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Interpolative solution for the periodic Anderson model of mixed-valence compounds
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A general solution for the periodic Anderson model of mixed-valence compounds is presented.
The method uses Green-function techniques and is based on the introduction of an appropriate self-

energy by interpolating between two extreme limits: Small intrasite Coulomb interaction and small

hopping integral between the d and f levels of the same site. The method has been checked for a

simple model of an impurity, and the conclusion is that its accuracy for calculating the density of
states is better than 10 fo. %'e have applied the general method to a one-dimensional chain, with two

electrons per site, a degeneracy of spin z for the f level and zero temperature, and have calculated

its electronic density of states. We give results for the electronic bands near the fundamental gap
and the integrated density of states for different parameters, and show that the paramagnetic phase
is always insulating in agreement with a kind of Luttinger's sum rule.

I. INTRODUCTION

The problem of a magnetic impurity in a metal has
been extensively analyzed in the last ten years. It is worth
mentioning in this context the renormalization-group
method, that has been successfully applied to analyzing
the Kondo problem' and related Anderson Hamiltoni-
ans, ' and the exact solution given by Tsvelich and Wig-
mann to the Anderson problem of a spin- —,

'
impurity.

The mixed-valence regime of impurity Anderson prob-
lem has also received a great attention due to rare-earth
compounds; dilute mixed-valence alloys are analyzed by
means of that Hamiltonian, and even concentrated alloys
are treated similarly when the effect of the coherence
among rare-earth impurities can be neglected. Scaling
analyses ' and renormalization™group results show that
the mixed-valence regime does not present a universal
behavior, due to marginal operators that play a nonnegli-
gible role. A different solution, based on a perturbation
theory with the inverse of the impurity orbital degeneracy
as the expansion parameter, has been recently proposed to
analyze that regime. In spite of these efforts for dilute
impurities, there is a lack of full understanding of the
periodic model for a mixed-valence crystal. '

The aim of this paper is to present a new method which
allows us to obtain a general solution of the periodic An-
derson Hamiltonian (a preliminary report was published
in Ref. 13}. The method is a straightforward generaliza-
tion of a solution for the case of an impurity' which uses
a Green-function method and the construction of an ap-
propriate self-energy. Although this solution was given
for a chemisorption problem, we shall show that it is good

enough for an impurity in the mixed-valence regime. The
solution given to the mixed-valence regime can be extend-
ed to the Kondo regime as well, and allows us to analyze
the transition from one time to the other. In this paper
we present the solution for T=O, so no temperature-
dependent property is analyzed, and we concentrate on
discussing the density of states and the electronic bands
for the periodic Hamiltonian.

II. THE SOLUTION FOR A SINGLE IMPURITY

In a previous paper, ' a solution to the problem of a
magnetic impurity in a metal was given by using a
Green-function formalism. The solution was prompted
by an analysis of the Anderson-Newns problem of chem-
isorption, but the structure of the model Hamiltonian for
this case is the same as the one for a magnetic impurity in
a metal. The method was checked in simple models, ap-
propriate for the chemisorption problem of H on transi-
tion metals. In this section we discuss the same solution
when applied to the problem of a rare-earth impurity in a
transition metal. Let us comment that, in regards to the
single impurity problem, the method we are going to dis-
cuss is not competitive with many other approaches well
known in the literature however, the advantage of this
method is that it gives results for the rare-earth-impurity
problem accurate enough to suggest that a generalization
to the periodic Anderson lattice problem may be used
with great confidence. (Indeed, the method has been ap-
plied successfully to a one-dimensional Hubbard Hamil-
tonian. '

) This may represent a significant step forward
for the understanding of the periodic Anderson Hamil-
tonim.
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It is well known that the Anderson Hamiltonian of an

impurity

H= QEfnf o+ QEdndi rt+r g CdirrCdjrr

+ Vg (CdpoCfo+CfoCdp )+ Unf, nj, ,

can be solved' by using a Green-function method and by
introducing the appropriate self-energy Xff ((0). In Eq.
(1), the f state is assumed to have only the degeneracy of a
spin —,', t is the hopping integral between first-nearest

neighbors of the d band, V measures the coupling between
the f state and the d band at the same site 0, and Uis the
intrasite Coulomb interaction between electrons of oppo-
site spins in the f level.

