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Theory of the bound magnetic polaron in antiferromagnetic semiconductors
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An approximate quantum theory of the ground state of the bound magnetic polaron in antifer-

romagnetic semiconductors is presented which is valid when the impurity-lattice exchange coupling
is weak. In the deduced ground state, various one-magnon states of the lattice are excited through
the lattice s exchange interaction with the impurity electron. Due to the same interaction, the effec-
tive mass of the impurity electron gets renormalized and its binding energy is correspondingly in-

creased. The total lattice spin carried by the impurity electron is also determined.

i. INTRODUCTION

The concept of magnetic polaron' has long been used
in the study of the electronic transport properties of mag-
netic semiconductors. In analogy to an ordinary polaron,
a magnetic polaron is a charge carrier dressed with a
cloud of polarized lattice spins. In case the charge carrier
is bound to an impurity center, it is further termed as a
bound magnetic polaron (BMP).

The concept of BMP was first introduced in a model
to explain the insulator-metal transition in Eu-rich EuO
occurring at the ferromagnetic ordering temperature. The
observed transition involves a 10' -fold increase in con-
ductivity as the temperature is lowered through the mag-
netic transition temperature. According to the proposed
model, this transition is caused by a sudden change in the
binding energy of the impurity electron associated with

the oxygen vacancy. When the substance is in the
paramagnetic state, there is a lack of perfect long-range
order. However, those lattice spins located in the vicinity
of the vacancy may be aligned by the impurity electron
spin if their exchange interaction with the latter gets suffi-
ciently strong. In this case, since there will be more mag-
netic energy gained if the impurity orbit gets smaller, th=
magnetic effect tends to increase the binding energy of the
BMP. Below the transition temperature, on the other
hand, the lattice spins are already ferromagnetically
aligned; the magnetic effect due to the impurity electron
is therefore of no particular significance, except that the
impurity spin will be aligned along the direction of the
lattice magnetization. In other words, the magnetization
of the lattice has no bearing at all on the binding energy
of the impurity electron. Impurity electrons, if they are
loosely bound, will be ionized and contribute to a large ex-
trinsic conductivity. Besides the insulator-metal transi-
tion, the BMP mechanism was invoked more recently to
analyze certain optical properties of dilute magnetic semi-
conductors. ' Thermodynamic calculations involving a
BMP were also made by several authors. '

As explained above, the BMP in a ferromagnetic host
produces significant effects only near the ferromagnetic

transition temperature and only when the exchange in-

teraction between the impurity electron spin and the lat-
tice spin gets stronger than the interatomic exchange re-
sponsible for the long-range order. Near the transition
temperature, the magnetic order of the lattice is not
describable by the spin-wave approximation, and in addi-
tion one has to deal with a large local disturbance on the
lattice spin. Hence a complete theoretical treatment of
the BMP problem would be difficult. On the other hand,
if the host lattice is antiferromagnetic, the BMP effect ex-
ists at absolute zero temperature and even when the cou-
pling between the impurity and the lattice spin is weak.
These are simplifying factors which would help us in for-
mulating a theory of BMP. In addition to an early work, '

there is a recent report" on the theory of BMP in antifer-
romagnetic substances. But the existing theories are all
semiclassical, and a quantum-mechanical approach is still
lacking so far. In this paper we present an approximate
quantum theory of the ground state of the BMP in anti-
ferromagnetic semiconductors. The BMP theory is done
here only in the weak-coupling limit.

