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%e present a new model of the high-field magnetization in dilute {x&0.05) A l' „Mn„8"' alloys
{A"=Zn, Cd, Hg; 8"'=S, Se, Te) which includes the effects of internal effective fields due to
distant-neighbor exchange interactions. The model represents an extension of a nearest-neighbor-
only cluster model used previously for these materials to explain the observation of "magnetization
steps" associated with Mn nearest-neighbor pairs. The presence of internal fields causes a broaden-

ing and shift of these steps, in agreement with experiment. The distributions of such fields for fcc
and hcp magnetic sublattices are modeled by considering exchange interactions out to third and
fourth neighbors, respectively. Published data for Cdl „Mn„Te and Cd& „Mn„Se are reinterpreted
using this approach to provide a more accurate determination of nearest-neighbor exchange con-
stants as well as approximate values of more-distant interactions. All are found to be antiferromag-
netic. The internal-field corrections reduce the magnitude of the nearest-neighbor exchange con-
stant by 18% in the telluride and 9/o in the selenide. The more-distant exchange is found to be
larger than previously assumed but consistent with other known magnetic properties.

I. INTRODUCTION

The magnetic properties of diluted magnetic semicon-
ductors (DMS's) such as Cd~ „Mn„Te and Cd& „Mn Se
are currently being extensively investigated. The very di-
lute regime (x &0.1) is particularly attractive for study
because the short-ranged exchange interactions allow one
to separate the magnetic response of the system into the
sum of responses of small clusters (singles, pairs, triples,
etc.)

' In recent experiments on Cdo 95Mno Q$Se and

Zn095Mn005Se the pair magnetization showed an abrupt
increase (a step) as a function of external field at about 10
T. ' A similar step and a second step at almost twice this
field has also been observed in other properties dependent
on the magnetization, such as the spin splitting of band-
edge excitons in Cd~ „Mn„Te. These steps provide a
direct local probe of the magnetic interactions in DMS's
and are also important as a means of testing whether or
not the magnetic ions are randomly distributed.

To date, step experiments have been analyzed using a
cluster model including only nearest-neighbor (NN) anti-
ferromagnetic Heisenberg interactions with random Mn
site occupation. A consequence of this model is that
the second step should occur at exactly twice the field of
the first, but experimentally the ratio seems to be some-
what less than 2. The observed widths are also not well
accounted for by thermal broadening in this model. In
this paper we show that both of these discrepancies can be
resolved by taking into account the magnetic interactions
of more distant neighbors with the pair. The NN-only
model is generalized to treat the effects of such interac-

tions on the high-field magnetization of zinc-blende and
wurtzite DMS's. The usefulness of this approach is illus-
trated through a re-analysis of existing data for
Cdi «Mn„Te and Cd& «Mn„Se, which allows the extrac-
tion of more accurate values of the NN exchange con-
stants and approximate values for second- and third-
neighbor exchange constants. %e hope that this work will
stimulate further experiments on these materials in the
very dilute regime.

II. NEAREST-NEIGHBOR CLUSTER MODEL

Before describing our generalization, it is first necessary
to review the basic features of the NN-only cluster model.
As described in Ref. 2 this model is similar to that intro-
duced by Kreitman et a/. for the analysis of low-field sus-
ceptibility data. The model assumes that the probability
of a magnetic ion occupying a given site is independent of
the occupation of other sites. The probabilities of various
clusters can then be calculated, in principle, given the
crystal structure. In zinc-blende A &' „Mn„8 ' alloys the
Mn ions lie on a fcc sublattice, and the probability that a
Mn ion is a member of a particular cluster is
Pi ——(1—x)' for singles, Pz ——12x(l —x)' for nearest-
neighbor pairs, P3, ——18x (1—x) (7—5x) for open trian-
gles, P3b —24x (1—x) for closed triangles, and so on.
In wurtzite alloys, where the Mn ions occupy a hcp sub-
lattice, the probabilities are the same except for P3t„but
the difference froin the zinc-blende value is not significant
for x &0.1. In very dilute samples of either type, most
spins are either singles or members of pairs.
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The model further assumes that only the NN exchange
constant J~ is appreciable, all other exchange constants
being much smaller. In Mn-based DMS's Ji is of order
10 K and antiferromagnetic. The Mn ions are assumed to
have spin S= —,, and g factor g =2, and to be coupled by
Heisenberg interactions. The Hamiltonian for a pair is
thus

A ~;,= —2J)S).S2+gP2)(S), +S2,)H .

