arrows (and smaller than to ——10 ). For
the data used in the limited-range fits, we have f (0.8.

I.O

0.5

0

FICi. 5. Functions f(t), w'(t), w"(t), and Ri, (t) over a wide
range as a function of logiot obtained from our standard fits.
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TABLE III. Values of f(t), w'(t), and ic"(t) generated from standard fits, rows I —5 of Table II, to cell-F data. Also given are
values of the static coupling constant u (t). P»p is the saturated vapor pressure.

log lot

—7.0
—6.8
—6.6
—6.4
—6.2
—6.0
—5.8
—5.6
—5.4
—5.2
—5.0
—4.8
—4.6
—4.4
—4.2
—4.0
—3.8
—3.6
—3.4
—3.2
—3.0
—2.8
—2.6
—2.4
—2.2
—2.0
—1.6
—1.2
—0.8
—0.4

0.0
1.0
2.0
3.0

—7.0
—6.8
—6.6
—6.4
—6.2
—6.0
—5.8
—5.6
—5.4
—5.2
—5.0
—4.8
—4.6

44
—4.2
—4.0
—3.8
—3.6
—3.4
—3.2
—3.0
—2.8

0.0342
0.0342
0.0342
0.0342
0.0342
0.0342
0.0342
0.0342
0.0342
0.0342
0.0342
0.0342
0.0342
0.0341
0.0341
0.0341
0.0341
0.0341
0.0340
0.0340
0.0339
0.0338
0.0336
0.0333
0.0330
0.0324
0.0304
0.0271
0.0225
0.0175
0.0127
0.0049
0.0020
0.0011

0.0342
0.0342
0,0342
0.0342
0.0342
0.0342
0.0342
0.0342
0.0342
0.0342
0.0342
0.0342
0.0341
0.0341
0.0341
0.0341
0.0340
0.0340
0.0339
0.0338
0.0337
0.0335

Psvp
0.3466
0.3551
0.3638
0.3728
0.3820
0.3914
0.4010
OA108
0.4206
0.4306
0.4407
OA510
0.4614
0.4721
0.4834
0.4953
0.5084
0.5229
0.5391
0.5570
0.5764
0.5963
0.6150
0.6304
0.6403
0.6436
0.6312
0.6038
0.579S
0.5661
0.5603
0.5580
0.5584
0.5585

P=6.85 bars

0.3797
0.3904
0.4015
OA130
0.425Q
0.4374
0.4502
0.4634
0.4770
0.4910
0.5055
0.5204
0.5358
0.5519
0.5687
0.5865
0.6054
0.6255
0.6466
0.6682
0.6890
0.7074

0.9645
0.9686
0.9729
0.9775
0.9826
0.9882
0.9944
1.0016
1.0098
1.0194
1.0305
1.0436
1.0587
1.0759
1.0947
1.1141
1.1324
1.1466
1.1527
1.1458
1.1199
1.0694
0.9903
0.8827
0.7525
0.6118
0.3550
0.1854
0.0984
0.0540
0.0304
0.0082
0.0029
0.0014

0.9786
0.9835
0.9887
0.9944
1.0005
1.0071
1.0145
1.0227
1.0318
1.0421
1.0536
1.0663
1.0800
1.0940
1.1074
1.1181
1.1235
1.1196
1.1018
1.0647
1.0041
0.9176

0.0798
0.0900
0.1016
0.1149
0.1301
0.1475
0.1674
0.1903
0.2165
0.2468
0.2819
0.3227
0.3702
0.4256
0.4903
Q.5655
0.6522
0.7505
0.8594
0.9760
1.0951
1.2082
1.3046
1.3728
1.4045
1.3980
1.3029
1.1817
1.1004
1.0585
1.0395
1.0285
1.0286
1.0292