The approximate solution proposed in Ref. 14 to solve
Hamiltonian (1) is based on the calculation of a self-

energy, Xff (p)), valid for all the ranges of U. This self-

energy is calculated by an appropriate interpolation be-
tween the two limits, (i) U/V~O, and (ii) V/U~O. This
interpolation is based on the realization that the self-

energy for these two limits has the same behavior when p)

goes to oo. In fact, consider for the limit U/V~O the
second-order perturbation to the self-energy, ' Xff

( z) i F nf (E2)nf (E3)nf (E4)
Xff o U ——dE2 dEi dE4

F F m+E2 —E3 —E4+ r g

Ep nf (E2)nf (Ei)nf (E4)
+ U dE2 dE3 dE4

F —00 co+E2 —E3 —E~+i g
(2)

and take in this equation the limit p)~co. [In Eq. (2),
nf (E) is the local density of states for the f level, and rl is
a positive infinitesimal. ] It is easy to see that

where Xff o(rp) is calculated by using the effective Hamil-
tonian

lim Xff (p))=U i nf (1 nf —)

N
(3)

H ff —QEpnf, + QEdnd, +r g Cd'Cdj'

atomic 2 f ( f
Xff ~ U

co Ef (1 nf —)U— —

This self-energy behaves as
—IT( 1

—tr
)yatomic Up

f flm
CO~ co N

(4)

(5)

where nf is the total electronic charge per spin in the f
level.

On the other hand, for V~O, we can analyze the densi-

ty of states for the f level, by considering its atomic limit.
It is well known' ' that in this limit, Xff (p)) takes the
orm

+ V g (CdprrCfrr+ CfrrCdprr) (8)

The role played by Ep in the effective Hamiltonian, H, ff,
is to introduce self-consistency' between the charges nf
as calculated from the final solution and as obtained from
Hamiltonian (8).

Once we have defined Xff o(p)), we can calculate most
of the properties of interest for the impurity quasiparti-
cle spectrum, ground-state energy, etc., %'e have checked
this method by considering a simple model, similar to the
one discussed in Ref. 14. We simulate the metal by a sin-
gle atom. The corresponding Hamiltonian is

for p)~ oo, this limit coinciding with Eq. (3).
Equations (3) and (5) suggest the introduction of an in-

terpolated self-energy, Xff (p)), which gives the correct
limits for U~O and V~O. To this end, we rewrite Eq.
(4) as

H = g Ed nd o+ g Ef njo

+ g V(Cd rrCf +CfrrCd tr)+ Unf, nf J (9)

atomic 2 f f
Xff "(p))= U

Ef+(1 nf ) U ——E()1—
Eo

Xff (co)=
X() ( )

Ef(1 nf )U —E() Xff (p—))

nf (1 nf ) —U

where Ep is an effective level for the f state which is used
later on to introduce self-consistency. Equation (6) sug-
gests the use of the self-energy

We have chosen parameters appropriate to a rare-earth
impurity in a d-metal matrix, and have calculated the ex-
act solution of (9) and the approximate one as given by
our method.

We present results for the following set of parameters
in arbitrary units: Ed ——0, U=8, and (i) Ef=0.1, V=S,
1, O.S, 0.2, and 0.04; (ii) Ef= —0.1, V= 5, 1, 0.5, 0.2, and
0.04. Ef has been chosen close to zero: For this case the
accuracy of our approximation is the lowest one. Table I
shows the levels and their weights for the exact and ap-
proximate solutions. These tables show that our approxi-
mate solution is quite close to the exact one for high V
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TABLE I. f levels (in arbitrary units, see text) and weights for different values of the parameters ap-
pearing in the Hamiltonian (9). Results for the approximate solution obtained from Eq. (7) and the ex-
act one are given.

