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The motion of damped sine-Gordon kinks in the presence of thermal fluctuations is studied to
first order in k~T by using a singular perturbation expansion. The change in the average shape of
the kink is determined as well as its mobility. These results are compared with the earlier results of
Kaup on the overdamped sine-Gordon equation, and it is found that the heavily damped limit of the
damped sine-Gordon kink is not the same as that of the overdamped sine-Gordon kink. In particu-
lar, we find the change in the shape of a heavily damped sine-Gordon kink to be approximately
one-half that of an overdamped sine-Gordon kink at comparable temperatures. %'e also verify that
the singular perturbation method gives the correct results for the average kinetic energies of kinks
and phonons. Lastly, we also evaluate the low-temperature correlation function for the damped
sine-Gordon field and the diffusion coefficient for a soliton.

I. INTRODUCTION AND BACKGROUND

Recently, Kaup' studied the thermal effects on an over-
damped sine-Gordon kink where the equation of motion
1s

I B,u =ttB, u —ttrl sinu+F+eg,

where u (x, t) is the field variable, I is the damping con-
stant, « is the torsion constant, g (which has units of in-
verse length) gives the strength of the retarding potential,
F is a spatially independent externally applied torque, and

g is a thermal random torque. In Eq. (1) e is an expansion
parameter which we shall use later. In the overdamped
case, Kaup found that the mobility of an overdamped
sine-Gordon kink in the static limit was the same as given
by Buttiker and Landauer, and he also found that the ef-
fect of an increase in the temperature is to increase this
mobility by the factor (1+1.075/13E&+ ), where Ez is
the rest energy of a kink and P is proportional to the in-
verse of the temperature. Kaup' also evaluated the
change in the shape of an overdamped sine-Gordon kink
caused by the thermal fluctuations, and he found that the
kink somewhat flattens, increasing its width. This analyt-
ic work by Kaup' was based on a singular perturbation
expansion wherein a corno ving dynamical variable
representing the center of the kink was introduced.

More recently, Salerno, Joergensen, and Samuelsen
studied the thermal sine-Gordon system which is

t), +I'B,u =«.t}„u—ttil sinu +F+eg . (2)

They had used standard methods of stochastic processes.
Their work did not require a singular perturbation expan-
sion because such is not required when one treats only
first-order quantities. (But in order to go to any higher
order, a singular perturbation expansion becomes neces-
sary. } Among their results, they found that in the pres-
ence of a soliton, the average energy of the kth phonon
mode was ktt T while the average energy of the transla-
tional mode is —,

'
k&T, where k~ is Boltzmann's constant

and T is the temperature. They also studied the thermal

sine-Gordon system in the absence of solitons and found
that the average energy per mode is k~ T. They also stud-
ied the Brownian motion of a thermal soliton and found
the average of the kinetic energy of the soliton to be

,' ktt T. Th—eir results are in agreement with those obtained

earlier by the classical statistical mechanics as derived by
Bishop, Krumhansl, and Trullinger.

Applications of kinks in dislocation theory can also be
found in Seeger's work. However, the main interests in
dislocation theory are to develop the theory of kink-
antikink formation and kink migration, since dislocation
velocities seem to be more related to the kink-antikink
formation, which is a more complicated problem than we
are considering here. Also, the kink diffusivity in disloca-
tion theory seems to be determined primarily by the in-
teraction of kinks with foreign atoms and not the thermal
fluctuations which we consider.

Since there is a variance in what is meant by the term
"singular perturbation expansion, " it is of value for us to
pause briefly and to clarify what we mean by this term.
A regular perturbation expansion is a power series in a
small parameter expansion, while in a singular perturba-
tion expansion one collects terms together in some other
fashion. Sometimes a regular perturbation expansion has
secular terms so that the expansion is not uniform or it
breaks down at a certain level. In such a case we may be
able to expand in a singular perturbation expansion so
that the secular terms can be annihilated. This is the gen-
eral idea in all singular perturbation expansions. Howev-
er, there is a variety of definitions of exactly what is a
singular perturbation problem. ' One can classify the
various definitions of what is a singular perturbation
problem (see, for exainple, Refs. 7, 8, and 12) as follows.

(i) Sources of nonuniformities appear in relation to an
infinite domain (for example, the appearance of secular
terms in nonlinear oscillations}. In the infinite domain
case, the nonuniformity manifests itself as so-called secu-
lar terms, like t cost and t sint. This type of singular
perturbation problem has been classified as a "secular-
type" problem.
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(ii) A small parameter multiplies the highest-order
derivative term in a differential equation. In this case, the
perturbation expansion cannot satisfy all the boundary
and/or initial conditions, bemuse the perturbed differen-
tial equations reduce their order in the perturbation ex-
pansions. Thus, the expansion ceiLses to be valid in some
boundary and/or initial layers. This type of problem may
be classified as being a "layer-type" problem.

