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The appearance of zero-field steps (ZFS s) in the current-voltage characteristics of intermediate-

length overlap-geometry Josephson tunnel junctions described by a perturbed sine-Gordon equation

(PSGE) is assaciated with the growth of parametrically excited instabilities of the McCumber back-

ground curve (MCB). A linear stability analysis of a McCumber solution of the PSGE in the

asymptotic linear region of the MCB and in the absence of magnetic field yields a Hill's equation

which predicts how the number, locations, and widths of the instability regions depend on the junc-
tion parameters. A numerical integration of the PSGE in terms of truncated series of time-

dependent Fourier spatial modes verifies that the parametrically excited instabilities of the MCB
evolve into the fluxon oscillations characteristic of the ZFS's. An approximate analysis of the
Fourier mode equations in the presence of a small magnetic field yields a field-dependent Hill's

equation which predicts that the major effect of such a field is to reduce the widths of the instability

regions. Experimental measurements on Nb-Nb O~-Pb junctions of intermediate length, performed
at different operating temperatures in order to vary the junction parameters and for various magnet-

ic field values, verify the physical existence of switching fram the MCB to the ZFS s. Good qualita-

tive, and in many cases quantitative, agreement between analytic, numerical, and experimental re-

sults is obtained.

I. INTRODUCTION

The appearance of zero-field steps (ZFS's) in the
current-voltage (I-V) characteristics of long Josephson
junctions results from fiuxons propagating along the junc-
tion. This observation was first noted in a pioneering pa-
per by Fulton and Dynes' in 1973. In the same paper
Fulton and Dynes reported on experiments with a
mechanical analog of a long, lightly damped junction con-
sisting of a chain of elastically coupled plane pendula. In
the regime of high mean voltage (angular velocity) they
found a near-uniform rotation of the pendula, but with
decreasing voltage they observed that this uniform mode
of operation becomes unstable against spatial fluctuations,
resulting in the creation of propagating fiuxons or, alter-
natively, a switch to the zero-voltage state. In physical
terms the near-uniform rotation corresponds to a junction
which is biased on the McCumber curve.

In the present paper we report on analytic, numerical,
and experimental results which elucidate in more detail
the instability of the McCumber curve. The analytic
work is based on a stability analysis of the perturbed
sine-Gordon equation which describes the dynamics of the
Josephson junction. In the case of zero magnetic field this
equation is linearized around a solution which corre-
sponds to a uniform rotation of the pendula in the
mechanical analog. The result is a Hill's equation. The
instability regions of this equation determine the instabili-
ty intervals along the McCumber curve, the number of
which gives the number of ZFS's that can be reached

from the McCumber curve.
In the numerical work we use a method based on a sim-

ple extension of the multimode theory developed by En-
puku et al. which amounts to a consistent expansion of
solutions of the perturbed sine-Gordon equation in trun-
cated series of time-dependent Fourier spatial com-
ponents. The time evolution of the Fourier coefficients is
determined by direct numerical integration. The zero-
order Fourier coefficient corresponds to a near-uniform
rotation which acts as a parametric driving force in the
system. In the instability interval corresponding to the
position of the nth zero-field step the zero-order Fourier
coefficient excites predominantly the nth Fourier mode
and gives rise to a spatial variation in the phase along the
junction which evolves into the corresponding fiuxon os-
cillation.

The effect of magnetic field is handled in an approxi-
mate way by means of a simplification of the multimode
equations. After some manipulation, the problem is again
reduced to a Hill's equation which now contains the mag-
netic field as a parameter.

The experimental samples studied are niobium-oxide-
lead junctions of overlap geometry. Experimental param-
eter values are adjusted by varying the sample temperature
in a controlled way.

Comparison of the analytic, numerical, and experimen-
tal results yields an agreement that is at least qualitative
and in many cases also quantitative. We have also ob-
served some experimental phenomena, however, that are
not contained in the model results.
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II. MATHEMATICAL MODEL
AND STABILITY ANALYSIS

P=((}0(t)=2am[t/k;k], (2)

where am is the Jacobian elliptic amplitude function of
modulus k. For nonzero a, p, and y, we assume that Eq.
(2) solves Eqs. (1) in the power-balance approximation.
This yields the following expressions for the McCumber
branch of the I- V characteristic of the junction:

4aE (k)
(3a)

The mathematical model of the overlap Josephson junc-
tion is, in normalized form, the perturbed sine-Gordon
equation

(la}

P, (0,t) =$,(l, t) =g .