Approximate
Level f weight

Exact
Level f weight

Approximate
Level f weight

Exact
Level f weight

Ef——0.1, V=5, U=8 Ef———0.1, V= 5, U= 8

—13.68
—3.69

6.38
19.19

0.02
0.34
0.59
0.04

—13.70
—3.70

6.36
19.23

0.02
0.35
0.59
0.04

—13.73
—3.74

6.29
18.98

0.02
0.35
0.58
0.04

—13.75
—3.75

6.27
19.01

0.02
0.35
0.58
0.04

Ef——0.1, V=1, U=8 Ef———0.1, V= 1, U= 8

—2.44
—0.47

1.51
9.60

0.11
0.16
0.55
0.18

—2.51
—0.51

1.45
9.79

0.07
0.19
0.56
0.18

—2.46
—0.47

1.42
9.31

0.12
0.16
0.52
0.19

—2.53
—0.53

1.35
9.50

0.09
0.195
0.52
0.19

Ef ——0.1, V=O 5, U=8 Ef———0.1, V=0.5, U= 8

—1.16
—0.19

0.81
8.75

0.14
0.11
0.54
0.21

—1.23
—0.23

0.75
8.92

0.08
0.16
0.56
0.20

—1.19
—0.18

0.72
8.45

0.18
0.095
0.475
0.24

—1.24
—0.24

0.66
8.62

0.12
0.16
0.49
0.23

Ef=0.1, V=0.2, U= 8 Ef ———0.1, V=0.2, U= 8

—0.44
-0.06
9.36
8.34

0.14
0.08
0.57
0.21

—0.50
—0.085

0.34
8.45

0,07
0.14
0.60
0.19

—0,48
—0.05

0.28
8.05

0.27
0.04
0.39
0.30

—0.50
—0.09

0.24
8.15

0.17
0.13
0.42
0.28

Ef ——0, 1 V=0.04, U= 8 Ef———0, 1 V=0.04, U= 8

—0.12
—0.01

0.13
8.20

0.02
0.07
0.82
0.09

—0.14
—0.01

0, 125
8,23

0.01
0.08
0.83
0.08

—0.14
—0.002

0.04
7.91

0.41
0.003
0.16
0.42

—0.14
—0.01

0.03
7.92

0.37
0.05
0.17
0.41

( V&&
~ ef ~

). When V decreases, we find a maximum
discrepancy between the two solutions for V=0.1; indeed
for V much less than 0.1, that is V~&

~
ef ~

both solu-
tions are closer to each other. It is worth noticing that in
any case our approximate solution reproduces all the im-
portant features of the levels of the exact case and that the
total charge in the occupied levels is quite close to the one
given by the exact solution, i.e., for V=0.2 and Ef ——0.1,
the f level has an occupancy of 0.22 in the approximate
solution, a value to be compared with the occupancy of
0.21 for the exact case (for V=0.2 and Ef= —0.1, the oc-
cupancies are 0.31 and 0.30, respectively). The only sig-
nificant discrepancy that our results show, when com-
pared with the exact ones, is related to the weights of the
two levels, i.e., for Ef —0.1 and V=0.2, —t—he weights of
the two lowest f levels for the approximate solution are
0.27 and 0.04 instead of 0.17 and 0.13, while on the other
hand, the total weight of the two lowest levels (including f

and d levels} is not exactly one by a few percent (for
Ef=0.1 and V=0.2, that weight is 1.05}. These differ-
ences are not too much important because the sum of the
weights for the two occupied f levels is very well approxi-
mated by our solution. Considering all together these
comments and the results shown in Table I, we conclude
that our approximate solution has an accuracy, in the
worst of the cases, better than 10%.

On the other hand, let us cornrnent that these results are
similar to the ones we have calculated with a three-atom
chain for the metal; we do not discuss this case for the
sake of brevity.

The results sho~n in Table I correspond to very high
values of U. This is the usual case for the rare-earth im-
purities. For that high-U value, we can slightly modify
the procedure given above. To this end, we analyze the
behavior of Xff ~{co),as given by Eq. (3), for U~ oo. Ac-
cordingly, we write Xyf (co) as
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nf (1 —nf )U
Xff (~)=-

Ef+(1 —nf )U —Eo

tlf ( 1 —tlf )U1— ~ff &Ef+(1 —nf )U —Eo
(10)

and consider that U &~Ef Eo—(Ef and Eo remain finite)
and that Xff~ goes like 1/U . Equation (10) can be
developed as a series in 1/ U for U~ ao, which yields

nf
lim Xff ~(co) —tlf U+ (Ef Ell)—

1 —nf

+0y(2) U

Neglecting terms going like 1/U, we find that, for
U~ QQ Xff is equivalent to the one-body potential

we have nf electrons with spin ( c—r), the maximum
density of states available for electrons with spin o is
(1—nf ).

