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We consider binary alloys undergoing phase separation after a deep temperature quench. We
present Monte Carlo simulation results showing that such systems freeze when quenched to zero
temperature. This holds for a wide range of atomic and vacancy concentrations. We interpret these
results in terms of an equilibration mechanism dominated by activated diffusive motion of atoms on
a lattice across an interface with an activation energy dependent on the local curvature. We show
that in such a case the domain size increases logarithmically for quenches to low temperatures. This
logarithmic law is shown to be in excellent agreement with neutron scattering experiments.

I. INTRODUCTION

A common mechanism for equilibration in solids
cooled to below some critical temperature is phase separa-
tion associated with the motion of atoms moving dif-
fusively. The form of the growth law as a function of
time ¢ after a quench for the typical domain size L(¢) has
usually been assumed! to be a power law. In this paper
we argue that for binary alloys subjected to a deep tem-
perature quench the phase separation process proceeds,
quite generally, more slowly than a power law. The phys-
ical origin of this slow equilibration is that diffusion
across an interface at low temperatures is an activated
process with an activation energy inversely proportional
to the local curvature. For quenches to zero temperature
we find, using Monte Carlo (MC) simulations, that such
systems freeze in a nontrivial fashion® after growing
domains up to some finite size. The structure of the
frozen system is highly disordered and the domains form
either percolative structures or, at small minority concen-
trations, small nonspherical compact structures. These
glassy configurations are formed dynamically in the ab-
sence of any quenched disorder in the system. As we dis-
cuss in detail below, the freezing behavior appears for
critical or off-critical quenches, in the presence of both
thermal and quenched vacancies, for several two-
dimensional lattices, and for quench rates which are not
infinitely rapid.

We have recently pointed out!® that this freezing
behavior occurs in the particular case of an infinitely ra-
pid quench in a binary system with a critical composition
(c=0.5) and no vacancies on a square lattice. Following
that work, however, the possibility existed that this freez-
ing was restricted to that special case because of the high
symmetry and the resulting percolative structure which is
in contrast to the dropletlike structure assumed in most of
the theoretical work, as, for example, in the Lifshitz-
Slyozov (LS) theory.* A second concern was that the
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freezes might unlock if thermal vacancies are introduced
into the system. The vacancies would naturally “wet” the
interfaces and therefore increase diffusion of particles
across an interface and possibly permit the system to
avoid the freeze found in the absence of vacancies. The
concentration of vacancies needed might be thought to be
related to the percolation concentration. The assumption
of infinitely fast quench rates and a specific (square) lat-
tice were additional concerns. A key result of the present
paper is that, in fact, neither the relative concentration of
atoms nor the number of annealed vacancies have, alone
or combined, any qualitative effect and only a small quan-
titative effect, on the freezing behavior of the spin ex-
change kinetic Ising model used in Refs. 1 and 3 (and de-
fined in Sec. II below).

In Refs. 1 and 3, by using a combination of
renormalization-group (RG) and MC methods we showed
that, at least in the particular case considered in that
work, the freezing of the system for quenches to a final
temperature Tr=0 was tied to a logarithmic growth law
for L(t), for quenches to Tr>O0, in disagreement with
previous expectations of a power-law form. Given the
generality of the freezing behavior, it is natural to investi-
gate the possibility that the logarithmic law is also gen-
erally valid. Our arguments for this are presented in Sec.
III. Furthermore, we show also in Sec. III that the loga-
rithmic growth law gives a superior fit to recent neutron
scattering experiments>® on binary alloys when compared
to power-law fits.

