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Solitons in planar ferromagnets with biquadratic exchange
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We study the influence of biquadratic exchange on the soliton excitations of the one-dimensional

easy-plane Heisenberg ferromagnet using a classical approximation in the continuum limit. Their

energy is found to be significantly affected particularly for the more localized configurations, where

a fourth-order expansion is necessary for accurate results.

The influence of solitonlike excitations in the propei-es
of magnetic chains has been the subject of continued in-
terest in recent years, particularly in view of the role
played by recent developments in the theory of nonlinear
systems' and the fact that some model substances have
been investigated in detail via neutron scattering experi-
ments2 as well as bulk specific-heat measurements. i

Much attention has been focused upon the magnetic salt
CsNiF3, which is considered the best example of a planar
one-dimensional ferromagnetic system. The usual Ham-
iltonian used to describe this system is the one-
dimensional easy-plane Heisenberg ferromagnet

o
— Jg S„S„+i+g g (S„')' glzzH QS—: (1}

for an infinite chain directed along the z axis with sites la-
beled by n. J &0 is the exchange integral; the second
term has A & 0 and corresponds to the single ion uniaxial
anisotropy due to the crystalline field, and it constrains
the spina to lie in a plane perpendicular to the chain axis.
The last term is the usual Zeeman energy for an in-plane
magnetic field.

The Hamiltonian (1) has been extensively studied, par-
ticularly at low temperature with spins considered as clas-
sical variables and the chain approximated by a continu-
um. Corrections, both quantum and due to the discrete-
ness of the chain, have been considered as well as the in-
stabilities that appear at high T and strong magnetic
fields. In this work we report results of studying the ef-
fect on the behavior of solitons of adding a biquadratic
exchange term (S„S„+i)zto the Hamiltonian (1). The
necessity of including such a term for spins higher than —,

'

goes back to Schrodinger, who showed that for spin 1

(which is the case of CsNiF3) the permutation operator

tablished by Ferrer' using the coherent state formalism.
We take then the Hamiltonian

P'= —Jg(S„S„+i)+Ag (S„')z

gpzH g—S„'—aJ g (S„S i )

with J &0, A &0, and a a parameter that measures the
strength of the biquadratic exchange, in the classical ap-
proximation. The evolution governed by the Hamiltonian
(2) is given by Hamilton's equations which become partial
differential equations in the long-wavelength limit. For
weak magnetic fields and small out-of-plane motions the
sine-Gordon equation obtains" when a=O. In our case,
a&0, writing

S(z, t) =S(sin8cog, sin8sing, cos8),

with 8=8(z, t), P=P(z, t), and keeping terms up to second
order in lattice spacing over wavelength we obtain

8= —J(1+2aS2)Sa (P"sin8+28'P'cos8)+gpzH sing,
(4)

Psin8=J(1+2aS )Sa [8"—(P') sin8cos8j

+2AS s1118cos8+gpzH cos8 cosp .

Here, an overdot denotes time differentiation, a prime
denotes space differentiation and a is the lattice spacing.
These equations are the same as the ones obtained by
Wysin et al. when a=O. Thus, to this order, the effect
of the biquadratic exchange is to renormalize the ex-
change energy J to J=J(1+2aS ). In the sine-Gordon
limit ( g @AH « 2AS, 8-n. /2), Eq. (3) simplifies to

/=musing,

(S"S.)'+S"S —1

and an interpretation in terms of a superexchange mecha-
nism was given by Anderson. The influence of this addi-
tional term on the thermodynamic properties has been
studied by a number of authors, and the existence of soli-
ton excitation in uniaxial anisotropic ferromagnets was es-

1cos8=
2AS

with

c =2AaSJ
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rn =gp~H jJSa

The energy of the sohton is

gpaH(1+2aS )'~
E SJS

(JS)

[where y=(1—u /c )
' and u is the speed of the soli-

ton] which shows that biquadratic exchange raises the sol-
iton energy for a &0 and lowers it for a &0, say by 10%%uo

for u= —0.1. Thus, even a small amount of superex-
change energy considerably alters the energy of soliton ex-
citations in a linear magnetic chain, its influence easily be-
ing of the same order of magnitude as quantum correc-
tions. " This also suggests that the biquadratic term may
affect crucially the stability analysis concerning out-of-
plane excursions. ' ' In this report, however, we con-
fine ourselves to magnetic fields sufficiently low so that
the sine-Gordon soliton is stable.