0.0905
0.1025
0.1163
0.1321
0.1503
0.1711
0.1949
0.2224
0.2539
0.2902
0.3322
0.3806
0.4365
0.5010
0.5749
0.6587
0.7520
0.8533
0.9591
1.0636
1.1585
1.2339

log )ot

—2.6
—2.4
—2.2
—2.0
—1.6
—1.2
—0.8
—0.4

O.Q

1.0
2.0
3.0

—7.0
—6.8
—6.6
—6.4
—6.2
—6.0
—5.8
—5.6
—5.4
—5.2
—5.0
—4.8
—4.6

44
—4.2
—4.0
—3.8
—3.6
—3.4
—3.2
—3.0
—2.8
—2.6
—2.4
—2.2
—2.0
—1.2
—0.8
—0.4

0.0
1.0
2.0
3.0

—7.0
—6.8
—6.6
—6.4
—6.2
—6.0
—5.8
—5.6
—SA

0.0332
0.0328
0.0323
0.0315
0.0288
0.0248
0.0199
0.0150
0.0108
0.0043
0.0019
0.0011

Q.D342
0.0342
0.0342
0.0342
0.0342
0.0342
0.0342
0.0342
0.0342
0.0342
0.0342
0.0341
0.0341
0.0341
0.0340
0.0340
0.0339
0.0338
0.0337
0.0335
0.0333
0.0330
0.0326
0.0320
0.0313
0.0302
0.0224
0.0176
0.0132
0.0096
0.0044
0.0023
0.0015

0.0342
0.0342
0.0342
0.0342
0.0341
0.0341
0.0341
0.0341
0.0341

P=6.85 bars
0.7213
0.7289
0.7293
0.7230
0.6944
0.6541
0.6158
0.5909
0.5785
0.5714
0.5712
0.5712

P=14.73 bars

0.4172
0.4303
Q AAA1

0.4584
0.4735
0.4892
0.5055
0.5226
0.5404
0.5588
0.5781
0.5981
0.6190
0.6408
0.6636
0.6873
0.7119
0.7368
0.7612
0.7836
0.8021
0.8148
0.8203
0.8183
0.8095
0.7952
0.7089
0.6676
0.6426
0.6309
0.6246
0.6244
0.624S

P=22.3Q bars
0.4645
0.4809
0.4983
0.5166
0.5358
0.5561
0.5775
0.5999
0.6235

0.8074
0.6808
O.S491
0.4244
0.2288
0.1152
0.0598
O.Q327
0.0186
0.0055
0.0022
0.0012

0.9935
0.9993
1.0055
1.0121
1.0193
1.0270
1.0355
1.0447
1.0547
1.0656
1.0770
1.0887
1.0999
1.1094
1.1151
1.1142
1.1029
1.0769
1.0315
0.9631
0.8710
0.7585
0.6334
0.5067
0.3892
0.2885
O.D731
0.0387
0.0220
0.0133
0.0048
0.0023
0.0014

1.0104
1.0172
1.0243
1.0319
1.0400
1.0487
1.0579
1.0676
1.0777

1.2806
1.2932
1.2726
1.2260
1.0985
0.9831
0.9033
0.8567
0.8331
0.8175
0.8164
0.8166

0.1059
0.1206
0.1374
0.1568
0.1790
0.2045
0.2337
0.2674
0.3060
0.3504
0.4014
0.4598
0.5265
0.6019
0.6861
0.7783
0.8762
0.9757
1.0703
1.1516
1.2104
1.2390
1.2341
1.1988
1.1411
1.0720
0.8382
0.7730
0.7356
0.7173
0.7056
0.7048
0.7050

0.1228
0.1404
0.1608
0.1842
0.2110
0.2418
0.2772
0.3178
0.3642
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TABLE III. ( Continued).