Near absolute zero temperature, the low-lying excita-
tions of an antiferromagnetic lattice are spin waves, or
magnons, which are subject to a local disturbance due to
impurity electrons present in the sample. As the exchange
between the impurity electron spin and the lattice spin is
weak by assumption, an adiabatic approximation may be
invoked, in which the impurity electron spin may be
separated from the magnon coordinates of the lattice. Us-
ing this approximation, we are abje to deduce some prop-
erties of the BMP in an assumed ground-state configura-
tion. The deduced results include the magnetic effect on
the binding energy of the BMP and the total spin cloud
carried by the BMP. In order to make our quantum treat-
ment physically more transparent, we precede its presen-
tation with a classical picture of a BMP in an antifer-
romagnetic lattice in the next section.

ii. CLASSICAL PICTURE

It is well known that the magnetic property of an anti-
ferromagnetic insulator (or semiconductor) may be
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analyzed in terms of a two-sublattice structure. At per-
fect alignment, the spins localized at one sublattice, which
all point to the same direction, are exactly opposite to that
of spins localized at the other sublattice. The fact that
this is a stable configuration may be seen by considering
the torque experienced by each sublattice due to its ex-
change interaction with the other. Since the torque is pro-
portional to the vector product between the interacting
spins, it vanishes when the two spins are aligned along the
same axis. This static classical ground state has to be re-
placed in quantum mechanics by two sublattices partak-
ing in zero-point motion consisting of spin-wave modes
with certain minimal amplitudes. The spin wave may be
pictured as a wave of precessional motion of lattice spins
around the sublattice magnetization axis.

Suppose there exists an extra electron bound to an im-
purity center. We ask then for its effect on the antifer-
romagnetic ordering of the host due to its exchange in-
teraction with the lattice spin. Let us begin by assuming
that the electron spin is somehow fixed at a transverse
direction relative to the magnetization axis of the sublat-
tice (say by an external field}. A stable configuration
would be established if the lattice spins in the vicinity of
the impurity assume a canted antiferromagnetic arrange-
ment while the impurity electron spin stays in its original
direction, as shown in Fig. 1. The impurity spin is not ex-
pected to change its direction because the torque acting on
it by one sublattice is always cancelled by that due to the
other. On the other hand, each sublattice is now interact-
ing with two exchange fields, one from the other sublat-
tice and one from the impurity electron. A lattice spin
should then change its direction until it lies along the
resultant of the two vector fields mentioned above so that
there is no more torque acting on it. From Fig. 1 it is
seen that the cosine of the angle of inclination 8 is propor-
tional to the ratio of the two exchange fields, i.e.,

J(R)cos8- I

where J(R) and I denote impurity-lattice and lattice-
lattice exchange coupling constant, respectively. Since I
varies with the distance 8 from the impurity center, the
angle of inclination is spatially nonuniform. In this final
canted equilibrium configuration, a lattice magnetization
is induced along the direction of the impurity electron
spin and a BMP is thus formed. In the next section we
shall derive such a ground state quantum mechanically.

III. MAGNETIC GROUND STATE

HI —I g SqS—„,
(p, ~)

Hl= Y~ g J(R )tr'S g J(R
r

(3.1)

where S& and S„denote the lattice spin localized at the
two sublattices labeled by p, and v, and o is the Pauli spin
operator for the impurity electron. The interatomic ex-
change constant I in HL for lattice spins is positive, and
the sum there is restricted to nearest neighbors. The ex-
change interaction between the impurity electron and the
local spin as described by Hq is assumed ferromagnetic,
and hence the exchange coupling constant J is also posi-
tive. Its value is determined by the following exchange in-
tegral involving the impurity electron orbital P and the
magnetic electron orbital g localized at a lattice site R:

2

J(R)= f d", f d", +'(r, )1('(ri
~&2

Our model system consists of an antiferromagnetic
semiconductor containing dilute impurities, each capable
of donating one electron. To consider the magnetic in-
teraction in such a system, we assume two sublattices of
identical localized spins properly aligned at temperature
T=0. Each lattice spin, by assumption, only interacts
with its nearest neighbors, in addition to its exchange in-
teraction with the impurity electron. As the impurity
concentration is dilute, we may consider only one isolated
impurity center, which is chosen as the origin of the lat-
tice space. The part of the Hamiltonian representing the
magnetic interaction in our model system may be assumed
to be of Heisenberg form:

BI +Br

XP(r, —R)4(ri} . (3.2)

FIG. 1. Ground-state configuration for two neighboring lat-
tice spins S and the impurity spin o. Although the two lattice
spins start from the same point in the drawing, they are actually
centered at different lattice sites. Dotted line J represents the
impurity-lattice exchange field, and dotted line I represents the
total exchange field due to all the neighboring lattice spins be-
longing to the other sublattice.