We believe that these findings may have important
consequences with regard to the question of the universal-
ity of growth Kkinetics associated with first-order phase
transitions. According to the analysis of Refs. 1, 7, and
8, the growth of order in kinetic Ising models can be clas-
sified in terms of the renormalization-group fixed-point
structure underlying the scaling behavior found in these
systems: if spatial coordinates are rescaled by a factor
b > 1, then the system is self-similar upon rescaling of the
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time variable by a factor A(b)<1. For quenches from
high temperatures to temperatures T below the critical
temperature T, the renormalization-group flows for T
iterate toward the zero-temperature fixed point. The
long-scale behavior of the system is governed by the
behavior at A(b,Tr) as Tr—0. When the order parame-
ter is not conserved it has been well established"’~? that
A=b"?in that limit. It is straightforward to show that
this leads to the Lifshitz-Cahn-Allen!® growth law
[L(t)~t'"2]. However, the situation for phase separation
on a lattice, with a conserved order parameter, is qualita-
tively different. The time-rescaling factor A does not tend
to a finite constant at low temperatures, but it approaches
zero instead.!! The vanishing of A at zero temperature
follows from the fact that the system freezes.!> At finite
temperatures the activated behavior of A leads to a loga-
rithmic growth law, as shown in Ref. 1. Turning the ar-
gument around, if the growth law is logarithmic, as dis-
cussed in Sec. III, and given by L(1,§)=Ly+&1In(Vyt /§),

then the assumption of self-similarity, L(z,£)
=bL(At,/b), determines A to be of the form
A=b—le TolPTV%

This paper is organized as follows: We define, in Sec.
II, the model studied in the MC simulations and give the
MC results for quenches to zero temperature under a
variety of conditions. Then, in Sec. III, we present our in-
terpretation of the MC results and their implications for
quenches to finite temperatures in terms of simple con-
siderations of interface dynamics. We also present a de-
tailed comparison with the results of Ref. 5. In Sec. IV
we recapitulate and point to directions for future work.

II. MODEL AND MONTE CARLO RESULTS

The model we study is the standard Kawasaki'® spin-
exchange kinetic Ising (SEKI) model of a binary alloy.
We consider a set of variables o; defined on lattice sites i.
In the absence of vacancies, the o; are Ising variables,
o;=*1, the two values representing two chemical species
A and B. We limit ourselves to the case where there are
only nearest-neighbor interactions with coupling constant
K=—BJ=—J/kgT, where J is the exchange constant
which, in the present case of phase separation, must be
taken to be positive. For fast quenches to a final tempera-
ture Tr, the mode assumes nearest-neighbor exchange
probability (due to interactions with a thermal bath) of the
form

W,;=+[1—tanh(BAE/2)], 2.1

where AE is the energy difference between the configura-
tions before and after the exchange. Equation (2.1) impli-
citly defines the unit of time. We will measure our time
in Monte Carlo steps (MCS) defined as 1 MCS=N ex-
change attempts, where N is the number of sites. Most of
the work reported here was performed on a square lattice,
but some of the results were also obtained on a triangular
lattice as we shall see.

To introduce vacancies, we allow the variables o; to
take on a third value, o; =0. Thus, the energy associated
with a nearest-neighbor bond between an atom and a va-
cancy vanishes. We will be concerned here mostly with

the case of annealed vacancies, which are free to move by
exchanging positions with neighboring atoms according to
the probability given by (2.1). Note that W;; satisfies the
detailed balance condition whether vacancies are present
or not. We will also briefly consider the case of quenched,
fixed vacancies where all attempts to exchange an atom
and a vacancy fail.

As explained in the Introduction, we are primarily con-
cerned here with quenches from a totally disordered state
(Ty=w or K;=0) to zero temperature (Tr=0 or
Kr= ), for various values of the relative atomic concen-
tration and number of annealed vacancies. We have per-
formed our MC simulations, for the above model, for dif-
ferent values of the concentration c=N, /(N4 +Np) of
A particles and of the vacancy density v=N, /N (N is the
total number of sites). We have investigated the values of
¢ c=-§-, %, -f;, and %, and 15 values of v ranging from 0
to 0.85. In all cases the system freezes: further exchanges
lowering the energy are impossible.

To see how this happens, and to understand why, it is
useful to first consider, qualitatively, the variables v and ¢
separately. When v =0 but ¢ < +, the morphology of the
system changes from a percolative structure similar to
that found at ¢ =5 (as given, e.g., in Fig. 1 of Ref. 1) to a
collection, when c¢ is very small, of many compact struc-
tures imbedded in a matrix of the majority phase. The
domains of the minority phase are, however, not droplet-
like but similar to those found in Refs. 1 and 14. This
can be clearly seen in Fig. 1.