(iii} There is a change of type of partial differential
equations. In this case, the classification type of the per-
turbed equations changes f'rom that of the original equa-
tions, and nonuniformities might arise. '

(iv) Another case is the presence or occurrence of singu-
larities. In this case, singularities that are not involved in
the exact solution appear at a certain stage of the pertur-
bation expansion. "

We remark that what we term to be singular perturba-
tion theory here is as in (i) above. This method is also
known in nonlinear dynamics as the method of I.indstedt
and Poincare. "

With this clarification of what is the method that we
shall use, let us now describe what we shall do with it.
We shall extend Kaup's study of the thermal effects on
the overdamped sine-Gordon kink motion to that of the
damped sine-Gordon equation for any damping. As one
can see upon comparing Eqs. (1) and (2), the only differ-
ence lies in the second time derivative which is present in
Eq. (2) but not in Eq. (1). And, in the heavily damped
limit (I ~ 00), except for short transients, solutions of the
damped sine-Gordon equation, Eq. (2), become the same
as those of the averdamped sine-Gordon equation, Eq. (1),
for the same initial conditions. Therefore one would nor-
mally consider the overdamped sine-Gordon equation to
be the heavily damped limit of the damped sine-Gordon

equation. However, as we sha11 show here, this is not the
case when one considers thermal effects. We shall show
that although the thermal behavior of the overdamped
sine-Gordon equation may be qualitatively the same as
that of the heavily damped sine-Gordon equation, there
still are definite quantitative differences in the results,
sometimes even of order unity.

The manner by which this comes about is as follows.
As we will show, the process of thermal averaging does
not commute with the limit of I'~go (except at the
points I = 00 and P=O). Why this is so, is that there are
some terms which are small and vanish as I'~ ao, but still
thermal average to a nonzero value. At the same time,
there are other terms with larger rms values which do
thermal average to zero. Thus, terms which usually may
be neglected in the limit of I'~ oo can make a significant
contribution to thermal averages. This will be discussed
more specifically in Sec. IV.

In Sec. II we shall extend Kaup's results' to the damped
sine-Gordon kink. As was done earlier, ' we shall use a
singular perturbation expansion, expanding in both
powers of the external torque, F, and in the random
thermal torque, g. The detailed calculations are given in
Appendix A. This expansion will be of the form"
u =up[x —xp(t)] + 5u(x, t), where up will be a kink solu-
tion and xp(t) will be the position of the kink. ' We now
have two statistical variables, xp(t) and 5u(x, t), instead of

u(x, t). However, xp has only one degree of freedom.
Thus 5u must have exactly one less degree of freedom
than u has, and this will be achieved by requiring 5u to be
orthogonal to the Goldstone mode. ' This will impose
one constraint on 5u and thereby reduce the number of its
degrees of freedom accordingly. Then 5u and xp(t) to-
gether will have the same number of degrees of freedom
as u originally had. For an interesting recent discussion
of how the Goldstone mode is related to a universal local-
ized relaxation mode, the reader is referred to Ref. 15.

This decomposition of u into the statistical variables 5u
and xo docs have some problems. First, it is now not
practical to define statistical averages as averages at con-
stant x. To illustrate this, consider the ensemble average
of u(x, t). The first term to be averaged is up[x xp(t—}]
which requires the average of a function of a statistical
variable, not just the average of a statistical variable.
Furthermore, since xp(t} will undergo a randam walk, the
ensemble average of up[x —xp(t)] will therefore be time
dependent, complicating the physical interpretation con-
siderably. The obvious way to bypass this is to define the
ensemble average relative to the kink. Namely, first de-
fine a comoving coordinate, X=x —xp(t) so 'tlla't

u (x, t) = up(X)+5u. Now average the first term by keep-
ing X the saine for every element from the ensemble, and
then it becomes clear the up(X)=up(X), since up(X) is
only a function and is not a statistical variable. All sta-
tistical variations have been swept into 5p. For mare dis-
cussion on this point, the reader is referred to Ref. 1.

In Sec. III we take the expansion in Sec. II and do the
standard statistical averaging of various quantities. For
this we use

g(x, t) =0
and for the second-order averages we take

g(x, t)g(x', t') = 5(x x')5(t t—') . —(4)

The prefactor of 2I /P in (4) is determined by applying
the fluctuation dissipation theorem, where P is propar-
tional to the inverse of the temperature, namely,
P=(k&T) ', where T is the temperature and ktt is
Boltzmann's constant. Details af most of the calculations
will be found in Appendix B.

The fact that kinks and antikinks do exist in the pres-
ence of thermal fluctuations is known from numerical
studies. ' It is only as the temperature becomes higher,
namely, for kttT&Ep, where Ep is the rest energy of a
kink, that the kinks will be destroyed and/or created by
the strong thermal fluctuations. Therefore, there is a fin-
ite range of temperatures (0~k&T ~Ep) wherein kinks
and antikinks do have a stable existence.