This Hamiltonian has energy levels

E(ST,m;H)= Ji [—ST(Sz'+ 1)—1 ]

(2)

with m= —Sr, —ST+1, . . . ,Sr. The ground state of
the pair for small H has ST——m=0 and does not con-
tribute to the magnetization. At a magnetic field H'"
given by the solution of E(0,0;H'")=E(1,—1;H"'), the
Sr ——1 state becomes the ground state, and the first step
occurs at gpsH'"=2

I Ji I. In all, the pair magnetization
5m(H, T) has five steps with H(")=nH(", n =1,2, 3,4, 5,
each of height g)Ms. In all DMS's examined, these steps
occur at fields high enough that singles are almost com-
pletely saturated. Measurements of the steps thus provide
a way of determining the NN exchanIIe constant. The
closed and open triangles with ST———, and —, ground
states, resnectively, also generate a series of steps starting
at 3

I Ji I. Because of the small probabilities Pi, and P3$,
the triples are much less important than the pairs, and
will be considered only as a small correction to the
analysis of experimental data.

In addition to predicting the existence of steps, the
NN-only model also explains why the apparent or "tech-
nical" saturation observed at fields below the first step is
always found to be less than the saturation magnetization
for a paramagnet of the same x. This behavior results
from the fact that clusters larger than singles have a small
magnetization per spin in their low-field ground states,
due to the antiferromagnetic coupling within each cluster.
The model predicts that the technical saturation magneti-
zation should be the sum of the magnetizations of all clus-
ters in their lou) field ground states. The agreement with
experiment, both for this prediction and for the height of
the first step, is particularly important because it provides
evidence that the Mn ions in these samples are indeed ran-
domly distributed.

Pl A Pyle +cP I +M (3)

Despite these successes the NN-only model cannot ac-
count for the experimentally observed relationship
H' ' & 2H"'. Moreover, the addition of thermal broaden-
ing in this model is not sufficient to explain the observed
step widths. ' %'e now show how both of these
discrepancies can be resolved by considering the effects of
distant-neighbor exchange interactions. Again assuming
Heisenberg interactions, the Hamiltonian for a pair
(Si,S2) iiltelact111g with other splils is

A t = —2 g J(i,)Si S,—2 g J(2 e)S2 S,
r&3 s&3

(4)

and similarly for h2, ', the effective fields are parallel to
the external field since only isotropic exchange is present.
We assume that distant-neighbor exchange constants J„»
are weak compared to J&, here J„=J[p q] when p and q
are nth neighbors. This means that self-consistency is un-

necessary to lowest order in the interactions in 4 I and
therefore that thermodynamic averages can be computed
with respect to the Hamiltonian 4 .

Given A ett, it is straightforward to compute correc-
tions to E(ST,m;H) in perturbation theory in the (small)
effective fields. By dividing the perturbation in Eq. (6)
into even and odd terms under spin interchange, one finds
that, to lowest order, the even term simply adds
—,(h 1,+h2, ) to the external field, while the odd term has
vanishing expectation in the states

I ST, m = —ST) be-
cause they have equal z projections on the two spins. The
energies of these states then become

E(ST,m;H+ —,
'
(h(, +h2, )) .

The first step is thus shifted to a field H' "', given by

E(O,O;H "'+-,'(h „+h~))
=E(1,—1;H "'+-,'(h„+h~)),

i.e.,

gut)H""=2
I J) I

—gi a 2 (h»+h2. ) .

For the nth step,

gt aH'"'=2n
I J) I

—g( e —,
' (h).+h~) .

All five steps are shifted by the same amount. Since the
relationship H' ' '(2H' "' is observed experimentally, we
infer that h», h2, are negative and thus that the non-NN
interactions are predominantly antiferromagnetic.