HI I g [S~S + —,
' (S——p S„+SqS„+)]

(p, ~)
(3.3)

with raising operators S+ and lowering operators S

As the wave function for the bound impurity electron de-
cays with distance, the coupling constant J for local spins
further away from the impurity center decreases in value
correspondingly.

Let us first discuss the lattice part HL in (3.1). The
ground state for Hl was derived by Anderson, ' and his
approximate quantum-mechanical treatment is presented
here in terms of creation and annihilation operators for
magnons. Let us designate the sublattice magnetization
axis as the z axis, and rewrite the Hamiltonian HL as
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We recall the definition of these operators as

S+=S„+i',
(3.4)

ai, —(coshui, )bi, + (sinhui, )b

a i, =(coshui, )bit+(sinhui, )b
(3.10)

S =S„—i' . The real parameter ui, above, which satisfies ui, ——u

must be chosen properly to diagonalize the Hamiltonian

HL in (3.8). It is straightforward to find the required u&,
it satisfies

(3.11)tanh2cci, ———yi, /Z .

The diagonalized HI is thenS~g =S—Q~Qp

S~= —5+a~ HI. ———,
' NZI—S(S+1)+g (bi,bi, + —,

'
)iricoi,

k

(3.12)

S~ ——&2Sa~,
S„+=v'2Sa„,

(3.5) with

(3.13)ficoi, ZIS(1———yk/Z )

To find the approximate eigenstates of HL, we incorpo-
rate Anderson's assumption for an antiferromagnetic
magnon state into the Holstein-Primakoff transforma-
tion' as foBows:

HI ———, NZIS +—ZIS ga&a&+ pa~„
V

+IS g (a~a ~+a~a~),
(p, v)

(3.6)

where N is the total number of lattice spins in the system
and Z is the number of nearest neighbors to each spin.

To obtain the normal modes for the lattice spin system,
we go to the reciprocal k space with the following
transformation:

ikR („)
~a„~=N Z e a

k

(3.7)

S~ ——&2Sa~,

S„=&2Sa„.
Here a t and a are boson creation and annihilation opera-
tors associated with a lattice site, and S is the quantum
number for the lattice spin. Using this transformation
and keeping only terms quadratic in the a's and a~'s, we
obtain the linearized HL, as

The physical meaning of HL in (3.12) is rather obvious.
The original system of interacting lattice spins has been
replaced by a collection of free magnons, each carrying a
quantum of energy fuuk associated with the spin-wave
motion. The eigenvalues of the operator bi,bi, are integers
ni„denoting the number of magnons excited in the mode
with wave vector k. At T=0, the number ni, for any
mode is equal to zero, and there exist no magnons but
only zero-point modes.

In the presence of an impurity electron, the system is
subject to an additional interaction HI in (3.1). Due to
this interaction, magnons will be excited even at T =0.
We proceed now to deduce a ground state for H~ in (3.1)
with the assumption that the Pauli spin vector is along the
x direction, transverse to the sublattice magnetization
axis. Using (3.5), we may rewrite HI in (3.1) as

HI ———,' (S/2)'—cr„gJ(R;)(a; +a; ), (3.14)

where the sum i is over all lattice sites (i.e., on both sub-
lattices). When transformed to the reciprocal space, this
becomes

Expressed in terms of k-space boson operators, the Ham-
iltonian HI in (3.6) becomes

HI = —, (S/2N)'~'cr, —g(Ji', a it+ Ji,ai, ),
k

(3.15)