In Table II we give the results calculated for the one-
atom chain and U~ac, E~ ——0, Ef——0.1, and V=0.2.
Comparing these results with Table I we see that, indeed,
U= S corresponds to a very high- U value.

III. THE SOLUTION FOR A PERIODIC
ANDERSON LA j. I ICE

—nf U+ (Ef—Eo),nf

1 —nf

plus the self-energy

(
—&7)2U2nf

ff ~ C2)

ff a

(12a)

(12b)

In this section we discuss how to generalize our method
to a periodic Anderson lattice. We start by writing the
corresponding Hamiltonian

H= QEfnf; + QE~n&tt +~ g C~; C~j

+V+(C&t; Cf' +Cf C&j )+Up'nfj)tlftl,
Note that ( —nf U) in Eq. (12a) cancels out the Har-

tree contribution nf U, in such a way that we can define
the following renormalized energy for the f level as

nf
ef" =Ef + (Ef—Eo) . (13)

1 —nf
Equations (13) and (12b) define the energy the self-energy
for the rare-earth impurity in the limit U~oo. It is
worth commenting that for co~oo, Xff (co) behaves as
[see Eqs. (3) and (5)]

—cr

lj,m off ~~ Q)
1 —nf

This shows that the total density of states in the f level is
given by

r

1+ =1—nf
1 —nf

This is the expected result, since in the high-U limit we
cannot introduce more than one electron in the f level: If

l) 0'

which is analogous to Hamiltonian (1). This Hamiltonian
can also be solved by using Green-function techniques and
by introducing the self-energies, Xff j(~). This'is an ob-
vious generalization of the impurity case: In the present
case we have to introduce off-diagonal self-energies asso-
ciated with the indirect interaction between f levels. By
using the translational symmetry of the lattice, we intro-
duce a k vector and the corresponding self-energy

Xff (k,co). The periodic Anderson problem can be solved
by calculating that self-energy, Xff (k,~). Now, we pro-
pose to calculate Xff (k, co) by a procedure similar to the
one followed in Sec. II.

The crucial point is the behavior of Xff (k, co) for
~~ ao. As discussed in Sec. II, we consider two different
limits: (i) U/V~O, and (ii) V/U~O, and look for an in-
terpolation between the corresponding self-energies.
Thus, consider the second-order perturbation to the self-
energy for the limit U~O. A standard calculation'
yields

(2) 2 F ~ ~ nf (k' E2)nf&(k'+q+G&Ei)nf (k q+G'&E4)—
Xff (k,a))=U dE2 dE2 dEg

ql, k' F F m+E2 —E3 —E4+i q

nf (k', E2)nf (k'+ q+ G,Ei )nf (k —q+ G', E4)+ U2 dE2 dEi dE4
F oo 00 m+E2 —E3 —E4+i q

(16)

where G and G' have to be chosen in such a way that (k'+q+G) and (k —q+G') belong to the first Brillouin zone
(BZ), and the summation on q and k' extend to the same first BZ. In Eq. (16), nf(k, E) is the Fourier transform extend-
ed to the first BZ of

nf(R;f, E)= ——ImGff(Rlj, E),1

where Rtj is the vector joining two lattice points. Equation (16) can be Fourier transformed and written as
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EF ~ nf (R;j,E2)nf (R j,E3)nf (R j,E4)
Xff (R;&,rp) = U dE2 dE3 dE4—Qo ~+E2 —E3 —E4+ ) g

xF nf (Rtj,E2)nf (Rj,E3)nf(RIy, E4)
+ U dE2 dE3 dE4

ce 00 cu+ E2 —E3 —E4+i g
(17)