At finite temperatures, the steps associated with each
pair are symmetrically broadened due to thermal popula-
tion of the lowest levels. An actual crystal, of course,
contains many pairs with different "environments, "

describes each member of the pair interacting with other
spins in the crystal (the sums are taken over Mn-occupied
sites in a given realization of the alloy), and

P '=gpsH g S~—g J(pq)Sq Sq,
n p3 p, q+ 3

where Jtp q] is the exchange between spins at sites p and q,
describes interactions of the other spins, excluding the
chosen pair. We assume that the magnetic field is large
enough, or the temperature low enough, so that
gpaH»kt)T. This assumption means that singles are
nearly field aligned and spin fluctuations are strongly
suppressed. We can then make a mean-field approxima-
tion for P t, leading to an effective pair Hamiltonian

~eff=~pair+gPBh leS)e+gP'ah2zS2z ~

where

g) ah»= —2XJ(),.)&S )
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TABLE I. Number of nth neighbors, Z„, and distances to them in units of a, the nearest-neighbor

separation, for fcc and (ideal) hcp lattices. Shown also are exchange constants for each neighbor in the

notation of the text.

hcp

(neighbor)

12
6

24
12
24

Distance

ave
av3
20

ave

Exchange
constant

J)
J2
J3

12
6
2

18
12

Distance

av2
a v'8/3
aV3

av 11/3

Exchange
constant

Ji
Jp
J3
J3

(hi„h2, ), due to statistical (or nonstatistical) composition
fiuctuations. If 9 (h ) is the probability distribution of ef-

fective fields h = —,
' (h»+h2, ), the observed pair magneti-

zation is just

5M(H, T)= I 9'(h )Sm(H h, T—)dh,

where 5m(H h, T)—is the magnetization of a pair with

effective field h. In practice, we replace this integral with

a discrete sum over environments ~ characterized by an

effective field h, and probability P,:

5M(H, T)= g 9'Prn(H h„T) . —

For x &0.05 the contribution of other pairs to the effec-
tive field is small compared to the contribution of singles:
h and H(h) can therefore be taken to be independent of
H. Thus each step has the same shape, and each shifts by
the same amount. An important consequence is that J~
can be extracted directly from the difference between the
second and first steps, independently of P'(h). In addi-
tion, since both the shape and shift can be measured from
the first two steps, no further information concerning the
pairs is gained by going to fields beyond the second step.

The shape of each step can be related to the magnitude
of the first few exchange constants by considering an ex-
plicit model of the distribution of effective fields in zine-
blende and wurtzite DMS's. Here we assume (1) random
Mn site-occupation probability, consistent with the agree-
ment of step height between theory and experiment; (2)
only the singles contribute significantly to h for x & 0.05.
This is reasonable since there are many more singles than
larger clusters. In addition, the low-lying states of larger
clusters have small magnetization per spin, so they con-
tribute little to h. (3) Only sites which are third- (fourth-)
nearest neighbors or closer to either spin in the pair in the
fcc (hcp) magnetic lattice need be considered. Numerical
analysis shows that more distant sites may be neglected
due to the rapid decrease of exchange constants with dis-
tance in nonmetallic systems.

Given these additional assumptions it is straightfor-
ward to compute 5M(H, T) for any set of exchange con-
stants, (Ji,J2,J&). Here we use the notation for nth-
neighbor exchange constants introduced in Table I, which
emphasizes the fact that J3 in both the fcc and hcp mag-
netic lattices corresponds to the same distance. Details of
the calculation of probabilities and effective fields are

given in the Appendix. [We assume that (S ) = —,
' for an

isolated single spin S„equivalent to neglecting the second
term of Eq. (5)]. For a fcc lattice, the mean effective field

h, giving the mean shift of the step from its NN-only lo-

cation, is gpsh =4.53J&+0.89' at x =0.05. This for-
mula shows the importance of taking third neighbors into
account. J3 contributes at approximately 5 times the level

of Jz, mostly because of the larger number of third neigh-
bors on a fcc lattice (cf. Table I). For a hcp lattice at
x=0.05, the situation is similar, if not so pronounced:

gpsh =2.89Ji+0.43Js+0.89Jz. Again Ji is seen to be
important.

IV. RESULTS AND DISCUSSION

Using this model we have reanalyzed existing experi-
mental data for Cd09sMnoo&Te and Cde 9sMnoosSe.
The data was fitted by numerical minimization of X, the
weighted sum of squares of deviations, as a function of
the exchange constants and the pair probability Pz. It is
not meaningful to directly compare our fit with previous
NN-only fits since the latter allowed H' &22H"', for
which there is no theoretical justification. In either model
the second step is completely determined once H"' and
9'(h) are known. In our model H'" still determines the
T=0 onset of the first step, because there are still some
pairs with h =0 although most are shifted to higher
fields. Therefore, H' '=2H"' holds for the onset of each
step, but not for the center.