HL ———,'NZIS +ZIS —gai,ai,
k

+ z

IS+�(yi

aia —i +yiaia —i )
k

(3.8)

with

Ji, ——g J(R;)e (3.16)

ik.R„
yi, = pe'

n=1
(3.9)

where R„ is a vector connecting any spin with any of its
Z nearest neighbors. From the definition of yi, it is obvi-
ous that yk

——y k. As the spins are arranged on a Bravais
lattice with inversion symmetry, it is further noted that
yi,

——y i,. In other words, yi, is a real even function of k.
The Hamiltonian HI in (3.8) may be diagonalized by

making the following Bogoliubov transformation' to
magnon operators:

The quantity yi, above stands for the following sum over

nearest neighbors:

As J(R;) is expected to have spherical symmetry relative
to the impurity center, it is concluded that Jk ——J k ——Jk.
In other words, Ji, is a real even function of k. The Ham-
iltonian HI in (3.15) is further expressed in terms of mag-
non operators by using the Bogoliubov transformation in
(3.10).

At this stage, we assume that the impurity-lattice ex-
change is weak as compared with the interaction between
lattice spins, so that we may invoke the adiabatic approxi-
mation. In other words, the eigenfunction of H~ in (3.1)
is, by this approximation, expressible in terms of the prod-
uct of a magnon wave function and a spinor function for
the impurity electron. %e further assume that the impur-
ity spinor function describes an eigenstate of the o„opera-
tor consisting of an equal admixture of up and down spi-
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nors. In this case, the operator o„ in (3.15) may simply be
replaced by its eigenvalue of unity.

The total magnetic Hamiltoman H~, which contains
both quadratic (H~ ) and linear (HI) terms of the magnon
operator b and b, may be brought into a diagonal form
by shifting the origin of the magnon operator. Let us in-
troduce the following transformation:

bk ——bk —ak,

(bg) =by —ag,
(3.17}

where ak is a parameter to be determined presently. It
should be chosen such that, after the transformation, the
Hamiltonian H~ no longer contains any linear term in bk
or (b j, ) . The choice is

aq= ,' (S/2N—)'~ (Ji, /fuok)exp(ui, ) . (3.18)

QgffCOg .2 (3.19)
k

As (bi, ) and bq are boson creation and annihilation
operators, the eigenvalues of (b j, ) b j, are integers n z. The
ground state then is characterized by nj, =0 for any mode
k. Comparing the new ground state with the zero-
magnon state of HL in (3.12), we see that the energy is
lowered by an amount equal to +&at,ficoi, due to the
impurity-lattice exchange interaction. The magnon part
of the new ground-state wave function can be constructed
from a product of new zero-point normal mode solutions
as

As Jk, cok, and uk are all real, the parameter ak is real
also. It is noted that the transformation in (3.17)
preserves the boson commutation relations and hence is
unitary. The transformed H~ is

H~= —,'NZIS(S—+1)+g [(bj, ) bj, + —,
'

]irioig

that the new ground state
~

G') contains one-magnon ex-
citations.

IV. BINDING ENERGY OF THE BMP

Let us now consider the orbital motion of the impurity
electron. Using the effective-mass approximation' and
assuming a potential due to a singly charged impurity
center, we write the impurity electron Hamiltonian as

p2 ~2
Nlr

(4.1)

P=(mao) ' exp( r/ao—) (4.2)

with the orbital radius ao as the variational parameter.
We first evaluate E with this trial function. Let us

begin by considering the exchange coupling constant J.
Since the magnetic electrons are highly localized at lattice
sites while the impurity electron orbit is expected to ex-
tend over many lattice points, we may approximate the
exchange integral J(R) in (3.2) by the following:

with

E = g ai,iricog,
k

where rn' is the effective mass for the conduction-band

edge assumed to be nondegenerate and isotropic, and e is
the dielectric constant of the semiconductor host. The
last term in (4.1) represents the lowering of the electron's

energy due to its magnetic interaction with the localized
lattice spins as derived in (3.19). The magnetic term E
should have a bearing on the impurity electron orbit be-
cause the exchange coupling constant J~ (contained in a~)
depends on the impurity orbital wave function, as can be
seen explicitly from (3.16) and (3.2).