In the last section we shall present our results ~d con-
clusions. We shall take the results from Sec. III and com-
pare them with those of the overdamped case. ' In partic-
ular, we find that our results do differ quantitatively from
those for the overdamped sine-Gordon' kink sometimes
by a factor of 2 or so. In particular, we find this to be
true for the change in the shape of a kink or an antikink
caused by the thermal Auctuations. %%at happens here is
that statistical averages of small (in the limit of I ~00)
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positive-definite quantities can end up being larger than

the statistical average of a nominally large quantity (but

which statistical averages to a small value}. However, the
temperature effect on the average velocity of a kink or an
antikink does not have such a dramatic difference between

the two cases. In addition, we shall also evaluate the aver-
age energy of a kink, the correlation function for the
sine-Gordon field in the presence of a kink, and the dif-
fusion coefficient for kinks. For these latter quantities,
we shall show that one will get the ex ted results even if
one uses the comoving coordinate" '~ and this singular
perturbation expansion.

II. SINGULAR PERTURBATION EXPANSION

First we expand in the thermal torques. We take

u (x, t) =up(X)+eu t(X, 'r)+e ut(X, 'r)+ ' ' '

where

X=Xo+eX,(r)+e'X,(t)+

(vo —K)uoxx —I uouox+ U(uo) =~2

in first order

ul 2vOQlx +(vo —K)u ixx —ruou tx+ru „2

(9)

+ U (uo}u I 0 2vpviupxx+(vl +~ul }uox

(10)

and in second order

and we find it adequate to choose

o=& —Vot,

where uo is the zeroth-order velocity of the kink.
Inserting the above into Eq. (2) and expanding then

gives in zeroth order

tl2 —2uouzx +(vo — )Q2xx —I vouzx+ I uz + U„(QO )uz

2 2
=2uiuix, —2vpuiuixx —(2vou2+ui }upxx+(ut+I ul)uix+(us+I uz)uox —t u 1UsN(uo) ~

where the overdot indicates differentiation with respect to
time. Also, we have used

(12)

This follows from (5), (6), and (8), whereby we may define
the center of the kink to be at X=O. Then from (6) and
(8) it follows that the kink's velocity is

then Eq. (17) becomes

(19)

As is well known, (i) the operator L' ' has a zero eigen-
value, the Goldstone mode, ' and (ii) upx' and gb must be
proportional where the nonzero constant of proportionali-
ty, c, may be defined by

V =VP+EV) +E' V2+ ' ' ' (13) (o)
QOX =Cfb i (20)

with u; defined by (12). Thus v; can be interpreted as the
ith order of the kink's velocity.

In order to obtain analytical results, we now must treat
the weak torque case, that is, for small F We shall in. tro-
duce superscripts to designate the order of the expansion
in I'. Expanding in a regular perturbation expansion in I',
we have

(14)

where ttlb is the zero-eigenvalue bound state of L
In the sine-Gordon case one takes

U(u) =Kt} sinu, (21)

where the solution for the zeroth-ordered equation (16) is

up(X) =4 tan '(se'), (22)

where s =+ 1 for a kink, —1 for an antikink, and z = re.
We obtain the continuous eigenvalues of L' ' from the

eigenvalue problem

V;=V '+FV "+ . , i=0, 1,2, . . . . L"'y, =X,1i, (23)

In the sine-Gordon case one can show that vo
' ——0. By

expanding the zeroth-order equation (9), uo ' and uj"
satisfy the following respective equations:

—Kuoxx+ U(uo ') =0 (16) At ——K(1 +ti ) . (24)

by evaluating (23) at X=+ 00 and by using the fact that
when very far away from the kink (X~+ ao} the eigen-
function 1I(1 must approach e' X. These eigenvalues are

Kuoxx+U. (uo )uo—=1+vo uox .(o) (&) (1) (0)

If we define the operator L ' ' by

L."1=—a„'+ U„(u.'"),

(17)

(18)

Since the operator L' ' is self-adjoint, then for the sine-
Gordon case, the eigenfunctions ttlb, p& form a complete
set" which spans the space of functions of X. The
orthogonality relations are

(25)
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(26)

(27)

F=0 limit to obtain a nonzero result. The required term
(814) is evaluated in Appendix 8 and to second order

where we use the angular brackets to indicate the inner
product

& u
i

v &:—I u (X)v(X)dX .

The completeness relation has the form

5(X X'—) =ft, (X')Ps(X)+ I dl Pt(X')ft(X) . (29)

In the above equation, pt denotes the adjoint eigenfunc-
tions. But since I.' ' is a self-adjoint operator, it then fol-
lows that the adjoint eigenfunctions are some linear com-
bination of the eigenfunctions of I. ' ' having the same
eigenvalue A,t. Thus

u =4tan '(se')+e u2 '+ .

where

[z ——,
' tanhz(1+ —,

' sech z}] .
8P~q

Note that to this order, one can rewrite (35) as

u =4tan '[s exp(z+5z)],

5z = [z ——,
' (1+—,

' sech z)tanhz] .
16' rl

(35)

(814)

(36)

(37)

'Pl alt l+b-lPI

Then it follows that'

& 4i'
I 4 &

=ai5(l'+1)+ bi 5(l —l') .