Since the fit is based on numerical minimization, there
is no guarantee that the absolute minimum of X has been
found, but we have searched considerable regions of pa-
rameter space in producing our fit. In addition, we re-
quire that our parameters be consistent with other known
magnetic properties. Within the context of the Heisen-
berg Hamiltonian, these values should therefore be physi-
cally unique. The parameter errors should be considered
approximate, both because of uncertainty in the experi-
mental error and because there exists no unique definition
of the error for a nonlinear regression. We adopted a
widely used error convention based on a quadratic approx-
imation to 7 near the minimum.

To improve the fit in the region of the second pair step,
it was found necessary to include the closed-triangle step.

This step is expected to have about 8% of the height of a
pair step and an onset at —,0'", and it was inserted at a
range of fields between the onset and 2H'". The quality
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FIG. 1. Pair magnetization of CdogqMnoo5Te, scaled to
5MO ——gp~P2 (the random Mn step height} as a function of mag-
netic field at 1.45 K. Solid circles are optical data of Ref. 3.
The curve is derived from the model detailed in the text, with

J) ———6.3 K, J2 ———1.9 K, and J3———0.4 K. The shaded re-

gion reflects uncertainty regarding the broadening of the small

step due to closed triangles.

10.0 25.0

of the fit was insensitive to its location in this range.
Figure 1 shows the best fit for Cdp95Mnpp5Te to the

T=1.45 K optical data of Ref. 4. Shading indicates the

range of curves for different locations of the closed-

triangle step. Figure 2 shows a similar fit for
Cdp ssMnppsSe to the T=1.8 K pulsed-field magnetiza-
tion data of Ref. 3. In each case, 5M(H, T), scaled by
5Mp =gp~P2, is plotted versus magnetic field.
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FIG. 2. Pair magnetization of Cdo»Mn00&Se, sca1ed to
5MO ——gp~P2 (the random Mn step height) as a function of mag-
netic field at 1.80 K. Solid circles are pulsed-field lnagnetiza-
tion data of Ref, 2. The curve is derived from the model de-
tailed in the texts with JI

———7.9 K, J2 ———1.6 K,
J3 ——J3 ———0.2 K. The shaded region reflects uncertainty re-
garding the broadening of the small step due to closed triangles.

For Cd& Mn, Te the best fit corresponds to
J) ———6.3+0.3, J2 ———1.9+1.1, and J3 ———0.4+0.3 K,
with a X of 0.8 per degree of freedom. ' The optimum
value of P2 is (90+5)% of the value expected for random
Mn site occupation. " For comparison, the NN-only
analysis produced J~ ———7.7+0.3 K, which is a substan-
tial overestimate of the magnitude of J& resulting from
our analysis. The new J& is probably the most accurate
yet determined for these materials. It is refla:ted directly
in the spacing between steps and has little effect on their
shape. The latter feature is determined by the tempera-
ture and by Ji and J&, which are both found to be antifer-
romagnetic and larger in magnitude than previously as-
sumed. Despite the large errors in Jz and Js, statistical
tests showed that both lead to statistically significant im-
provements in X, and, therefore, both must be included.

The results for Cd i „Mn, Se are Ji
———7.9+0.5,

Jz ———1.6+1.5 and J3 ~J3- —0.2 K, with a I of 0.4
per degree of freedom. ' The optimum value of P2 is the
same as in the telluride. X is smaller and parameter er-
rors are larger than in the telluride because of greater ex-
perimental uncertainties, due to pulsed fields and atten-
dant sample-heating effects. It was confirmed that the
above parameters also give a good fit to optical data for
Cdp 9sMnp p5Se, which, however, does not extend to high
enough fields to see the second step. For comparison, the
NN-only theory gave Ji ———8.7, or —8.3 K, ' which are
much closer to our results than in the case of the telluride.
This occurs both because of smaller Jz/Ji and Ji/Ji
than in the telluride and because of differences between
hcp and fcc environments. ' Here statistical significance
tests showed that Jz is necessary but Ji =Ji ——0 cannot be
ruled out. The minimum X does show antiferromagnetic
Js and Js, but a definitive answer to the question awaits
further experiment.