Here, P(x, t) is the usual Josephson phase variable, x is
distance along the junction, normalized to the Josephson
penetration length A~, and t is time, normalized to the in-
verse of the Josephson plasma angular frequency coo. The
model contains five parameters: a, P, y, l, and rt. The
term in a represents shunt loss due to quasiparticles cross-
ing the junction, the term in p represents dissipation due
to the surface resistance of the superconducting films, y is
the uniform bias current normalized to the maximum
zero-voltage Josephson current, rl represents the normal-
ized external magnetic field, and the norinalized length of
the junction is denoted by /.

We first consider the case of homogeneous boundary
conditions, i.e., g=O in Eq. (lb). If a=p=y=0 the
McCumber solution of Eqs. (1) is exactly

This approximation is valid for the asymptotic linear por-
tion of the McCumber curve, i.e., for to & 3. The insertion
of Eq. (7) into Eq. (6a) yields, after a simple calculation,

y'+(a+Pb )y + 'b Ji(to— )

+ g tt cos(mtot) y=0,

where

2m' J~(to ), m odd

2J~(co ), m even
(10)

and J~ is the Bessel function of first kind and mth order,
and J' denotes its derivative with respect to the argu-
ment.

Using the fact that the argument of all the Bessel func-
tions in Eq. (9) is I/to and that by assumption to&3, we

may approximate the Bessel functions as

~m ~Nl +2
J (x)=

2 m! 4X2 [(m+1)!]
Using this approximation, Eq. (9) may be rewritten as

McCumber solution. As will be seen in Sec. VI, such
solutions evolve into the fluxon oscillations characteristic
of ZFS's.

In the limit of small k, we may approximate Eq. (2) as'

1
$0(t) =tot + sin(cot),

CO

with

P(x, t) =P,(t)+P(x, t), (4)

where K(k) and E(k) are, respectively, the complete el-

liptic integrals of first and second kinds.
Following Burkov and Lifsic, we now express solutions

of Eqs. (1) in the vicinity of the McCumber solution as
—2N

2 16

y+2epy+ 5+ g e d cos(mr) y =0,
m=1

where r=tot, e= I/co, p=(to/2)(a+pb ),

(12)

where Po is given by Eq. (2) together with the conditions
of Eqs. (3},and P is a small perturbation of the form

and overdots now denote derivatives with respect to ~.
The first few expansion coefficients are

P(x, t) =y (t)exp(ibx)
M

d) ——1— 1d2=
8 2

1 6)

12 8 128
(13)

with b constant. Inserting Eqs. (5} and (4) into Eqs. (1),
we obtain an ordinary differential equation for y (t):

y+(a+Pb }y+Ib +cos[40(t)]ly =0
where

(6a)

6 =nm. /I, n =0, 1,2, . . . (6b)

and overdots denote derivatives with respect to t.
Equation (6a) is a damped Hill's equation; it inay have

unstable solutions in certain regions of its parameter
space. In such regions a small initial disturbance will lead
to a large response in the solution, giving rise to the onset
of a solution with spatial structure, in contrast to the

1

86)

1 1+— 1
2 8co

2

co (a+Pb )—1 1—
867

2
1

8'

(14)

etc.
Following Nayfeh and Mook we calculate the stability

boundaries of Eq. (12) by means of a Lindstedt-Poincare
perturbation expansion in the parameter e. Retaining
terms up to second order, this calculation yields

'2

b = co 1 1—
2co
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with b given by Eq. (6b). For given values of a, P, I, and

n, Eq. (14) gives two values for co, say to+ and to, which
are the stability boundaries of Eq. (12), provided that the
argument of the square root in Eq. (14) is positive. If this
argument is negative, no instability region exists for the
given parameter values. Using Eqs. (3) the voltage-
stability boundaries ra+ and co can be translated into the
corresponding current values, say y+ and y

III. MULTIMODE THEORY

P'(x, t)=rt ~x
~
+ g 8, (t)cos

j=0 I
(16)