(30)

(31)

Since 5z is opposite in sign to z, we see that the effect of
the thermal fluctuations is to flatten out the kink, thus in-

creasing its width. We also see from Eq. (37) that the
change in the shape of a kink is independent of I and is
dependent only on the temperature.

A relation which shall be useful later is that when f~ is an
even function in l, we find that'

1 1 1' I = 1' 1' (32)

With the above preliminaries, the determination of the
expansion quantities vj'"'(r) and uj'"'(X, r) as functions of
g(X,r} is straightforward but tedious. Expressions for
these quantities when j& 2 and n & 1 are given in Appen-
dix A. Given these expansions, we may then proceixl to
perform the various ensemble averages, which we shall do
in the next section.

8. Average velocity of a kink or an antikink

In this subsection we shall evaluate the average velocity
of a kink or an antikink for F small. The zeroth-order re-
sult is given by (815) while the second-order result is
(829). Thus, to this order the average velocity of a kink
or an antikink is

v=SU,' '+SU' '+.

III. SECOND-ORDER ENSEMBLE AVERAGES
41- '+Ps + + (38)

The solution in the preceding section is for one specific
thermal torque, g(x, t}, from our ensemble. We now aver-

age over all elements in the ensemble to determine average
values' ' v using (3) and (4). We simply note that because
the thermal correlation time is taken to be zero, one finds
upon transforming from (x, t) coordinates into (X,r} coor-
dinates that'

where Eo ——8~rl is the rest energy of a kink and c =c(A)
is given by (822)—(830). Also, c (A) is a positive function
for all positive values of A (see Fig. 1) where A is given
by (828). This result shows that the effect of an increase
in the temperature is to increase the average velocity by
the above amount.

and

g(X,~) =0 (33) 1.2—

g(X,~)g(X', ~') = 5(X—X')5(~—~') . (34)

0.8—
This means that statistically the driving term is exactly
the same in both coordinates. From Eq. (33}we conclude
that all first-order thermal averages vanish, i.e.,
vi '=0= v'i", etc. The details for evaluating the various
second-order thermal averages is given in Appendix B.
Next we shall discuss their consequences.

0.4

A. Change in the sha~ of a kink
due to thermal fluctuations

In this first subsmtion we shall evaluate the change in
the shape of a kink or antikink due to thermal fluctua-
tions. For this calculation, it is sufficient to take the FIG. 1. Plot of c(A) as a function of A.
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IV. COMPARISON OF THE HEAVILY DAMPED
CASE VfITH THE OVERDAMPED CASE

In this section we shall compare the heavily damped re-
sults (I —+ao) with the results of Kaup' in the over-

damped case. The results are qualitatively the same but
do differ quantitatively. An explanation of this will be
given shortly.

Consider the change in the shape of a damped sine-

Gordon kink as given by (814}. In the overdamped case,
Kaup' found that the second-order change in the shape of
a kink was given by

(sechz)[2z ——, tanhz(1+ —,
' sech z)],

8pafj c=c0+0(1/A ), (41)

value of I u, is indeed larger than u„. $o for a given ele-

ment from the ensemble, in general, we will have

i u„ i &I [ u, i
as I' as was argued in Sec. I. But

when we average over all ensemble elements, we find that
I u, will average to zero while u„will average instead to a
nonzero constant value (since U i )0). Therefore for
second-order thermal averages, the overdamped sine-
Gordon kink is not the limit of the heavily damped sine-

Gordon kink.
Next we shall compare the average velocity of a kink or

an antikink in both cases. One simply evaluates the six
integrals given by (822)—(827) in the limit of A~ao.
One obtains '

(39)
where

which differs only in the first term. Thus a heavily
damped sine-Gordon kink is distorted by thermal fiuctua-
tions only about one-half as much as an overdamped
sine-Gordon kink would be.

This dramatic difference between the heavily damped
and the overdamped cases deserves an explanation, partic-
ularly since the heavily damped limit has the same solu-
tion as the over&amped case. One may readily verify the
latter by taking the limit of the results in Appendix A.
These results then become exactly the same as for the
overdamped case. '

Therefore the difference must occur somewhere in Ap-
pendix 8, and indeed that is the case. These results for
the change in the shape are sufficiently simple that one
can actually trace down the source of the difference. It is
easy to see that in the damped case, Eqs. (81)—(84) give

Q2 = — Ui ( upped
(0) Pl (0) ? (0)

+ i (((}i
I
(uI")'U- &]

while in the overdamped case, the first term would be ab-
sent. Thus the difference between the two results is due to
this extra term which itself arises from the second time
derivative in (2). This extra term in (40) is due to the ki-
netic motion of the center of the soliton, namely, the
0)u0rg term in Eq. (11}. This is the only part of the u„
term which survives the averaging to second order

In the limit of I —+ oa, this term does vanish. But after
thermal averaging, although it does still vanish as I ~ 00,
the thermal average is now found to be the same order of
magnitude as the other term in Eq. (40). In other words,
thermal averaging and the limit of I -+ oo do not com-
mute.