Because of the uncertainties in J2,Ji it is important to
check that the values determined above are consistent
with other magnetic properties. 8, the paramagnetic Cu-
rie temperature, is proportional to the thermodynamic
sum Q„J„Z„xfor random Mn distribution. The experi-
mental 8 extrapolated to x=0.05 is ' —29.2 K for
Cd& „Mn Te and —31.5 K for Cdi, Mn„Se, while we
calculate —28.2+3.0 and 31.9+3.5 K, respectively. The
agreement in both cases is very good, and is slightly im-
proved over that of the NN-only model [8=—27.0 K for
Cdp 9sMnp psTe (Ref. 4) and 8= —30.5 K for
Cdp. 9sMnp. psSe (Ref. 2)].

In the case of Cd& Mn„Te additional constraints are
provided by the type-III antiferromagnetic (AF) short-
range order observed in neutron scattering measurements
on concentrated (0.60~x &0.70) samples. ' Minimiza-
tion of the semiclassical energy per spin leads to stability
conditions, for a fully occupied fcc lattice, which ex-
change constants must satisfy. The same conditions may
reasonably be applied in the short-range-ordered case.
There are experimental' and theoretical' indications that
the exchange constants do not depend strongly on x, a
conclusion supported by the agreement between our value
of Ji (at x=0.05) and that derived from the neutron
scattering (at x =0.60). ' The stability of AF type III re-
quires
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TABLE II. Effective fields h„normalized by (S,},and corresponding probabilities H, of local en-

vironment configurations of a nearest-neighbor pair of spins in a fcc 1attice.

0
J3
2J3

J2+J3
J2
3J3

2J3+J2

3J3+J2
4J3

2(J2+J3)
2J2+J3

2J2
4J3+J2

SJ3

3J3+2Jg
5J3+Jp

4J3+2Jp

6J3
2J3+3Jp
3(J3+J2)
J3+3J2

3Jp

6J3+J2
5J3+2J2
4J3+3J2

7J3

6J3+2J2

2J3+4J2
7J3+J2

5J3+3J2

3J3+4J2
J3+4J2

4Jp

8J3

4(J3+J2)

(1—x)
28x(1—x )

4x(1 —x) +354x {1—x)
4x(1 —x) +96x (1—x }

4x(1 —x )

96x 2(1—x )38+3276x 3(1—x )37

116x (1—x) +1512x (1—x) 7

16x (1—x) +1960x (1—x)' +13104x (1—x)
6x~(1 —x) 8+1512x (1—x) ~+20475x~(1 —x)

4x {1—x) +472x (1—x) +2268x (1—x}
16x (1—x) +168x (1—x)

6x'(1 —x)"
472 (1—x) +19152 (1—x)
168x3(1—x)3'+13104x {1—x }'

232x (1—x) +6720x (1—x}
24x'{1—x)' +6720x (1—x)
24x (1—x) +4096x (1—x)
4x (1—x ) +2268x (1—x )

24x (1—x)3 +688x (1—x)
4x {1—x) +768x {1—x}
24x (1—x) +112x (1—x)

4x'(1 —x )"
688x "(1—x )

768x 4{1—x )36

208x (1—x)
112x4(1 —x )36

36x (1—x}
36x4(1 —x)"
16x (1—x)
16x (1—x)
16x {1—x)
16x (1—x)
x {1—x)
x (1—x)
x4(1 —x)"

4J)+Jp+3J3 (0, Jp ~ 3J3,

J) &2J2+J3 and Ji Q J2+2J3 .
(10)

Since these inequalities are satisfied by the set of exchange
constants we derive from our fit, we predict that this ma-
terial should exhibit AF type-III short-range order, as-

4J'i+Jp+4J3 (0, Jp (4Ji and Ji &2(J2+Jg) .

These inequalities are satisfied by the exchange constants
derived from our fit.

In the case of Cd, ,Mn„Se, to the best of our
knowledge, experiments to observe magnetic short-range
order have not yet been done. For the hcp lattice (with
J3 ——J3), AF type III requires

suming that sufficiently concentrated samples could be
prepared in the wurtzite phase. ' The analysis leading to
Eqs. (9) and (10) would be only slightly modified by ex-
change constants for more distant neighbors for the same
reasons that distant-neighbor corrections to effective
fields are small.