Let us now turn to what happens for quenches with dif-
ferent values of v >0, and c=%. When v is small, the
system freezes with vacancies occupying positions in the
walls between 4 and B domains, but which are otherwise
random. This “wetting” behavior would raise expecta-
tions that, when v reaches a value related to the percola-
tion threshold,'® a change in behavior may occur. What
actually happens as the vacancy density increases is that
part of the vacancies phase separate: they start to form
their own domains (although of a smaller characteristic
size) and therefore have no effect on the rest of the sys-
tem. The overall appearance of the system is again as
found in Refs. 1 and 14, but with three kinds of domains.
An example of the morphological appearance of the sys-
tem in its frozen configuration is given in Fig. 2(a). Fur-
ther increases in v have no qualitative effect. Nothing
whatever happens as v is increased beyond the percolation
concentration. For noncritical quenches, the morphology
of the system is still the same: Fig. 2(b) corresponds to
the same vacancy concentration as Fig. 2(a) (v=0.25) but
for a noncritical quench (c=+). It is hard to distinguish
between the two figures without actually counting the
plus and minus signs.

This behavior can more easily be understood by recal-
ling the equilibrium phase diagram of an Ising model with
a fixed number of annealed vacancies.!® At low tempera-
tures two phases coexist, one phase has a small vacancy
concentration, and the other is vacancy-rich: Once it is
established that a small density of vacancies has little ef-
fect on the system, the separation tendency (one must em-
phasize that separation is only very partial) negates the ef-
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FIG. 1. Morphology of the quenched structure for noncriti-
cal quenches. The — signs represent 4 atoms and the + signs
B atoms. The concentration ¢ of A atoms is ¢ =3 1 in panel (a)
and c=% in panel (b). Both panels correspond to snapshots
taken at t=400 MCS, at which time no further exchanges
lowering the energy are possible. The size of the system is
48X 48 sites.

fect of increasing vacancy density. In fact, the notion that
increasing either ¢ or v will increase diffusion is based on
the idea that differences in chemical potential will drive
the interface velocity. But, since the competing phases
have the same chemical potential, this does not happen.

Clearly, it is desirable to make the above considerations
more quantitative. A good measure of how far the system
has progressed toward equilibrium is given by the quanti-
ty

e(t)—e(0)

A —ey

, (2.2)

where €(¢) is just the nearest-neighbor correlation function
(or energy in units of —4J), and eg =1—v is the equilibri-
um value of € associated with the final state Tr=0, while
€(0) corresponds to the initial state 7= . Note also
that ez —e(t) is a measure of the amount of interface
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FIG. 2. Morphology of the system when annealed vacancies
are present. The symbol O represents a vacancy. In panel (a)
=% (critical quench) and the vacancy concentration is

v=0.25, while in panel (b) c=—§- and v=0.25. All other pa-
rameters are as in Fig. 1.

present in the system. The quantity () measures how
far the system has progressed toward equilibrium before
freezing. If the system reaches equilibrium 7( 0 )=1.

We have obtained the quantity &(¢) (and r) from our
MC simulations, for the values of ¢ and v indicated above.
The simulations have been carried out for square-lattice
systems ranging in size from 16X 16 to 48 X 48 (we have
verified that finite-size effects are eliminated!’) and for
times long enough (several hundred MC steps) so that the
system locks up: additional exchanges increasing €(¢) are
impossible. The results are averaged over enough runs
(20—25) to allow for at least two-digit precision in &(z).
The time it takes for the system to freeze can be associat-
ed with a characteristic time 7 defined by £(7)=0.97¢( « ).
Although &(¢) is a smooth, monotonic function, the way
in which &£(z)—¢&( ) cannot be characterized by an ex-
ponential or a single power law.