To clarify this further, let us compare the u, term with
the u„ term. For the following argument, we shall as-
sume that the kinetic motion of the center of the soliton
dominates, and thus we take u„=@~up~~ and similarly
u, =I"ujupg. Clearly in this approximation, from the
vanishing of all first-order averages and Eq. (813),
I"u, =0, u« ——0(1/Pg), and the latter does not vanish as
I ~ca. No matter how heavily damped a sine-Gordon
kink is, the first term in (40) never does vanish. On the
other hand, (I"u, ) =O(I /Pri), showing that the rms

m'sI"
1

1.099 711 3
41'ri pE0

(43)

In the overdamped case studied by Kaup, ' the average
velocity is given by

msI' 1.074 704 7
41'?) PE0

The two results are almost the same and this time they
differ only by a very small quantity. The reason for this
difference again comes froin the extra terms that arise due
to the second time derivative in Eq. (2).

V. AVERAGE ENERGY OF KINKS AND PHONONS
VIA THE SINGULAR PERTURBATION EXPANSION

In this section we shall describe the evaluation of the
average energy of kinks and phonons in this singular per-
turbation expansion. These results are the same as by oth-
er methods since one only needs to calculate the average
of first-order quantities. What we do here is simply to
verify that the results obtained via the singular perturba-
tion expansion will be the usual results as obtained by oth-
er methods.

As is usual, we start with the Hamiltonjan density

,
' (a. +uu,—}+a.i) (1—cosu }, (45)

which when transformed from (x,t}coordinates into (X,r)
coordinates becomes

A =T[(~X +X,«)uz+u, +2X,uzu, +arP(1 cosu)], —

(46)

Expanding in powers of e, one has

A =A 0+eA i+@ A 2+
where

A 0= i (K+U0)u0(r +Kt/ (1—cosu0),2 2

gp ——1.099 711 3. . . .

As I ~00, that is, as A~ao, c—+c0 and the average
velocity in (830}reduces to
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4 i =KQ0XQix —U0Qox(Q i —U()Qix —U)Qox)+F7/ Q isillQ(),

~2= 2)((Q ix+2"ox"2X)+ Y("i~ Uo")x "i"ox)2 1 2

UOQOX(Q2 UOQ2X U1Q1X U2QOX)

+ICY/ ( 2 Q ) COSQ0+Q2slilQ0) . (50)

In the weak-torque limit, the leading term is for zero
torque. Thus we shall only consider the zero-torque case
in this section.

The average kink energy is

Eq. (55) as

(58)

where E'2b' and E2„' are the average energies of the
translational mode (soliton)2 and the nth mode of the
continuous spectrum (phonons), respectively. Thus

Ezb —— =—,kii TEo)

2p 2

E2„——— kaT .——(~)

and upon expanding, we have

E' '= ' x n =012
where

Eo ——Srg,(0)

Eto)

(51)

(52)

(53)

(54)

Therefore, the translational mode (soliton) of the sine-
Gordon kink will have an energy of , ka T, —while the con-
tinuous modes (phonons) will have an energy average of
kaT per mode. These results are the same as the results
obtained by using the standard methods of stochastic pro-
cesses in Ref. 3 and also with the classical statistical
mechanics derived in Ref. 5.

VI. CORRELATION FUNCTION
AND DIFFUSION COEFFICIENT

(55)

E(0) i U(0) )2 dX( (0) )22 = 2V1 QOg

+ z f d«4 if'ik' I'+
l
I'i'k'„ I') ~

Evaluating the first integral in (55) and the average quan-
tities in the second integral of the same equation gives

In this section we shall evaluate the correlation of the
thermal fluctuations in the region about a kink. Because
of the presence of the kink, one cannot just simply calcu-
late the correlations of Q (X,r) with Q (X',~') without
singular terms entering. Instead, it is necessary to calcu-
late the correlations relative to the average values. We de-
fine the general correlation function as

(uI")' I dX(uqq')'=— (56)
cr(X,r;X', r') =[Q (X,r) —Q (X,r)][Q(X',r') —Q(X', r')] .