The present results indicate that
~
Ji

~

increases by
about 25% from Cd& „Mn„Te to Cd& „Mn„Se. J2 is
significant in both materials, and J3 is also significant, at
least in the telluride. The theory of Larson et al. ' agrees
well with these features and provides an explanation for
the sign and size of the exchange constants in terms of su-
perexchange. This theory supports the present conclusion
that the interactions fall off rapidly with distance, but not
so rapidly that second- and third-neighbor exchange con-
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stants are negligible. Previous extractions of exchange
constants from experiments on DMS's have usually as-
sumed that only J&, or only J& and J2, are nonzero. Most
published values of J& are within 50%%uo of those given
here, and recent determinations are even closer. ' The
convergence of experimental values for J& makes it im-
portant to take into account the corrections considered
here, which can be 20%%uo of J, . To ensure accurate results,
it will usually be necessary to take at least J2 and possibly
J3 into account; J3 may be almost as important as J2 be-
cause of the larger number of third neighbors in these lat-
tices.

The accuracy of the determination of (Ji,Jz,J&) from
high-field magnetization experiments can be improved by
obtaining data at lower temperatures. At temperatures
small compared to

~
Jz ~, interesting structures should

start to appear in the steps. Figure 3 shows the predicted
first step in Cdo 95Mno o&Te at T=0.1 K for the
(J„J2,J&} given above. At smaller x, the broadening of
the steps is reduced, but their height is also reduced, so
experiments are more difficult.

At low temperatures it is also possible that some struc-
ture might be seen below the first step, in the region usu-
ally fitted to a modified Brillouin function

M( T)=x SBsrz(gizaH/ka(T+ To) } .

Here x,S is the technical saturation magnetization, and

To is a phenomenological parameter which may depend
on both x and T. In our model, To depends on the more
distant-neighbor interactions. At temperatures compar-
able to J3, the magnetic state of the alloy will be compli-
cated, because even at x =0.05 most spins have a third or
nearer neighbor; x must be 1'//o or less for second- and
third-neighbor singles and pairs to be the dominant clus-
ters. If good samples at these compositions can be
prepared and studied at such temperatures, then the

I 1 1 f I l 1 I f I I

1.0 CClo g5

~ ~ ~ ee ~

0
40

x 05—
X
40

Q Q,""l' I

H (tesla)

FIG. 3. Theoretical pair magnetization of Cd095Mn005Te at
T=0. 1 K, as a function of magnetic field, for J~ ———6.3 K,
J2 ———1.8 K, and J3 ———0.4 K. Shown for comparison is the
theoretical curve of Fig. 1 for the same parameters at T=1.45
K.
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TABLE III. Same as Table II, but for a hcp lattice.

I, z(s, &

0
J3
2J3

J2+J3
J2
J3

2J3+J2
3J3

J3+J3
3J3+J2
2J3+J3

J2+J3+J3
2J2+J3

2{J2+J3)

J2+J3
2J2
2J3

2J3+J,+J3
4J3+Jp

3J3+J3
3J3+2J2
J3+2J3

2J2+J3+J3
3J3+J3+Jg

J2+2J3
2J,'+J,+J,

2J2+J3
2(J,+J,)+J3

3Jp+J3
3J2+2J3

5J3
2(J3+J3 )

4J, +2J,
3J3

4J3+J3
3J2

3(J2+J3)
5J3+J2

(1—x)
20x(1 —x )

2x(1—x) +172x (1—x)
4x(1 —x) +68x (1—x)

4x(1—x )'

4x(1 —x )

80x2(1 —x) +760x (1—x) '

32x (1—x) +1140x {1—x) '

80x (1—x}
8x (1—x) +920x (1—x) '

8x (1 x ) +760x {1 x )3

16x {1—x) +320x (1—x) '

16x (1 x)3 +120x (1 x)3

4x (1—x ) +332x {1—x )
'

x (1—x)3 +380x'(1 —x) '

16x (1—x)
6x (1—x)
4x (1—x)

352x {1—x) '

164x (1—x)"
160x (1—x) '

152x (1—x) '

120x (1—x) '

64x (1—x) '

32x'(1 —x )"
24x (1—x) '