Taping the limit cp ~ ao and

nf R,E E = I 0, Eq. &7 yields
noting that nf (1—nf )

lim X«(k, rp)=U'
v o ' '

pi Ef—(1 —nf —) U
(21)

5R p[5R. p
—nj (Rtj)]nf (R )j)

lim Xjf'~(Rij, rp) =U
CO

(18a)

this is zero except for R=O; for this case

where this self-energy behaves as U nf (1 nf —)/rp, for
Equations (17), (19), and (21) are the basic equa-

tions allowing us to introduce a self-energy Xff (k, rp)

which interpolates between the t~o limits U~O and
V~O. As in Sec. II, we introduce the self-energy

lim Xff (Rtj, ——O, rp ) = U
(1—nf )nf

Ol~ co N
(18b)

Xfj (k, ro)=
Xff' (k, rp)

Ef+(1 nf )—U Ep Xff'~(—k, rp)

nf (1—nf ) U2

This behavior of Xff ~(Rtj rp) when rp~oo shows that

lim Xjj (k, rp)=Uiz) (1 nf )—nf
N-+ ce N

(19)
where Xff' (k, rp) is given by Eq. (17) but using instead of
nf (k,E) the effective density of states, nf, tt(k, E), cal-
culated by means of the one-electron effective Hamiltoni-

On the other hand, for V~O, we expect that only the
diagonal self-energy, X«;;(rp}, is relevant: This term in-
cludes the contributions related to the intrasite interaction
for the isolated f shell. According to our discussion in
Sec. II, we expect that in this limit ( V~O)X«;; (rp) is
given by

Heft = g Epttft, o+ g Ejngia+ t g, dinCdjn
l, o

+V+(Cd; Cj; +Cf; Cd; ) . (23)

nf (1—nf )
lltrl Xff ii ~(N) U
v o

'"'
rp Ef (1 nf —)U—— (20)

Since Xff ij (rp } for i &j and V 0 can be neglected, we
can also write the equation for Xff (k ro) as

The effective level Ep is calculated by imposing self-
consistency in nf for H,tt and the final solution calculat-
ed with the self-energy Xff (k, rp). Note that once we
know Xff (k, rp), we can write down the Green function
G (k rp) as

G~(k, rp) Gdf(k, cp)

G '"~)—
Gfd(k, ~) G«(k, ~) Q)+Ef + U(nf ) +X«(k N)

(24)

ik.R;where e~(k)=t g,. NNe '. From Eq. (24), we calcu-
late the different Green-function components, and their
associated charges

TABLE II. f levels (in arbitrary units, see text) and weights
for U~ao, V=0.2, Eq ——0, and ef ——0.1 in the Hamiltonian (9).
Results for the approximate solution obtained from Eq. (11) and
the exact one are given.

nf (k, rp) = ——ImGff(k, cp), (25a) Approximate
Level f weight Level

Exact
f weight

ng (krp) ,——= ImG~(k„ro) . (25b)

This ends our discussion for the general method. At this
point it is convenient to comment that the case U~ 00, in

—0.42
—0.05

0.37

Eg ——0.1,
0.18
0.05
0.53

V=0.2, U = (x)

—0.49
—0.08

0.34

0.08
0.13
0.59
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the mixed-valence regime, can be explicitly analyzed,
similar to the discussion in Sec. II. Without going into
details, let us only write down the final results for the f
level and its self-energy as

—e)2 U2
Xjj ~(k, ro) = —

(2) (26)
Xjj' (k, ro)

Elf
ey =Ej+ (EI E()—);

1 —nf

results which are quite similar to the ones obtained for the
single impurity in Eqs. (12b) and (13).

On the other hand, it is worth commenting that the
general solution takes a quite simple way in the symmetric
case. Here, Ef——E~ ——,

' U and Eo ——E~ so that the inter-
polation formula for Xjj (k, ro) [Eq. (22)] goes over
Xjj'~(k, r0). In this case, our method reduces to the calcu-
lation carried out by Yamada and Yoshida, ' which ap-
pears to be a good interpolation between U~O and
U~0(). In this context, let us comment that for a sym-
metric diatomic molecule with a Hubbard interaction, the
second-order solution for the self-energy coincides with
the exact result, therefore, supporting our conclusion
about the behavior of Xjj (k, n)) for the symmetric case.