(61)
In the zeroth order in F, and second order in e, one finds

4I)f)k I
= If)k,.I

=(0) 2 2 @0)
o(X,r;X', r') =e'Q(,0)(X,~)Q()0)(X',r') . (62)

The best way to interpret 5(0) in the above equation is to
place the system in a box of length I., in which case one
can replace 5(0) by 5(0)=L/2ir. Then one can rewrite

I

With use of formula (A6) for Q'i ', Eq. (62) reduces to the
integral form

u(X, r;X', r') = f dl ([I"+(I —4A, )) ]exp t
——,[I'—(I —4d(,() ] ~

r ~'
~ I

(A(X)(t»(X')
2 1/2 & 2 1/2

2p -- X,(I 2 —4X,)'"

—[I —(I —4A))' ]expI ——,
' [I +(I —4)())' ] ~

r —v'
I I ) (63)

For the static (equal-time) correlation function, i.e., when
~=~', one can evaluate the integral in (63) and obtain the
exact analytic result (first order in 1/P and zeroth order

F), o(X,r;X', r)=(1/P)g(z, z'), where the function
g(z,z') is defined by (B10). The structure of this static
correlation function can be seen by plotting the function
f(z,z') =4~rjg(z, z') versus z —z' (see Figs. 2—4). We see
in Fig. 2 that the correlation function is symmetric when
z'=0 and at z =z'=0 it has the maximum value 1. The
minimum value is negative when z is about +2, and the
correlation function is effectively zero when z is larger
than about +6. Figure 3 shows that f is not symmetric in
z when z'=1. The maximum value is about 1.5 at
z=z'=1, and it has a negative minimum value when

I

z= —1. In Fig. 4 the correlation function for z' large
(z'=10) is again approaching a symmetric form but now
is non-negative for all values of z. The maximum value is
about 2 at z =z'=10. One could interpret what these fig-
ures show as follows. When the center of the kink is dis-
turbed, the correlation function acts as if it had a certain
resilience such that the average displacement was to be
kept zero. However, as one moves away from the center
of the soliton and disturbs the field well out onto the tail
of the soliton, the average correlation goes positive, with
the system responding on the average as if it were just a
limp rope. Of course, the latter is exactly the same
response that one would receive if no soliton were present
in the first place.
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Z Z-Z

6
I

FIG. 2. The equal-time correlation function 0 vs z for z'=0.
This gives the correlation fluctuations relative to the center of
the kink.

FIG. 3. The equal-time correlation function cr vs z for z'=1.
This gives the correlation of Auctuations relative to z =1 which
is along the edge of a kink.

We shall now briefly comment on the case when X=X', when (63) reduces to(,)
2ri ~

dl
l +rl tanh z2 2 2

pE f ~ (12+g2)2(l 2 4g )1/2

X([l +(r' —4X, )'/2]expI ——,
' [I —(I'—4X,)'"]

~

r r'
~

I—
—[l.—(I'—4AI )'"]exp I

——,
' [r+(r' —4Ai)'"]

[
—'

[ I ) .

These are two simple limits, I -+0 and I'~ 00. In the first case, I —+0, Eq. (64) can be reduced to

where

y =~icrl
~

r—r' ~,
which can be reduced to '

r 3(r 2
1 )

1/2 (65)

(66)

(67)

In the other case, I ~ ao, Eq. (64) will reduce ' to

cr(X,r;X,r')= 2—2 f ds Jo(s) —(sech z) y f ds Jo(s) —y Ji(y)+yJO(y) —f ds Jo(s) y+1—
pE 0 0 0

o'(X, r;X,r')= (1—erf(rl~F) —(sech z)I rl Y[1—erf—(ilv Y)]+rlv'Y/me " ——,
' erf(rl~Y)+ —,

' I), (68)

where now

Y=—Jr r'f—
I

(69)

erf(x)= f e ' dt .
n

(70)

As a final result we shall evaluate the diffusion coefficient. At the center of a kink, X =0, one has for kinks
t

x = f u(s)ds, (71)

where u is the velocity of a kink and x is the center of kink. To zeroth order in F and first order in 1/p, the average of
the quantity x is

x =
~+ 2 f dr f ds f dr' f dX'fb(X')e ' ' f dr" f dX"P (Xb")e "" 'g(X', r')g(X", r") . (72)
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where —rlx is the retarding force, demonstrates again that
kinks do behave as particles.
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APPENDIX A

FIG. 4. The equal-time correlation function o vs z for
z'=10, which is well out on the tail of the kink, and is the same
result as if the kink were absent.

With use of the second-order average of g [Eq. (57}],(72}
reduces ' to

(Al}

where

Using the results of Sec. II, we shall detail the expres-
sions for the expansion coefficients i)J'"'(r) and uj~"'(X,r)
when j=0,1,2 and r}=0,1. We start with (19) and ex-

pand it in our complete set of functions. To determine
Up", we take the inner product of (19}with Ps, obtaining

(i) &4b I
1)

p~(0)

(73) &"'=
& 6 I

u ox' & . (A2)

As t~ oo, the first term dominates, and one has

(x )'~ =&2Dt,

where D is the diffusion coefficient, and is given by

eke TD= rE,

(74)

Similarly, upon taking the inner product with X„one ob-

tains

up —IR
(A3)

Next we expand the first-order equation (10) by expand-
ing ui and u) in regular perturbation expansions in I' as
in (14}and (15). We find that u'i ' and u i