—5.2
—5.0
—4.8
—4.6
—4.4
—4.2
—4.0
—3.8
—3.6
—34
—3.2
—3.0
—2.8
—2.6
—2.4
—2.2
—2.0
—1.6
—1.2
—0.8
—0.4

0.0
1.0
2.0
3.0

—7.0
—6.8
—6.6

0.0341
0.0340
0.0340
0.0339
0.0339
0.0338
0.0337
0.0335
0.0334
O.P331
O.P329
0.0325
0.0321
0.0315
0.0308
0.0298
0.0286
0.0247
0.0201
0.0157
0.0119
0.0089
0.0046
0.0027
0.0018

0.0343
0.0342
0.0342

P=22.30 bars

0.6482
0.6741
0.7011
0.7294
0.7587
0.78S8
O.S195
0.8499
0.87S8
0.9045
0.9250
0.9385
0.9439
0.9413
0.9319
0.9173
0.8992
0.8568
0.8093
0.7650
0.7394
0.7284
0.7228
0.7226
0.7227

P=28.00 bars
0.5397
0.5611
0.5838

1.0879
1.0978
1.1065
1.1126
1.1142
1.1087
1.0925
1.0616
1.0121
0.9410
0.8480
0.7369
0.6153
0.4932
0.3803
0.2833
0.2051
0.1019
0.0500
0.0269
0.0161
0.0103
0.0044
0.0024
0.0015

1.0298
1.0369
1.0442

0.4172
0.4774
0.5454
0.6215
0.7053
0.7955
0.8895
0.9827
1.0687
1.1391
1.1854
1.2011
1.1843
1.1386
1.0724
0.9959
0.9188
0.7891
0.7047
0.6506
0.6199
0.6056
0.5965
0.5958
0.5959

0.1373
0.1578
0.1813

log iot

—6.4
—6.2
—6.0
—5.8
—5.6
—5.4
—5.2
—5.0
—4.8
—4.6

44
—4.2
—4.0
—3.8
—3.6
—3.4
—3.2
—3.0
—2.8
—2.6
—2.4
—2.2
—2.0
—1.6
—1.2
—0.8
—0.4

0.0
1.0
2.0
3.0

0.0342
0.0342
0.0342
0.0342
0.0342
0.0341
0.0341
0.0340
0.0340
0.0339
0.0338
0.0337
0.0335
0.0333
0.0331
0.0328
0.0324
0.0319
0.0312
0.0304
0.0294
0.0280
0.0263
0.0219
0.0174
0.0133
0.0101
0.0077
0.0042
0.0026
0.0017

P=28.00 bars

0.6078
0.6331
0.6598
0.6878
0.7172
0.7479
0.7797
0.8126
0.8462
0.8802
0.9139
0.9464
0.9765
1.0027
1.0230
1.0357
1.0393
1.0337
1.1095
0.9988
0.9738
0.9467
0.9191
0.8647
0.8118
0.7696
0.7467
0.7369
0.7317
0.7313
0.7313

1.0518
1.0597
1.0677
1.0757
1.0835
1.0907
1.0969
1.1012
1,1023
1.0988
1.0884
1.0682
1.0351
0.9860
0.9186
0.8324
0.7299
0.6167
0.5013
0.3921
0.2961
0.2170
0.1553
0.0770
0.0392
0.0223
0.0140
0.0094
0.0044
0.0026
0.0016

0.2082
0.2390
0.2740
0.3138
0.3587
0.4092
0.4655
0.5276
O.S953
0.6675
0.7425
0.8173
0.8874
0.9470
0.9892
1.0075
0.9975
0.9582
0.8938
0.8120
0.7223
0.6336
0.5524
0.4258
0.3461
0.3019
0.2803
0.2705
0.264 j

0.2633
0.2633

compared with the numerical work. Perhaps foremost
among these is the invariance of the model-F Langevin
equations under a simultaneous change of the sign of F
and w" [leaving the signs of y, u, and w' (which are in-
trinsically positive) unaltered. Indeed, we obtained the
same fit to a given set of data with positive and negative
Fo and wo', in the sense that w',

~

F (, (
w" ~, and o (the

square root of the variance} were the same within a few
parts in 104.

We have also reproduced with our computer code the
analytic results (4.18), (4.19), and (A35)—(A38) of Ref. 4.
Finally, we compared the integration of the two-loop
model-F flow equations (with u =u') with a numerical
example kindly provided by Folk. Our results agreed with
his.