IV. RESULTS AND DISCUSSION

In this section we present the results obtained for a
one-dimensional model, zero temperature, and two elec-
trons per site. The general method presented in Sec. III is
independent of the dimensionality of the crystal, but the
discussion has been given for zero temperature. A gen-
eralization of our procedure to finite temperatures is
straightforward: it is only necessaty to introduce tem-
perature effects by means of Matsubara's technique in the
self-energy and the Green function.

First, we consider the case of finite U and analyze the
change in the intermediate valence as a function of the f
level. In Fig. 1 we show the charge per atom in the f
state (qj ) as a function of Ej for several values of U and
V =0.4t. Note that for U=O there is a linear relationship

between qj and Ej in the region of variation of qj, the
slope of this straight line is a function of V, increasing as
V decreases. As U increases, there appears a transition
region going from the previous linear relationship between

qI and U, to a constant value of qj. This region is rather
narrow and is localized around Ef—E~ -0. Once this re-
gion is crossed, qj remains near 1, up to a value of
Ef Egf ——U. %hen Ef decreases below this value qf
increases again, with a dependence on Ef given by a
straight line parallel to the one appearing for U=O.
Eventually, for U~a(), qj is practically 1 for all values of
Ef Eg less than zero. These results can be understood
by noting that for (Ej E~) &——U, the intra-atomic
repulsion prevents two electrons from filling the f level.
As soon as (E~ E~) ~ ——U, the second electron fills the
level and qj grows. On the other hand, for (Ej Eg) pos-
itive, qj decreases becoming less than 1: For this case
correlation effects are negligible, since the probability of
finding two electrons in the f level is small, and the
dependence of qj on Ej follows the straight line corre-
sponding to U=O. The present results indicate a continu-
ous dependence of qj on Ej and show that the simplest
version of the Anderson lattice (with no f-d correlation)
cannot describe the sharp valence transitions found in
anomalous rare-earth compounds. '

Our results show how correlation effects increase with
U. In the mixed-valence problem, U is rather high and in
the following we concentrate on discussing this high-U
limit by taking V~00, and by applying the method dis-
cussed in Sec. III. In our actual calculations, we have
slightly modified the method discussed in Sec. III by cal-
culating the second-order-diagonal and off-diagonal self-
ener(Ftes, Xjj'» (ro) and Xff )2 (ro), respectively, instead
of Xjj' (k,r0). It is much more cumbersome to calculate
the k-dependent self-energy, Xjj' (k, ro), than a few com-
ponents of Xff j(ru). Note t'hat these self-energies are re-
lated by the equation

X(2) (k ) y X(2) ( )

J

In Figs. 2—5 we show the f density of states for the

3
n~

1.5

QQ ) ) ~ i !
-8.u" -7.Q -6.0 -5.Q —~Q -3.0 -2,0

6) /t.

)

Q Q ~Q 2 Q 30

FIG. 1. Charge per atom in the f level as a function of Ej
for several values of U.

2-. Ql

ll

)I
)I
ll

II
Ij

)I
)I

&) l &M—
~ a.s

FIG. 2. f density of states for V =0.4t and qr =0.9
( 6f = 0 3 1t ). Dashed line: a local self-energy is used in the
calculation. Full line: full self-energy. p =—Fermi level for the
solution arith the full self-energy.
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FIG. 3. Same as in Fig. 2, for qf ——0,8 (ef ——0.22t). FIG. 5. Same as in Fig. 2, for qf ——0.46 (ef ——1.40t).

cases V=0.4t, and qf ——0.9, 0.8, 0.7, and 0.46, corre-
sponding to ef ———0.31, 0.22, 0.56, and 1.40. In the same
figures is shown the same density of state calculated by
neglecting Xff,2 (~) in Eq. (28); this calculation has been
made in order to check the validity of substituting

Xff ~(k,co) by a local self-energy, Xjf » (ro). The most
important result coming out of these calculations is that,
up to the accuracy of our calculations (- l%%uo), the Fermi
level (p) always lies in the energy gap no matter the value
of Ef, in agreement with considerations based on the
Luttinger's sum rule. " Let us remark that this result is a
further check to the procedure given in this paper, since
the self-consistency imposed in nf does not guarantee the
Luttinger's sum rule (see in this respect the comments of
Sec. II for the approximate solutions of two levels).