Inserting Eq. (16) into Eqs. (1), we get, using the ortho-

The linear-stability analysis presented in the preceding
section provides estimates of the stability boundaries of
the McCumber curve, but it cannot furnish the time evo-
lution of an unstable solution. In order to follow the evo-
lution of such an unstable solution, we consider a simple
extension of the multimode theory developed by Enpuku
et al. i The basic idea is to approximate solutions of Eqs.
(1) in terms of a finite number of Fourier spatial modes
whose amplitudes are unknown functions of time. This
can be done with a reasonably small number of modes if
two conditions are satisfied: (i) the spatial extent of a sin-
gle fluxon is a sizable fraction of the length of the junc-
tion, and (ii) {() in Eqs. (1) can be expressed in terms of
periodic, continuous, and smooth functions of x. Condi-
tion (i) will be satisfied if we limit attention to
intermediate-length junctions, i.e., those having 1 & l & 5.
Condition (ii) can easily be satisfied in the following way:
We first define a new function P' in the double x interval

[—i, l] as

P(x, t), 0&x &I

{(}( x, t), —I &x &—0.
By construction {I}' is an even, continuous, periodic func-
tion of period 2/; however, from Eq. (lb}, its spatial
derivative is discontinuous at x=O and x =+I for F1+0.
Therefore, we split P' into two parts, the first of which is
an explicit function that satisfies Eq. (lb) and the second
of which is now a smooth, even function, which, accord-
ingly, may be reasonably approximated by a finite sum of
low-order Fourier modes:

gonality properties of the cosine function together with
the fact that P' is even,

JKX
Ho+aHo ——y —— sin rIx+ g H.cosx=0 Jj=0

(17a)

(17b)

with

tom =mell . (17c}

This system was integrated numerically using the stan-
dard predictor-corrector routine DGEAR; the spatial in-
tegrals were evaluated by means of the fast-Fourier-
transform routine Ft 1SC (Ref. 9) using N function sam-

ples over the interval [O, l] (corresponding to 2N samples
over one spatial period of P'). The accuracy of the tem-

poral integration was checked by varying the local error
limit in DGEAR, and the influence of mode truncation by
varying X.

IV. APPROXIMATE ANALYSIS
OF MAGNETIC FIELD EFFECTS

The multimode theory presented in the preceding sec-
tion is valid for any value of the magnetic field rt. Here
we present an approximate treatment of this theory, valid
for sufficiently small r}, which reduces the problem of
determining the effects of magnetic field to a simple ana-
lytic result similar to that presented in Sec. II. The ap-
proximation is based on assuming that the amplitudes of
the spatial modes in Eqs. (17) are small, i.e.,

N

g ~(();(t)
~

«1. (18)
j=~

Using this approximation we can calculate explicitly the
integrals in Eqs. (17), obtaining

8 +(a+Pa) }8 +co 8

I J7TX
sill 'gx + g 8 cos

1 x=o J lj=0
r

icos m&X

I
dx, m =1,2, . . . , N

Ho+ aHo y= — co,o ——g bJ,o81 sinHo — bo, o gcJ oHJ co—sHo,
j=1 j=l

(19a)

Hm+(a+co P)8 +comH = —2 co,m
—g bJ, mHJ.

j=1

with m = 1,2,3, . . . , N. Here,

slilHo —2 bo m
—g cJ m HJ cosHo,

j=l
(19b)

+rn 1 1 1 1
bJ, = —,[1—( —1Y+ cos(rtl)] + . + . +

'gl +KJ +87?l '771+ o'J —Km 'fIl —7TJ +7Tm 7/l —KJ —%m
(20a)

cJ m
———,[(—1)J+ sin(F11)] . + . + . +1 1 1

ql +wj +wm q}+mj —mm gl —m.j +em gl —mj —wm
(20b)
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which can be cast into the form

(21)

are never larger in magnitude than 1, we may further ap-
proximate Eq. (19a) as

8 '+a'8 ' —y'+ sin8'= 0, (22a)

(a)
0

0 2 8 ) 10

j,Al

0,0

)
t &z sin(rl l /2)

a = coo+ oo
ql /2

5=arctan(bp o/cp p) =pl/2,
t'=a' t,
cx'=a -'"a,

8'(&)=ep(&)+ &,

(22b)

(22c)

(22d)

(22e)

(22f)

(22g)

0.5

0.0

where overdots now denote derivatives with respect to t'
Equation (22a) has the same form as Eqs. (1) in the ab-
sence of spatial structure and in the absence of magnetic
field, i.e., it describes a Mccumber solution and conse-

quently leads to

: (b)
I I I I I I j I I I I-0.

0 2 4

I

6
I ~ ~ ~ ~ l

8
~

10

8 o 2am[ra——' ~ /k;k] —5, (23a)

(23b)
FIG. 1. Coefficients (a} bj and (b} ci of Eqs. {20). Note

that bj,~ =b~,~ and c~ f/) c~ J. ma'"
kK(k)

(23c)

In Fig. 1 we show the values of bj and cj for
j,m=0, 1,2 and 0&pl &10.