III; RESULTS

A. Two-loop model-F fits with static transients

Our main results are the fits of the two-loop model-F
flow equations (ll) and the two-loop expression (8) for
Ri, including the static transients contained in u (t) and

y[u (t}],to the experimental values of Ri (t) for cell F of

I. As mentioned earlier, all of the fits are for
t &to=10 2. Parameters for fits to all data with t&to
are given in rows l —5 of Table II. Also given in that
table is the standard deviation o defined by Eq. (30) and
the number of data points, N, involved in the fit. Since

Ri is typically close to 0.3 in the experimental range, the

values of o are about 0.2% or 0.3% of Ri and thus of the
same size as the random experimental errors (see I). In
Fig. 4 we show the data at 6.85 bars and at 28.00 bars, to-
gether with the corresponding fits (solid lines). Here, also,
one sees that the data deviate more or less randomly from
the solid lines. The results at the other pressures may be
seen in Fig. 8 below.

Having obtained a statistically meaningful fit of the
theory to the data, it is of interest to examine the corre-
sponding behavior of the dynamic variables in the theory.
In Fig. 5 we show f, w', w", and Ri over the wide range
10 & t & l and for the two extreme pressures SVP and
28 bars. Even at the smallest reduced temperature m' and

Ri are still far away from their flxml-point values. The
imaginary part w" of w seems to approach its value
( w")' =0 somewhat more rapidly.

Particularly relevant to our analysis is the behavior off
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TABLE IV. High-temperature values of the dynamic param-

eters obtained by integrating the flow equations from to ——10 ~

to t =10, with parameters taken from rows 1—5 and 10—11 of
Table II. The last column gives I „"=u„"A,„o/Cp„, with k„o
from Table IX of I and C&„ from Table I.

O4

Cell
P

(bars)

104r„"
(cm /sec)

F
F
F
F
F
E
E

SVP
6.84

14.73
22.30
28.00
SVP
22.30

O.S59
0.571
0.625
0.723
0.731
O.S70
0.694

1.029
0.817
0.705
0.596
0.263
0.970
0.289

4.48
4.41
4.48
4.22
1.96
4.22
2.05

0.40

at large t. We see that f=O(l) for t (5X10 at SVP
and for t & 5X 10 at 28.00 bars. Thus, the fits given by
the first five rows in Table II involved two to three de-
cades (depending upon I') over which a low-order pertur-
bation calculation of the fiow equations and of
Ri (f,w, u, y) is not necessarily reliable (because the expan-
sion parameter f of the theory is not small compared to
unity). We therefore repeated the fits, but restricted the
range of the data to values of t for which f&0.8 (we re-
tained 10 as the upper limit). At vapor pressure this re-
striction was too severe, leaving only one-third of a decade
and rather few data points. For 6.86 bars, the fit included
half a decade, and extended from the small vertical arrow
in Fig. 4 to the right-hand edge of that figure. At 28.00
bars the available range of t spanned 1.3 decades as indi-

0.2
-IO -S -6 —4 —2

log, o t

FIG. 7. Results for Rt, based on the standard fits and for all
pressures over a wide range of t, as a function of logiot. Near
the left-hand margin, the lines correspond, from top to bottom,
to SUP, 6.85, 14.73, 22.30, and 28.00 bars. The arrow indicates
the smallest value of t at which data exist.

cated by the arrow in the lower portion of Fig. 4. The re-
sults of the limited-range fits are given in rows 6—9 of
Table II. As can be seen, the parameter values are not
very different from those obtained by the full-range fits

0.34

0.24
0.32

0.30—
0.22
0.3 I

l4.73 bar

0.20
0.43

0.2I
0.50

22.30

0.33— 0.20
0.30

28.00

0.23—6

FIG. 6. Fit of the two-loop model-F theory over the range

t (to 10 ' to the d——ata of Ai(t). The solid lines are the stan-
dard fits. The dashed lines correspond to eo' held fixed. (a)
P=28 bars, mo' ——0.8. This corresponds to I"„"=4& 10 ~

cm /sec. (b) P= 6.8 bars, m" =0.5. This corresponds to
I „"=0.8)& 10 cm2/sec.