For critical quenches (¢ = ) the results are reported in
Table I, as a function of v. One can see that ( « ) at first
increases slightly with v, to a maximum of only 0.52 at
v=0.4: the annealed vacancies favor equilibration very
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TABLE I. Results for critical quenches to Tr=0, as a func-
tion of the vacancy concentration v. The quantity (¢) is the en-
ergy (in units as defined in the text), and r(¢) is given by Eq.
(2.2).

v e(t=0o0) r(oo)
0.0 0.46 0.46
0.05 0.44 0.46
0.1 0.42 0.47
0.22 0.39 0.49
0.25 0.37 0.50
0.28 0.35 0.50
0.33 0.34 0.51
0.35 0.33 0.51
0.40 0.31 0.52
0.45 0.27 0.51
0.47 0.27 0.50
0.5 0.25 0.49
0.6 0.19 0.48
0.75 0.11 0.44
0.85 0.05 0.33

slightly. When v is increased further, however, r( o) de-
clines sharply, down to a value of 0.33 at v=0.85. The
time 7 remains at ~60 MCS, independent of v, for ¢ = %
Thus, we see that the vacancies make only a small quanti-
tative contribution to the equilibration of the system when
O0<v<0.4.

On the other hand, the main effect of increasing c at
constant v is to sharply decrease 7, e.g., to ~10 MCS at
v=0.1 and ¢=0.1. For noncritical quenches the system
already has, at t=0, a finite value of €(¢); therefore &(¢)
saturates faster, even though e( o) does increase some-
what with c¢. In all cases we have investigated, r( « ) does
not exceed 0.55.!® These results are summarized in Table
II. Note that the values of r( ) and €( o) that we find
represent a high degree of disorder. For the equilibrium
system, with c=+ and v=0 a value of £=0.55 occurs
only when the temperature is well above T,, and the sys-
tem is well into the disordered phase. Thus, the quenched
system is very far from equilibrium when it freezes.

The annealed, mobile vacancies discussed above must
be distinguished from quenched, fixed vacancies, which,
as is well known, are often an important factor in prevent-
ing a system from reaching equilibrium. Indeed, if we as-
sume quenched, instead of annealed vacancies, we find
that r( ) always decreases as a function of vacancy den-
sity: at ¢ =% and v=0.25, for example, () is 0.28 for
quenched vacancies and 0.50 for annealed. The two kinds
of vacancies have different effects which should not be
confused. Quenched vacancies obviously do not phase
separate and equilibrium conditions are then determined'®
from percolation considerations.

We have performed two additional checks of the gen-
erality of the freezing effect. First, we have performed
similar simulations for a triangular lattice and found the
same behavior: the system freezes. Second, to make sure
that the effect is not an artifact from the assumption of a
sudden quench to Tr=0, that is, coupling Kr= o or
up=tanhKr=1, we have performed quenches with a

TABLE II. Results for noncritical quenches as a function of
atomic concentration ¢ and vacancy concentration v. The time
7 is defined in the text, and it is given in MCS.

v c €( 0 )—e(0) r(eo) T
0.1 5 0.42 0.47 50
0.1 T 0.38 0.45 50
0.1 + 0.20 0.36 20
0.1 > 0.14 0.36 10
0.25 5 0.37 0.50 60
0.25 T 0.33 0.48 40
0.25 + 0.22 0.44 30
0.25 % 0.17 0.44 20
0.5 5 0.25 0.50 60
0.5 T 0.25 0.53 60
0.5 + 0.22 0.55 50

time-dependent bath temperature: ug(z)=1—e~"". This
corresponds to the equilibrium correlation length at the
bath temperature vanishing as 1/¢ at long times. We have
used times y ~! ranging from 1 to 100 MCS. (The case
¥ =0 is the sudden-quench limit.) We again find that
the system freezes. Although a finite ¥ has a very notice-
able effect on 7 (since obviously 7>y ~!), it has only a
fairly small effect on €( o0 ).

The inescapable conclusion is that the freezing phenom-
ena are in fact quite robust, and not at all a result of the
limitations and assumptions of the specific case discussed
in Ref. 1. In Sec. III we turn to further interpretation of
these results.