' satisfy

Comparing this result with that for a free particle, (0) + I (0)+I (0) (0) g+(„(0)+I0(0)
)

(0)

(76) and

(A4)

u(i) +I u(0)+L, (0)u(i) 2„(i)u(o) +I t)())u(o) u(i)„(o)U („(o)) 2U(i)„(o)u(o) +(0(0)+I-„(0))u(i)+(U())+I-„(i))u(o)~1 UQ ~ 1&T ~0 ~11 ~0 ~1 su ~0 UO ~1 ~AX U 1 U1 ~OX U 1 ~1 ~OX ~

(A5}

To solve these equations, we take

u') '(X,r)= f dl gt(X)f)t'(~),

then inserting (A6) into (A4) and taking the inner product with ittb, one finds

0(0)(t) f d g(0)( )e i (t r)——

(A6)

g) {r)= (0)

Similarly, one obtains

T
f)t'(r) =

2 )&2
dr'&Pt

I
g(r') }(exp{——,[I —(I —4A()'~ ](r—r') I exp{ ——,

' [I—+(I' —4A()'~ ](r—r')
J ) .
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To determine v'1" and u'1", we take as before

«', "(X,r)= J dig, (Xlf",, '(r't,

and obtain

(1)(t) f d 111( )e
P—t ~)

where

(A10)

(A 1 1)

g'"( )= — „,[2 o"'&y
I

"',&+I' "'&y
I

"'&—&q I

o'" '"U„„( "')&+('"'+I '")&y
I

'"&] (A12)

and

f'1'1'(r)= 2,~2 f dr'h'1"(r')(expI ——,
' [I'—(I'—4k1)' '](r—r') j —expI ——,

' [I'+(I '—4At)'~'](r —r') j),
( I —4)11)'i (A13)

where

hI"«)=2vo" &4 I
QPX'~&+I'vo" &4 I

QPX' &
—&01 I

uo"u'1 'U~~(uo ')
& 2vo"—UP'&4

I uoxx &+(U P'+I'UP')& 4 I
uox' & .

(A14)

Lastly, we expand the second-order equation (11) by expanding u2 and U2 again in powers of F as in (14) and (15). Then
u 2

' and u 2" are found to satisfy the following equations, respectively:

u(0) +I u(01+L(0)u(01 2U(0)u(0) (v(01)2Q101 +(v (0)+I UIO))u(0)+(U (01+1 U(0))u(0) 1 (ufo))2U (u(01) (A15)

Q2~+I Q2& +I Q2 =2Up Q2X&+I Uo Q2X —Qo Q2 U+z(up )+2v1 u 1X +2U1 u1X,
(1) (1) (0) (1) (1) (0) (1) (0) {1) (0) (0) (0) (1) (1) (0)

2"0 Ul "1XX 2(vp U2 +"1 Ul )"oxx (vl ) "Oxx
{1) (0) (0) {1) (0) (0) (1) {0) (0) 2 (1)

+( ' (0)+I (01) (11+( 11)+I (I)
)

(0) +( (0)+I (01) (11

+(„{1)+I „11)) (01 1

( 101)2U ( (01) (1) (0) (1)U
(

(0)
)U2 U2 u0y 2 u1 ggg u0 u0 u1 u1 gg u0

As before, we again take

u2"(X,r)= f d!Xt(X)f2I'(r), i =0,1.
Then one obtains

vz'(t)= f drg'2'(r)e " ', i =0, 1

where

(A16)

(A17)

(A18)

g2 '(r)= —
~(01 [2U'1 '&4b

I QPxr&+(UP'+I UI ')&A
I

QPX'& —
z &|('b

I
(QP') Uu~(uo ')&]

g',"(.)= „„,[2..'"&y, I",",, )+I .."'&y,
I "~&-&y, I".'"',"U..(.."'))+2","&y, I"„",)

+»'1"&4 I ultan) 2UO vl &4b I"'1XX& (UI") &6 I uoXX &

+( "'+I '")&tP Iu"'&+('"'+I "')&y Iu"'&+( '"+I "')&y
I

—-'&|tb
I
(QP')'uo"U-. (Qo") &

—&6 I

Q'1"u'1"U..(Qo") &],

(A19)

(A20)

T

f2J'(r) = dr'h2" (r')(expI ——,
' [I —(I —4At)'~ ](r—7') j(12—4X,)'"

—exp I
——,

'
[I + ( I —4A1 )

' ](r—r') j ), i =0, 1 (A21)

where

h2 '(r)=2UP'&4
I

Q1x' &
—(UP') &6 I

Qox'x&+(v P'+I UP')&A
I

QPX'& —
2 &4 I

(Q1 ')'U ("0 ')
&

and

(A22)
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l (()( ) 20(1)&y
I

u(0) &+I ())&y
I

u( )
& &y I

u(1)u(0)U (
(0) )&+2 (0)

&y I
(1)~&

+»1 &(t)( luI« &
—»o ") &~1 lu(xx& —2(Uo U2 +U( 0I )&A

I
uoxx&

) &(tt( I uoxx &+(U( +I "( )&(()( I
u ix &+(0 i +I UI )&4 Iu(x &

+(U2"+IUz")&@
I

uox'& ——,
'

&4 I(ui")'uo"Uu. .( uo')& —&Nl Iu1 ul Uuu(uo (A23)

APPENDIX 8

In this appendix we shall detail some of the calculations necessary to evaluate the second-order thermal averages dis-
cussed in the text. Details of all of these calculations may be found in Ref. 21.