Using again the approximation (18), together with the
observation from Fig. 1 that the coefficients b~ and cj

I

If we now assume that the solution of Eqs. (19) con-
tains only one dominant spatial mode, say the mth (which
is reasonable for a sufficiently short junction), Eqs. (19b)
reduce to a single equation,

8 +(a+co~P)8 +co 8~ —2(b ~sinep —c coseo)8~ = —2(cp sinep+bo ~cosep),

which can be written as a Hill's equation with a forcing term

8 +(a+co p)8 +[co +2dcos(co+/)]8 = —2psin(co+/)

by defining

(25a)

P=arctan(b /c ) = ql

1 1 2

gl +2trm rll —2mm gl
+ (25b)

(25c)

p= (co,m+bo m—) =»n + 1 1+
r)l —m.m rll +n.m

(25d)

g=arctan(bp /co ) = + P—ql (25e)

with P~ =0,1 for m even, odd.
For small values of q it is reasonable to assume that the instability regions of Eq. (25a) are the same as those of the as-

sociated homogeneous equation. ' Therefore, we restrict our attention to the homogeneous equation
r

8 +(a+co~p)e~+ ~~+2dcos eo+
2

8 =0. (26)
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We may perform now the same procedure as used in the ran =0 case. As in that case, Eq. (26) may be cast into the form
of Eq. (12), where now

r=~t, e= 1/co, p=(co/2)(a+Pcs ), 5=co co —2d
N 67

2 16
(27a)

co 1
dq ——2d

12
'

8

The first few expansion coefficients are now given by

co 1
d )

——2d 1+—,dp ——2d
8 2

CO

128
(27b)

1

8N

CO

(a+Pro )

etc. Performing the same Lindstedt-Poincare perturbation expansion used before, we obtain the following instability
boundaries to second order in e:

'2 1/2

(28)
CO Sco

This expression assumes the form of Eq. (14) for r)=0.
For ri&0 but small it gives the dependence of the instabil-
ity boundaries on the magnetic field.

V. EXPERIMENTAL PROCEDURE

Sample preparation and experimental technique have
been described in previous publications. " Several junc-
tions have been investigated, all Nb-Nb, Os-Pb overlap
Josephson tunnel junctions of intermediate normalized
length. The results reported here were obtained with a
representative sample (S6-7/4), a junction of length
L=397 pm and width %=17.6 pm. Geometrically, the
overlap of the junction was perfect to within 0.5 p, m, the
resolution of our optical microscope.

The substrate was mounted in a 1)(1-in. microstrip
box and thermally anchored to a copper block containing
two precision Ge thermometers and a small heating ele-

ment. All the 50-pm-diam wires leading to the Josephson
junction, the thermometers, and the heating element were
bifilarly wound and carefully thermally anchored to the
copper block.

The microstrip box was included in a vacuum can im-

mersed in a liquid-helium glass cryostat. A low-loss (in-

side gold-plated} rectangular stainless-steel waveguide
connected the room-temperature X-band field-effect-
transistor (FET) microwave receiver to a sma transition
inside the vacuum can. The final part of the microwave
system was a 20-cm-long, all-Nb, 0.085-in. srna cable
leading to a sma-to-stripline transition in the microstrip
box.

A weak coupling to the microwave system was provid-
ed by an inverted microstrip antenna placed at a fixed dis-
tance of about 10 pm from one end of the junction. The
distance to the ground plane (nonsuperconducting) could
be adjusted in situ by means of a cryogenic differential
screw.

An extremely high stability of the three external bias
parameters —temperature T, current Iq„and applied
inagnetic field 8»~i—was essential and was verified by
measuring the frequency ( —10 GHz) and linewidth ( —5
kHz) of the radiation emitted by the junction when biased

on the first ZFS. Typical frequency-tuning rates of
b,v/b, T, hv/LUq„and 4v/M»z& were 0.1 MHz/mK, 2
MHz/p, A, and 0.5 MHz/p T, respectively.

The temperature of the helium bath was regulated with
a manostat to within -1 mK. A temperature stabiliza-
tion better than 10 pK at 2.1 & T~ 4.2 K could be main-
tained for minutes by adjusting the thermal time constant
of the microstrip box by regulating the exchange-gas pres-
sure in the vacuum can. All 50-p, m-diam wires were also
thermally anchored to the vacuum can.