III. ANALYSIS

Let us now turn to some general considerations which
are helpful in understanding the results presented in the
preceding section and in relating these results to the
behavior of the system when quenched to finite, low tem-
peratures. This analysis is qualitative but leads to a physi-
cal understanding of the more rigorous renormalization-
group analysis given in Ref. 1. Let us assume that our
system has evolved sufficiently that essentially any further
motion occurs at an interface. Then for the SEKI model
we can define a local interface such that as one crosses the
interface the sites above and below the interface corre-
spond to different chemical species (see Fig. 3). The
*“velocity” or rate ¥V, at which a particle, for example, the
circled particle in Fig. 3(a), will cross the interface is pro-
portional to the probability that this particle will ex-
change positions with a neighboring particle across the in-
terface. As seen in Fig. 3, each exchange requires a finite
amount of energy AE, given by

AE=2J(z—1-n),
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FIG. 3. The top of the figure, (a), shows the three possible
configurations seen by the circled + particle at the interface.
The position of the interface is shown by a dotted line. The con-
figurations (b) show the system after exchange. Below each con-
figuration is the change in energy in the exchange, AE, and the
number n of chemically different neighbors which generate a
kink in the interface.

where n is the number of chemically different neighbors
of the exchanging particles which generate a kink in the
interface (see Fig. 3). We can then, in a rough sense, de-
fine a local curvature k via

k=(z—1—n)"1. (3.2)

As n takes on its various discrete values, k increases as n
increases. Since n =0 corresponds to a locally flat inter-
face, this identification makes sense. We have then, from
(2.1),

—2K /x
€ (3.3)

It is clear then, at zero temperature, after one has set up a
collection of interfaces of the type defined above, that
V=0 and the system will freeze.

The analysis above concerns the introduction of the lo-
cal “curvature” k. We now consider a situation where
there are a collection of droplets, and a given droplet is
characterized by a “radius” R. It is, of course, impossible
to go from a local, discrete variable which can take only a
small number of values to a continuous variable ranging
from zero to infinity. Note, however, that the important
point is not the range of k, but the range of k£ which is
from zero to infinity. We believe it is reasonable, in
developing a theory for the velocity of the interface of this
droplet, to assume one can use (3.2), but with the local
“radius” «~! replaced by the average radius (R —L,),
where L reflects the fact that for small enough R one
obtains monomers which are mobile (not activated) even
at zero temperature (AE =0 for monomers). For suffi-
ciently low temperatures the equilibrium correlation
length £ is proportional to 1/Ky and one can write that
the interface velocity is given by

VeV,e —(R—Lg)/§

(3.4)
While one can then, using this assumption, develop a
theory of the droplet growth or decay for this system, for
our purposes here it will be sufficient to use a scaling ar-
gument to extract the growth law associated with (3.4).
Assuming

dR
V=— .
at (3.5)
and R ~L we have
_d_L__ —(L—Ly)/E
ar = Voe (3.6)
Clearly this has the solution
L(t)=Lo+&In(Vyt/€) 3.7)

which is essentially the result obtained in Refs. 1 and 3.
This analysis should be contrasted with that due to
Lifshitz and Slyozov* which has been supposed to be
applicable to this problem. In this case the minority
phase is assumed to form compact structures (droplets)
which can be characterized by some effective R; for the
ith droplet. It is then argued, invoking local equilibrium
at the interface and the Gibbs-Thomson relation, that the
velocity of the interface of this compact structure is given
by
L

(=g (A=a/R), (3.8)

where D is a diffusion coefficient, A is the degree of local
supersaturation, and a depends on the surface tension and
the concentration of saturated solution. Combining this
result with the constraint of conservation of particles, one
can develop a statistical theory for the growth of droplets
in this system. The main result for our purposes here is
that the characteristic droplet size L(z) grows as ¢!/,
This result is quite different from what we have found
and what is found experimentally (see below). It follows
from our arguments that the assumption of local equili-
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TABLE III. Comparison of power-law and logarithmic fits
for the data on Table VII of Ref 5 (samples 4-D, A’-D’) and on
Table I of Ref. 6 (which we label H). In the second column is
the best-fit power-law exponent for each sample. In the last two
columns we have the coefficients of determination for the
power-law and logarithmic fits. The overall size of these coeffi-
cients reflects the quality of the corresponding data, which
varies from sample to sample. We see that the logarithmic fit is
always better, except for sample C’ where the exponent is small-
est.