24x (1—x) '

24x (1—x) '

24x'(1 —x )"
24x (1—x) '

24x (1—x) '

20x (1—x) '

12x (1—x) '

12x'(1—x)"
4x'(1 —x )"
4x (1—x) '

4x (1—x) '

4x (1—x) '

4x (1—x} '

second- and third-neighbor pair steps would yield a direct
determination of J2 and Jq, thus providing a useful com-
plement to the approach presented here.
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APPENDIX: CALCULATION OF
EFFECTIVE-FIELD DISTRIBUTIONS

The effective-field distributions for zinc-blende and
wurtzite lattices are calculated using the model described
in the text. A key feature of the model is that only near-
neighbor exchange constants need be considered, since ex-
change constants decrease rapidly with distance. zi While
it is clear that the mean effective field K is then deter-
mined by nearby spins, this is also true of the fluctuations
in h because the relative fluctuations in a small sample of
sites are stronger than in a large sample. The choice of
third- (fourth-) nearest neighbors as the cutoff is motivat-
ed by examination of Z„, the number of n th neighbors in
the fcc (hcp) lattice (cf. Table I). For the fcc lattice there
are 4 times as many third neighbors as second, so they
may contribute significantly to h even with a smaller ex-
change constant. Inclusion of third neighbors of either
spin of the pair leads to an environment of 40 sites (plus
the 18 NN sites which must be empty to define the pair).
For the hcp magnetic lattice, inclusion of fourth neigh-
bors leads to an environment of 34 sites, again excluding
18 NN sites.

In calculating effective fields for the fcc (hcp) lattice,
only configurations of the environments with 4 (3) or
fewer spina were considered, not including the two spina
in the pair. For x &0.05 this approximation accounts for
more than 89%%uo of the environments and is made simply
for numerical convenience. The neglected configurations
have larger effective fields and therefore should not affect
the onset of the first step, although they are necessary to

get the correct overall step height. To correct for this, the
missing effective fields were added arbitrarily at the loca-
tion of the second step.

Following assumption (2), the effective field from a
configuration should be computed ignoring contributions
of any clusters larger than singles in the environment.
Environments with three or more spins comprise only
34/o of all pair environments at x =0.05, and fewer at
smaller x. The proportion of these containing any pairs,
triples, etc. is small. Hence we have included the two-spin
environments exactly, but treated the three- and four-spin
environments as if they included only singles. This ap-
proximation becomes even better at smaller x.

Tables II and III show effective fields and associated
probabilities for the fcc magnetic lattice and hcp magnetic
lattice, respectively. Probabilities are conditional; 9', is
the probability, given a pair at (1,2), that the pair experi-
ences effective field h, . Thus g, 9',=1, and to compute
magnetizations the P, must be multiplied by gisitP2, the
height of a pair step. The quantity h, /(S, ) effectively
counts the number of nth-neighbor bonds from the pair
to any spins in the environment. Thus, the second entry
in Table I is J3, corresponding to a single spin occupying
one of the 28 sites (in the 40-site environment) which is a
third neighbor to one spin in the pair and a fourth or
more distant neighbor to the other The. third line, 21&,
corresponds to two third-neighbor bonds, which can arise
in two ways: (1) two spins are present, each a third neigh-
bor of one pair spin, but not nearest neighbors to each
other (354 combinations), or (2) one spin occupies one of
the four sites which are third neighbors of both pair spins.

Using the tables, one can compute the pair magnetiza-
tion for any x &0.05 and any set of exchange constants.
In particular, the mean effective field h should give a
good measure of the shift of the steps. For a fcc magnetic
lattice

gistth =gptt g P'P, =5{Ji[20x(1—x) +710x (1—x) +14820x (1—x)+182780x ]

+J2[4x(1—x) +140x (1—x) +2964x (1—x)+36556x ]I

X [(1—x)"+40x(l —x) +710x (1—x) +9880x (1—x)+91390x ]
In the hcp case,

gpah=5{Js[14x(1 —x) +416x (1—x)+7392x ]+Ji[2x(1—x) +64x (1—x)+1056x ]

+J2[4x(1—x ) + 120x2(1—x )+2112x3]]

X[(1—x) +34x(1—x) +5llx (1—x)+5984x ]

assuming (S,) = —,
'

in both cases.
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