To second order then, biquadratic exchange, although it
significantly changes the energy, does not qualitatively
change the nature of soliton. In order to have a more de-
tailed understanding of the influence of this term, we have
carried out the continuum approximation to fourth order
in lattice spacing over wavelength. We do this because for
higher magnetic fields solitons become more localized
(Fig. 1) and the biquadratic term weights more heavily
those configurations, suggesting that higher derivative
contributions may become important.

The Hamiltonian (2) becomes, to fourth order,
r

—J(1+2aS ) S 8""—a (S S")
4I 4
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FIG. 1. Soliton profiles as function of z/a for three values of
magnetic field. A: (dashed lines) second-order approximation,
a = —0.4; 8: fourth-order approximation, a = —0.4; C:
a=1.0, second and fourth order essentially coincide. Note the
change of horizontal scale for the different magnetic fields: as
the latter go up, localization sharply increases.

Q
2—J(1+2aS ) S S"+A(S')

2

gp JiH (S" S—)— (5)

In this approximation the effect of biquadratic ex-
change is more than a mere renormalization of the ex-
change energy appearing in the usual bilinear expression.
Using (3) the evolution equations are

a'8= —J(1+2aS ) [P'"'sin8 —4(8') P'cos8 —48'P"'cos8+68"P" cos8
12

+88'P"' cos8 —6(8') P"sin8+ 48"'P' cos8

—128'8"P' sin8 —6(P') P"sin8 —4(P') i8' cos8]

+usa S [3(P') P" sin 8+48'(P') sin 8cos8+28'8"P'sin8+(8') P"sin8+2(8') P'cos8]

—J(1+2aS )a S(P"sin8+28'P'cos8)+gp&H sing, (6)

P= —J(1j2aS ) [6(8') 8"cos8 —8'"'cos8+68"(P') cot8cos8
12

+ 128'P'P" cot8cos8 —6(8')2(P')2 cos8

+3/'P"'cos8+3(P") cos8—(P') cos8]

+aJa~S [(P') sin 8cos8 —8"(P')2sin8 —28'P'P" sin8 —(8') (P') cos8 —3(8') 8"cosec8]

—J(1+2aS )a S[(P') cos8 —8"cosec8]+2AScos8+gp&H cogcot8 .
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As a first step towards the full understanding of these for-
midable equations we have looked at static, in-plane
(8=m./2) configurations. In this case the equation to be
solved for P is

2''"' 12—B(P') P"+2CQ" D—sing =0,
with Hamiltonian

(8)

—B ' +C ' +D 1 —co

a , a'S'
C =J(1+2aS )

12 24

, a'S'
B=J(1+SaS )

D =gpgHS .

We have solved (8) numerically with boundary conditions
-0.5 0.5

corresponding to a soliton (kink), and found the energy of
those solutions with (9), using parameters adequate for
CsNiF3. J=23.6K, A =5 K, S=1.

Results are given in Figs. 1 and 2. We have considered
magnetic fields gp~H =0.1, 1.0, and 3.0 K, to stay below
the critical field B = —,

'
A where sine-Gordon solitons be-

come unstable. As was expected, the fourth-order contri-
butions of the biquadratic term change the energy of the
static solitons by as much as a factor of 2 with respect to
a=0 for gp&H =3.

To sum up, we have found that biquadratic exchange
affects the solitons energy in one-dimensional magnetic
chains such as CsNiF3 significantly, and that corrections
found in a fourth-order approximation in lattice spacing
over wavelength can also be noticeable. The agreement of

FIG. 2. Energy (in units of JS~) of static solitons in the
second-order (dashed line) and fourth-order (solid line) approxi-
mation in lattice spacing over wavelength as a function of a, the
parameter measuring the strength of biquadratic superexchange,
for three different magnetic fields; A: gp~H =3 K; B:
gpgH =1 K; C: gpg8=0. 1 K.

sine-Gordon results with experiment is greatly improved
with a small, negative, biquadratic term.
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