First we shall evaluate the thermal average of u 2
'. From (A17), (A21), and (A22) we find

Q2 =
2 1/2

~ 2 l XU1Q1~ —U] l QOXX + I XU1Q
I

X(exp I
——,[I —(I' —4A() ](r—r')] —expI ——,[I +(I —4A1)' ](r—r')

I ) .

(0) (0)
U1 Q1, ——0,
„(0)„(0) 0U1 Q1

(0) (0) 0U1 Q1

(82)

(83)

Using formulas (A7)—(A9) and (34) to determine some of
the averages of the quantities in (81), one finds

(812)

where z) (z() is greater (lesser) of z =rig and z'=rig'.
Thus the quantity ( u 1

'), reduces to '

(u '1
'

) =—g (z,z) =
p

'
4p~rl

(811)

Evaluating l(()'( ' by Eq. (A2) gives

X")=2s(2~)'" .

(
(0) )2

p(~(0) )2
(85) Thus (U'1 ') in (85) becomes

For evaluating ( u 1
'), and also later calculations, we have

found it to be convenient to define the function

(0(0) )2
8 rl

Finally, one obtains

(813)

For the sine-Gordon equation, the eigenfunctions ' are

gs =(ri/2)'i sechz,

e' x(l +i ri tanhz )

[2m(l +ri )]'i
e '«(l —irl tanhz)

[2~(12+~2) ]1j2

u2 ——— [z ——, tanhz(l+ —, sech z)] .(0) s sec1lz 1 2

8P~ri

Next we evaluate the thermal averages of the velocity
coefficients. First we note that the zeroth-order result fol-
lows from (Al), (87), and (81):

(814)

[1) %$
U0 4I g

(815)

Next we must evaluate the second-order terms. Due to
symmetry, one can show2' that

w111ch gives

+-'
g(z,z') =

4)cri coshz coshz'
(810)

(816)U2
——0.(0)

The next two higher terms now become much more com-
plex. From (A18), (A19), and (A20) we have

U(0) U"'u",'&+&y I~ 0'," ',"&+I &ys Ia«U'1"uI" &
——,

'
&@, I(u(1 ))'U„„&],

(817)
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oz = —
~o~

[»o &A lt)xuz &+I oo &'(('b l~xuz &
—&(('b luo u2 Uu(uo )&rx("

+2&4 1~x
"' "'&+2&lb l~x

'" ".'& —2 o'"&6 l~' '" '"&

(o—'i")'& Vb I
uox'x &+ &@b I

~xgi"ui" &+ & fb I
~xgI"u i"&+gz '& ij'b

I
uo'x' &

I

(uIo))2u(1)U (u(o))& &q I

uIo)uI1)U ( (0))&] (81S)

From (AS), (A10), (A13), (A14), and (34), one finds

Also, from (A19) one finds

(819)

(820)

Then Eq. (81S) for Uz" reduces only to nine terms,

' = —p/„, [2 o'"&eb l~x "'&+I o"'&0 I~

+2&i), la, ',"",,'&+2&y, la, ~ &
—( '")'&1(

I

'" &+

—
2 &6 I(ui")'uo"U...(uo") &

—&gb IuI"uI"U„„(u,'")&] . (821)

The fourth, fifth, and ninth terms in Eq. (821) cannot be evaluated in a closed form, as best as we can determine, al-
though their values can be given as definite integrals. If one defines the six integrals,

00 nA x
(822)

(x +A +l)cosh [(ir/2)x]
CO A xdx

(823)
(x +1)(x +32+1)sinh(mx)

x —ydy dx
z0 o y +Q + J x + $ sjnh ~ 2 x —p sjnh ~ 2 x +y

00 00 X —JP
dp dx

y +A +1 x +1 sjn ~ 2 x —y sin m 2 x+y
mI4Aix2+3 —2 [(Sx +2 )/(x +I)]'i

Idx
[16x (x +1)+A (Sx +A )]sinht(nx)

x (x +p —2x Jp —ig + ix
dy dx

1+4y2 2 x +1 cos m x —y cos m x+y

(824)

(825)

(826)

(827)

where

2r'
K'g

then one finds '

(82S) where

1rSC

32aPI ri
(829)

(11)(169)c = + —,I i +2I2+ ,' I3 ——,
'
I4 —I~ + SI—b . (830)
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