0.20-6 -4 —2
log, o t

FIG. 8. Fits of the two-loop model-F theory with u =u(t)
(standard fit, solid lines) and with u =u (dashed lines) to the

data for Rq(t) on each experimental isobar. At low P, the t
dependence of u has a negligible influence; but at the higher
pressures a good fit cannot be obtained when the t dependence
of u is neglected.
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TABLE V. Parameters obtained by fitting incomplete theoretical expressions for Rq and/or the flow

equations to cell-F data with t (tp ——10 . Rows 1—5: u =u in R~ and in the flow equations. Rows

6—10: Ai [Eq. (8)] to one-loop order, but two-loop flow equations. Rows 11—15: y =w" =0 (model E)

in Ri only. Rows 16—20: y=w"=0 in Rq and in the flow equations. As in Table II, fo=f(to),
mp ——ur'(tp), and mp =w (Ep).

1

2
3
4
5
6

8
9

10
11
12
13
14
15
16
17
18
19
20

SVP
6.85

14.73
22.30
28.00
SVP
6.85

14.73
22.30
28.00
SVP
6.85

14.73
22.30
28.00
SVP
6.85

14.73
22.30
28.00

fo

0.601(2)
0.412(2)
0.274(2)
0.191(1)
0.137(2}
0.525(2)
0.361(2)
0.243(2)
0.174(1)
0.133(1)
0.619(3)
0.445{2)
0.302(3)
0.214(2)
0.152{3)
0.439(10)
0.285(14)
0.158{15)
0.099(13}
0.039(13)

Np

0.656(1)
0.744(2)
0.835(4)
0.968(4)
1.046(13)
0.737(1)
0.821(2)
0.898{5)
1.004(5)
1.008(6)
0.451(1)
0.515{1)
0.560(4)
0.640(5)
0.681(11)
0.895{11)
1.085(34)
1.495(107)
1.972(200)
3.945(1.205)

l8p

1.435(16)
1.313(18)
1.307{36)
1.342{43)
1.279(108)
1.131(13)
0.955(21)
0.829(44)
0.661(35)
0.300(25)
0.982(8)
0.926(8)
0.943{16)
0.924(22)
0.809{40)

0.85
0.81
1.43
1.28
2.79
0.70
0.99
1.75
1.12
0.77
0.78
0.67
1.16
1.18
1.78
5.78

10.68
15.69
17.91
24.06

36
32
36
36
36
36
32
36
36
36
36
32
36
36
36
36
32
36
36
36

(rows 1—5 of Table II). An extrapolation of the limited-
range fits to small t is shown in Fig. 4 as dashed lines for
the two representative pressures (the results at 14.73 and
22.30 bars behave in a similar manner). It is truly re-
markable that the theory, when extrapolated by two (at 28
bars) or three (at 6.85 bars) decades, differs from the data
by only 2% or 3%. These limited-range fits provide the
justification for the full-range fits (rows 1—5 in Table II),
which include data at temperatures where the dynamic
coupling constant is of order one. Of course, the reason
for the unexpectedly spectacular success of the theory is

not obvious.
We retained the full-range fits as our standard fits, and

used them to generate values of f, w', and w" over a wide
range of t These . data, together with values of u(t), are
given in Table III. They may be used in the prediction of
other transport properties, including the damping of
second sound and the dynamic structure factor.

In I we presented independent sets of measurements at
vapor pressure and 22.3 bars for a cell of spacing
1=0.452 cm (cell E). These data were not quite as accu-
rate as the cell-F data, and there were small but systemat-

0.05

0—

—0.05—

/
2S.OO bar~s

I
~ SVP

0.23
0.30

0.20-6

28.0 bars

—O. I 0-6 I

-2
IOgiO t

FIG. 9. Two-loop contribution M3 to ki, as a function of
logiest.