Figures 2—5 show the important effect of correlation
on the f density of states, this effect increasing with the
valence charge qf. In all the cases, we find two peaks
around the fundamental gap and a third peak at lower en-
ergies; this latter peak is a typical effect associated with
electronic correlation whose importance decreases with

qf. From these figures we can also see how the energy
gap increases with decreasing qf. It is worth commenting
that the energy gap is very sensitive to the approximation
made to calculate Xff(k, co). As Figs. 2—5 show, the ener-

gy gap is too small if we neglect the off-diagonal self-
energies components; a good calculation of the electronic
density of states for the Anderson lattice has to include
the strong effects of those off-diagonal self-energies. This
effect is much more important for qf close to 1; for qf
small (say, less than 0.5), a calculation of the energy gap
and the density of states which only includes the diagonal
self-energy gives quite reasonable results. '

Finally, in Figs. 6—9 we show the electronic bands near
the fundamental gap for the cases analyzed in Figs. 2—5.
We only show the energy region for which sharp levels
appear; outside this region, the levels are broadened by
correlation effects as measured by the imaginary part of
Xff (k, co). Figures 6—9 also show the important effects
introduced by correlation. For qf close to 1, the energy
gap appears between k points close to m./2. As qf
decreases, the minimum of the conduction band and the
maximum of the valence bands approach the k points 0
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FIG. 4. Same as in Fig. 2, for qf ——0.7 (e~ ——0.56t).
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FIG. 6. Electronic bands near the fundamental gap for
V =0.4t and qf ——0.9 (ef ———0.3lt}. Dashed line: a local self-

energy is used in the calculation. Full line: full self-energy.
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FIG. 7. Same as in Fig. 6, for qf ——0.8 (ef ——0.22t). FIG. 9. Same as in Fig. 6, for qf ——0.46 {ef ——1.40t).

and n, respectively. Thus, the maximum of the valence
band appears at k =n for qf (0.7, while the minimum of
the conduction band appears at k=O for qf &0.45. Below
this latter value, correlation effects are not very important
and the fundamental gap appears between the center and
the edge of the Brillouin zone as corresponds to the case
U=O.

Our results can only be compared with the ones ob-
tained by Jullien and Martin2 through finite-cell calcula-
tions. In order to compare the two calculations we have
calculated the different energy gaps associated with the
transitions n/2-n/2, 0-m/2 and 0~0. Our results are
shown in Fig. 10 for qf ——0.46 as a function of the in-
trasite Hubbard interaction (note that for U ~2t, the dif-
ferent gaps are constant, showing that we have reached
the high-U limit). These results are very similar to the

1.3

ones found by Jullien and Martin (see Fig. 6 of Ref. 22)
(we have found, however, some discrepancies with these
calculations in the Kondo reg™).

In conclusion, we have presented a method to analyze
the quasiparticle density of states, as well as other related
properties, of the Anderson Hamiltonian, where the f
state has been assumed to have the degeneracy of a spin

Although the method can be used to treat the Ander-
son lattice for any dimension, for finite temperatures and
for any degeneracy of the f state, we have only presented
results in one dimension, two electrons per site, and zero
temperature. For this case we find the following results:
(i) the paramagnetic phase is always insulating no matter
the f valence and the magnitude of U; (ii) the transition
from a phase of valence 1 to an intermediate valence is
continuous and this intermediate region appears for values
of Ef quite close to Ez.

Let us finally comment that the discussion of Sec. II as
well as the results coming out of our calculation and their

q) = 0.46

~ + ~ ~ /

I

(-I- 1.2

2-0 6.0

FIG. 8. Same as in Fig. 6, for qf 0 7 (Qf —0, 56t).
FIG. 10. Different energy gaps (see text} as a function of

U/t for qf ——0.46 {ef-1.40t}.
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good agreement with other results and the Luttinger's
sum rule, " suggest that the method given in this paper is
accurate enough to take our results with great confidence.
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