We evaluate the ground-state energy of Ha by a varia-
tional procedure. We take as our trial impurity wave
function the hydrogenic orbital

~G')= ff ~n~ ——0
k

where
~
nj, =0) satisfies

bj,
~
ng ——0) =0.

(3.20)

(3.21)

It is easily verified that the following state satisfies (3.21)
to first order of ai,

J(R)= n4A'b f dr/ $5(r —R),

where b, is the volume of the unit cell. Then

J(R)=4A'dao exp( —2R/ao) .

(4.3)

(4 4)

~
nj, =0)=

~
ng=0)+ized ng=l) (3.22)

The unprimed states on the right-hand side of the above
equation are the magnon states of HL in (3.12). It is seen

In order to obtain an explicit form for Ji, defined in
(3.16}, we assume a simple-cubic lattice with lattice con-
stant Ro and perform the required summation over such a
lattice. This is done in the Appendix. Using (A3), we ob-
tain an approximate Jq as follows:

1 exp( —2Ro/—ao )cos(k,R o )
Ji, ——32A '(R o/ao )

1+exp( —4Ro/ao) —2exp( —2Ro/ao}cos(k, Ro }

X
1 —exp( —2Ro/ao )cos(k„Ro ) 1 —exp( —2Ro/a)cos(k Ro)x y 0

1+exp( 4Rolao) 2exp( —2—Ro/ao)cos(—k„Ro) 1+exp( 4Ro/ao) 2exp( —2—Ro/ao)cos(—krRo)
(4.5}
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For the sake of simplicity, we further neglect the k
dependence of Jz and replace it by its value at k =0 given
below:

Jo =2 (Ro/ao } [1—exp( —2Ro/ao ) ] (4.6)

with V denoting the volume of the crystal. Then, using
(4.1},(3.18) and (3.13), we have

VJ
E ' d3 exp 2uk 1 yk Z

8(2m) NZI

From (3.11) we have

2ui, ———tanh '(yq/Z) .

The integrand above may be simplified based on the fol-
lowing formula:

tanh x = —,ln
1+x
1 —x

Finally, we have

with A =32A'. Due to this approximation, Jk is overes-
timated for large values of k. The ao dependence of Jo
which comes from the normalization of the impurity elec-
tron wave function accounts for the fact that the
electron's coupling with each lattice spin should get
stronger if it is distributed over a smaller region in space.
On the other hand, a smaller orbit encloses a smaller
number of lattice points, and hence Jo, which is equal to

g,. J(R;), should decrease accordingly. This effect is

contained in the remaining ao-dependent factor in (4.6).
It is noted that the two factors mentioned above compen-
sate each other to a large extent so that Jp is a slowly de-
creasing function of ao. When ao»Ro, Jo becomes
essentially independent of ao.

We are now ready to evaluate E~ according to (4.1).
Since the allowed spin-wave modes characterized by wave
vectors k are densely distributed over the first Brillouin
zone (BZ), we may replace the summation over k by an
integral:

V

The above multiple integral can be found in a mathemati-
cal table. ' It is evaluated to be q=1.5. The magnetic
energy is given then as follows:

gJp
(4.9)