FIG. 10. Effect of neglecting the two-loop contributions to

R~ upon a fit of model F (two-loop flow equations with static
transients) to the data. Solid lines: standard fit. Dashed lines:

one-loop R~.
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ic differences between the data sets at the same pressure.
The parameters for the full-range flts (r (10 ) to the
cell-E data are given in rows 10 and 11 of Table II. Any
differences from the corresponding parameter values for
cell F (rows 1 and 4 in Table II) are indicative of the in-
fluence of possible systematic errors in the data (although
we regard the cell-F data as more accurate). Generally,
the parameters are quite similar for the two cells, but wo
at the higher pressure differs considerably. It turns out
that wo' is particularly sensitive to small systematic
changes in the data.

It has been suggested by Dohm that the parameter

0.2

0.6

0
28.0 bars

0.4—

0.3—

0.3- —~-

should be pressure independent and approximately equal
to iii/2m4 ——0.79&&10 " cm /sec. Here w„" is the high-
temperature value of w", and A, „o and Cz„are the high-
temperature extrapolations of A, and Ci. We integrated
the flow equations with the initial values given in rows
1—5 and 10 and 11 of Table II out to r =10 . Note that
for this purpose we had to use the empirical extrapolation
(28) of the specific heat, and values of u(t) obtained by
integrating Eq. (26). Beyond t=1, w' and w" changed
very little, as can be seen also from Table III. We give the
high-temperature limits of w' and w" in Table IV. Using
values of A, „o from Table IX of I and Cz„ from Table I,
we obtained the results for I'„" given in the last column of
Table IV. For cell F and P (22.3 bars, this parameter is
remarkably constant, as predicted, but at the highest pres-
sure it suddenly changes by a factor of 2. However, at
22.30 bars the cell-E result is lower than the cell-F value
by about a factor of 2, and thus the variation I „" with
pressure is probably within its systematic uncertainty.
The value of I „" is larger than predicted by a factor of
2 —,—5.

In order to explore further whether the experimental
data at 28 bars are inconsistent with the low-pressure re-
sult I „"=4X10 cm /sec, we fixed wo' (i.e., w" at

to 10 ) at the v——alue 0.8 and refitted the cell-F Ri data
at 28 bars and for t & to, adjusting the other parameters,
fp and wo The fit .and the value chosen for wo', upon in-
tegration to high t, yield I'„" =4)&10 cm /sec. In Fig.
6(a) we show the result as a dashed line. The solid line is
the standard, unconstrained fit which yielded I „" =2X 10
cm /sec. The deviations of the constrained fit from the
data, although not large, are systematic.

In Fig. 6(b) we show the result of the procedure
described in the preceding paragraph, but for P=6.85
bars and cell F and with wo fixed at 0.5. The correspond-
ing fit, when integrated to high t, yields the estimate
1 „"=0.8X10 cm /sec. Clearly, this constraint is in-
consistent with the experimental data. Thus we conclude
that I'" is significantly larger than the estimate of Ref.
24.

%e conclude this section by presenting in Fig. 7 an ex-
trapolation of Ri (t), based on the full-range fits, to small-
er values of t. At present, experimental data exist to the
right of the small arrow in the figure. To the left of the
arrow, ki(t) is still far away from its fixed-point value
1.074 and increasing significantly. Eventually, it might be

0.2-

O. I-6
I

-5 I

Ipg(p t

FIG. 11. Effect of using a two-loop model-E, theory rather
than model F. The solid lines represent the standard model-F
fits. The long-dashed lines are the result of a fit in with

y =w" =0 in the formula for ki (but not in the flow equations).
The short-dashed lines are a fit of the complete two-loop model

E„with y =m" =0 in the Aow equations as well as in Aq.

possible to obtain experimental data over perhaps two ad-
ditional decades and thereby provide a further test of the
theoretical predictions.

B. Other fits

Although the preceding subsection contains the main
results of our work, it is of interest to see how well the
theory fits the data when certain terms are neglected or

-3.2-

3
(A

E

M -3.5-
D——33-

Qll
O

4.7 bars

22.3 bars

—35—

28.0 bars

—3.5—
I

—3
log)p t

I

—2

FIG. 12. Second-sound damping D2 as a function of the re-
duced temperature t on logarithmic scales at the four indicated
pressures. The data points are from Ref. 26. The solid lines are
calculated from u, f, and w' in Table III, and from the model-E
formulas of Ref. 25 with gL, /gT ——0.37.
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certain approximations are made. These fits to incom-

plete or approximate theoretical predictions are presented
in this section.