Sample Exponent r? (power) r? (log)

A 0.20 0.97 0.995
B 0.11 0.57 0.63

C 0.22 0.98 0.99
D 0.12 0.59 0.66
A’ 0.13 0.98 0.99
B’ 0.16 0.83 0.87
C’ 0.088 0.95 0.93
D’ 0.10 0.77 0.81

H 0.30 0.97 0.99

brium and the use of the related Gibbs-Thomson relation
are not justified in the case of solid-on-solid diffusion as
manifested by the SEKI model at low temperatures.
There simply does not appear to be any compelling justifi-
cation for assuming that the rate at which particles leave
the surface of a droplet at low temperatures is proportion-
al to the equilibrium averaged diffusion coefficient D
governing the minority set of particles. Our statements
are, at this point confined to the case of solids. Phase
separation involving fluids may be quite different. Indeed
the Lifshitz-Slyozov*® model may well then apply. Thus,
in contrast to critical phenomena, the existence of an
underlying lattice and the associated processes at low tem-
perature can play an important qualitative role in the
growth kinetics of certain systems.

Our logarithmic growth law gives a superior fit to re-
cent neutron scattering experiments>® on binary alloys
when compared to power-law fits. This can clearly be
seen in Fig. 4 and Table III where experimental results of
Ref. 5 are compared with a power-law fit and the loga-
rithmic law. For all samples in Ref. 5 (except one for
which the exponent is very small) we find that the loga-
rithmic law gives a better fit to the experimental data than
a power law. The logarithmic fit is even superior to the
four-parameter, two-power-law form used in Ref. 5 to fit
some of their data. Furthermore, the exponents fitted in
Ref. 5 (none of which is near +) vary wildly from sample
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to sample, and it is hard to believe that they could
represent a general law. The logarithmic law agrees also
with the experimental results of Ref. 6 better than any
power law. Thus, the experimental evidence clearly favors
our conclusions.

IV. CONCLUSIONS AND FUTURE WORK

The main conclusion of this paper is that the freezing
phenomena associated with zero-temperature quenches are
in fact quite robust and not at all a result of the limita-
tions and assumptions of the specific case discussed in
Ref. 1. We have also presented physical arguments based
on the hypothesis of the existence of an activated domain
interface velocity. These arguments are consistent with
the conclusion that the characteristic domain size in-
creases only logarithmically for quenches to finite tem-
perature. This conclusion appears to be substantiated by
experiment, as we have shown by comparing with the re-
sults of Refs. 5 and 6.

The physical arguments given in Sec. III, while appeal-
ing to physical intuition, are certainly not conclusive. For
the case of critical quenches, a detailed analysis of the
problem (leading to the same logarithmic law) was per-
formed by a combination of MC simulations and RG
techniques in Ref. 1 (see also Ref. 3). It is obviously
desirable to generalize the analysis of Ref. 1 to noncriti-
cal quenches. Note that it is virtually impossible to con-
clusively prove the existence of a logarithmic law by
direct “brute force” MC simulations. As shown in Ref. 3
over the range of times accessible to MC simulations, the
logarithmic law mimics quite well a power law with some
effective exponent.

Our statements are restricted to solids. For spinodal
decomposition in fluids the Lifshitz-Slyozov theory may
apply. Thus, in contrast to critical phenomena, the ex-
istence of an underlying lattice and the associated activat-
ed processes at low temperatures can play an important
qualitative role in the growth kinetics of certain systems.
There are many systems which freeze after being
quenched to zero temperature and it is likely that at least
some of these fit into the same class of dynamic behavior
for the growth kinetics as discussed here.
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