8ZI

Let us analyze the result in (4.9) a little further. Cer-
tain qualitative features of (4.9) may be predicted by sim-

ple arguments. As discussed in Sec. II, the cosine of the
angle between the lattice spin and the impurity spin is
proportional to J(R)/I. Therefore, the magnetic energy
which is equal to the scalar product of the lattice spin and
the exchange field of the impurity should be proportional
to [J(R)] /I and indeed E in (4.9) contains a factor
Jo/I How. ever, simple arguments would predict a total
magnetic energy proportional to n fJ(R)] /I, where n is
the total number of lattice points in the vicinity of the im-

purity. As Jo itself is proportional to n, the energy E~ in
(4.9) is actually proportional to n . Although the magnet-
ic energy E as given in (4.9) has been overestimated due
to our replacement of all Jq's by Jo, the extra power in n

accounts for the extra energy gained due to correlation
among lattice spins not contained in an independent-
particle model. Another point which one should em-

phasize is that (4.9) is not valid in the strong-coupling
limit where J(R) & I. In this case, the impurity-lattice ex-
change may be strong enough to align all lattice spins in
the vicinity of the impurity. Beyond this saturation point,
further increase in J(R) should not cause any correspond-
ing increase in the magnetic energy so long as the impuri-

ty orbit stays the same. Equation (4.9), which is the result
of a linear theory, obviously does not contain such a sa-
turation point.

After obtaining the magnetic energy, we come to con-
sider the kinetic- and the potential-energy term in the
Hamiltonian in (4.1). Their expectation values with
respect to the trial wave function in (4.2) can be trivially
evaluated. The results are given in the following:

2' ap

cap

I d'«1+yi/» '.
8(2n) NZI

(4.7) Now the orbital radius Qp must be chosen to minimize the
energy of the BMP given by

yz ——2[cos(k,Ro)+cos(k~Ro)+cos(k, Ro)] .

For a simple-cubic lattice Z =6, and the integral in (4.7)
becomes

I d k(1+yg/Z) '=g(2m/Ro)

with

(4.8)

il=(2m. ) I dx I dy J dz[1+ —,(coax+cosy

+cosz ) ]

To proceed further we assume again a simple-cubic lat-
tice. According to its definition in (3.9), yi, in this case is
explicitly

e

2m ap

(Ro/ao) [1—exp( —2Ro/ao)]qA 6 —6

8ZI

(4.10)

If the magnetic energy is small as compared with the
kinetic or potential energy, the orbital radius should not
be too different from the effective Bohr radius
as ——eA /m'e . Based on this assumption we can solve
for ao which minimizes the energy expmtation value in
(4.10). The result accurate to first order in the magnetic
energy is given below:
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ao ——(1—f)aii Jo
SBMP ( 1 +7 0/ (5.4)

m*~o'f=
4 [1—exp( 2R—o/az )]

4ZIA ag

2Roexp( 2R—o/a g )
x

as [1—exp( 2R—o/ae) ]
(4.11)

For a simple-cubic lattice, yo/Z = 1, and

Jo
BMP 4ZI

The shrinking of the BMP orbit may be interpreted as be-
ing equivalent to its mass renormalization. Due to the
magnetic interaction, the mass of the BMP increases from
the conduction-band-edge effective mass m' to a value

mqMp given by

This is indeed an obvious result. %e will not comment on
it any further, except to remind the reader that the result
does not hold if the lattice spins in the vicinity of the im-
purity are saturated.

el BMp = ( 1 +f)in (4.12) VI. CONCLUDING REMARKS

Correspondingly, the binding energy of the BMP increases
from one effective Ryderberg by the same fraction:

2

&BMp =(1+5)
26'Qg

(4.13)

V. SPIN CLOUD CARRIED SY THE BMP

As discussed in the classical model in Sec. II, the BMP
carries with it a cloud of lattice spins in the transverse
direction. The total spin associated with the impurity
electron may be determined by calculating the following
matrix element:

S,„,=(G'~ gS,„~G'), (5.1)

where G' is the ground state given in (3.20), and the sum-
mation is over all lattice points. From (3.4) we have

S = —,'(S,++S; ) .

The S;+ and S; operators, in turn, may be expressed in
terms of magnon operators bi, and bq. Using (3.5), (3.7),
and (3.10), we have

0

S;,=(S/2N)' g exp(ui, )(e 'bq+e 'bz) .
k

(5.2)

We substitute (5.2) into (5.1) and perform the lattice sum
first. Only the k =0 mode is projected out because of the
well-known result in the following:

ik R,.ge '=N5qo.