In Fig. 8 we show as dashed lines the fits which result
from setting u(t) equal to its fixed-point value u'. The
solid lines are the standard fits. This approximation also
changes g, to the value given by Eq. (21) and slightly
alters y(t) [Eq. (27)]. The static transients in Eq. (2),
which come from Eqs. (3a) and (5), are retained, however,

so that the data for Ri (t) remain unaltered. It is apparent
from Fig. 8 that the static transients presented by the t
dependence of u are unimportant at vapor pressure, but
their neglect at the higher pressures clear&y results in an
imperfect fit of the theory to the data. The parameters re-

sulting from the fit with u (t) =u' are given in the first
five rows of Table V.

Next we investigated the importance of the two-loop

contribution to Ri(f, w, y, u), Eq. (8). In Fig. 9 we plot
the term M& which results from our standard fits at SVP
and at 28 bars. We find that Mz is quite small for
t & 5 / 10,and thus in that range the two-loop contribu-
tion fM& in Eq. (8) is negligible. Even for smaller t,
where fM& potentially could have been important because

f has grown to be of O(1), M& itself remains of modest
magnitude and fMi contributes only about 10% or less to
Ri. It is interesting to note that the value of w" is deter-
mined in the fits primarily through its contribution to Mi
(it also occurs in the fiow equations, but there it couples
only indirectly through the other dynamic variables to the
experimental data). An accurate determination of wo'

therefore can be hoped for only when data for
t & 5 X 10 are included in the fit.

In Fig. 10 we illustrate the effect on the fit to the data

of neglecting the two-loop contribution to Ri by setting
Mi ——0 and omitting the contribution 16y u to Eq. (8).
The parameters obtained under these conditions (but re-
taining the full two-loop model-F flow equations with all
static transients) are given in rows 6—10 of Table V. It is
apparent that an essentially perfect fit to the data can be

obtained with the one-loop result for Ri.
Finally, in Fig. 11 we show the effect of using the sym-

metric planar spin model, ' model E„6which neglects the
coupling of the specific heat to the dynamics. First, as
long-dashed bnes we give the results of setting w" and y
equal to zero only in Eq. (8) for Ri, retaining the full
model-F fiow equations. At vapor pressure this has very
little influence on the quality of the fit, but at the higher

pressure the fit is not quite as good as the full model-F fit
represented by the solid lines. The parameters for these
fits are given in rows 11—15 of Table V. Lastly, as short
dashed hnes, we show the result of using a complete
model-E, theory. These fits were obtained by setting
w" =y =0 in the flow equations as well as in Ri. The fit
is unsatisfactory even at vapor pressure. At the higher
pressure it is very poor indeed. The corresponding param-
eters are given in rows 16—20 of Table V.

C. Second-sound damping

In principle, the second-sound damping below T~ can
be obtained from the values of f and w determined above
Ti„without any further adjustable parameters. In prac-
tice, there remain two problems. First, the relation
D2(f, w, u) has been obtained so far only for model E.
Therefore we do not necessarily expect perfect agreement
of the theory with the data. The second problem is asso-
ciated with the necessary static parameters. The formula
for D2 involves not only u (t) (which is known quite well
now), but also the ratio gL /gT of the longitudinal to the
transverse correlation length. This ratio is a universal
constant, and from an expansion in 4—d it is estimated to
be approximately —,'. We will treat it as an adjustable pa-
rameter, but the same value of gL /gT will be used at all
pressures. For the best value we find 0.37, rather close to
the (4—d)-expansion value of the theory.

In Fig. 12 we compare the model-E prediction
Dz(f, w', u), using the values of f(t), w'(t), and u(t) in
Table III and gL/gT ——0.37, with the experimental re-
sults for D2. The agreement is remarkably good, but
there remain systematic differences between theory and
experiment which persist at all pressures. We attribute
these differences to the use of model E rather than model
F in the calculation of Dz(f, w', u).
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