%e have then

SaMp ——(NS/2)' exp(uo)(G'
i
(hot+ho)

i
G') . (5.3)

From (3.20), (3.18), and (3.22) we obtain immediately,

SaMp = exp(2uo)[1 —(yo/Z)

Following the same procedure for obtaining the integrand
in (4.7), we can simplify the above and obtain

In this paper we have formulated a theory of BMP at
T=0 in antiferromagnetic semiconductors. On the ex-
perimental side, evidence for the magnetic effect due to
charge carriers exists in antiferromagnetic substances.
For example, large ferromagnetic spin clusters have been
detected in antiferromagnetic EuTe, ' which were at-
tributed to the magnetic polaron effect. We do not at-
tempt here to make a quantitative coinparison of our
theory with these measurements. The reason is that while
our theory is valid only in the weak-coupling limit, in
reality the impurity-lattice exchange is often stronger than
the interatomic exchange which is usually due to an in-
direct mechanism. ' Quantitative interpretation of experi-
mental data in EuTe has been made by Mauger and
Mills"' based on their semiclassical theory valid for the
entire range of impurity-lattice coupling strength. The
observed ferromagnetic cluster was attributed by them to
the formation of BMP consisting of a saturated ferromag-
netic core surrounded by a large halo of enhanced but not
saturated lattice spins.

After considering the weak-coupling case, we may
speculate a little about the behavior of the charge carrier
in the strong-coupling limit where all lattice spins in the
vicinity of the impurity are saturated and the magnetic
energy is larger than the kinetic and the Coulomb poten-
tial energy. %hen the lattice spins are already saturated,
the impurity electron could gain more magnetic energy
only be expanding its orbit to enclose more saturated lat-
tice spins within it. Thus, quite opposite to the weak-
coupling case, the impurity electron now tends to delocal-
ize instead of having its binding strengthened. Then, a
question arises as to whether a delocalized electron can be
self-trapped in a potential well produced by the magnetic
interaction. This point has been included in the recent
study of Mauger and Mills' and in earlier works by other
authors. ' According to Ref. 19, in the weak-coupling
limit, ferrons (i.e., self-trapped polarons) do not exist, at
least not in a three-dimensional system. In the strong-
coupling limit, all authors concluded that the stability of
ferrons depends on the actual values of material parame-
ters involved. Considering EuTe specifically, Mauger and
Mills predicted no ferrons, in agreement with Umehara
but in contradiction with Kasuya. It should be interest-
ing to investigate the problem quantum mechanically.
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APPENDIX: EVALUATION OF J
To get an explicit Ji, defined in (3.16), we perform the sum on a simple-cubic lattice of lattice constant Rp. When the

direct-space J(R) is of the form given in (4.4), the lattice suin involved is as follows:

Si,«,
—— g exp( —2nRo/ao)exp[i(nik + n2ks+ nik, )R p], (A 1)

n =(n2i+n', +n', )'",
with integers n ,in&, ni, each running from —(N&/2) to
(Ni /2). (Here we assume that the total number of lattice
points is equal to N i.} We further approximate the num-
ber n by a positive integer:

n~ lni I+ In2 I+ Ins I
.

Then the sum in (Al} can be factored into the product of
three similar sums. Each one is like

(A2)

(A3)

Ni /2

S& — g exp( —2
I
n i I

Ro/ao+in i k Ro) .
n& ———N, /2

This is a simple geometric series which can be easily
summed. As N& is a very large number and as each term
in the series carries an exponential damping factor, the
sum Si becomes independent of N& and is equal to

2[1—exp( —2Rp/ap)cos(k, Ro)]S1=
1+exp( —4Ro/ap) —2 exp( —2Ro/ao)cos(k~Rp)
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