The dc-bias current was supplied either from a sweep-
able constant-current generator or from a current source
based on reference mercury cells. The current was fed to
the junction by a long, double 50-pm-diam wire, bifilarly
wound transmission line, the hot end of which was ther-
mostatted in order to minimize the infiuence of thermo-
powers. The dc voltage across the junction was measured
using a similar transmission line. Both transmission lines
were drawn inside thin-walled brass capillaries.

Input noise of either capacitive or inductive origin to
the junction did not produce any observable frequency
modulation or linewidth broadening of the emitted radia-
tion. The noise of the dc amplifier used allowed us to
resolve voltage-step structures less than 100 nV on a fast
(10-ms response} XF recorder.

The external magnetic field was produced by a coil
wound onto the vacuum can and was applied in the plane
of the junction and perpendicular to its long side. The
magnetic shielding of the cryostat and the wires leading to
the coil was sufficient to prevent magnetic noise from in-

terfering with the measurements. This could be checked
by reading the linewidth of the emitted radiation when
biased alternatively in regions of the ZFS with

Av/M»pi =0 or hv/~»p)+0.
The critical-current density J, the Josephson penetra-

tion length AJ, and the loss term a were determined from
the dc I Vcharacteristic (c-ritical-current value, ZFS
asymptotic voltage, and the slope of the McCumber curve
at voltages corresponding to the ZFS studied) and from
direct measurement of the plasma-resonance frequency. '

For the junction in question (sample S6-7/4), J=26.2
A/cm~, AJ ——91 pm, I =L/Ai ——4.4, and a=0.006 at 4.2
K.
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VI. RESULTS

Figure 2 shows a portion of an I- V characteristic calcu-
lated numerically from Eqs. {17}using the parameter
values a =0.05, p=0.02, 1=2, and il =0. Both the
McCumber background curve (MCB} and the first zero-

field step (ZFS1) are evident. The inset shows in more de-

tail the region where ZFSl joins the McCumber curve.
This region was calculated as follows: For rl =0, the nu-

merical growth of an instability requires the imposition of
an inhomogeneous initial condition. Accordingly, for a
given y, a "pure" McCumber solution was launched and

allowed to stabilize for 100 normalized time units, after
which a small perturbation was added. In the instability

region, i.e., for y & y &y+ or ni &ni &ni+, the perturba-

tion grows, causing the system to switch td ZFSl. Out-

side of the instability region the perturbation decays, and

the system relaxes back to the McCumber curve. For
rl+0 there is a coupling between the McCumber solution

and the spatial modes through the boundary conditions,

Eq. (lb); this allows the instability to develop also in the

absence of an external perturbation.
Figure 3 shows the dynamics of switching in more de-

tail. In this figure, obtained using the parameter values

a=0.05, P=0.02, l=2, r}=0, and y=0.16, a small per-
turbation has been added to the solution at a time prior to
t= 500. Figure 3(a) shows the behavior of Ho in Eqs. (17).
Note from Eqs. (16) and (8) that (Hn)=(il}, )=co. For
t=500, we see that co=3.20. Between t=500 and 550, a
switching takes place, which, after a transient, settles into
a state having ni —=2.85. Figure 3(b) shows the correspond-

ing behavior of Hi (the larger-amplitude oscillation} and H2

(the smaller-amplitude oscillation) in Eqs. (17). From this

figure it is evident that the switching seen in Fig. 3(a) is
associated predominantly with an exponential growth of
the first-order Fourier spatial component. In a similar

way, Fig. 3(c) shows the behavior of H&. Comparing Figs.
3(b) and 3(c), we see that the amplitudes of the Fourier
coefficients decrease rapidly with order number.

Using this numerical procedure, we find that the stabil-

ity boundaries associated with ZFS1 for the parameter
values used are, expressed in terms of bias current,

3.6
0

eo

500
Time t

'700

Time t
700

0.01—
(c)

0.00

0.01—

!

!

0 = v : 'i! (!~i'"'iilllllli » iil/llllllll", , llIIIIII1illtllllllll/I/1II/IIIIII/IIII

500 700

h
I

I
I0
l
1

I0
I

f

I r
( 0

c oi r 'II'

i
J' J

0

MCB
ror

2 4 6 8 10 12

AVERAGE VOLTAGE

F1G. 2. I Vcharacteristic calculation fr-om Eqs. {17)using
a=0.05, P=0.02, l=2, and g=0, showing the Mccumber
background curve (MCB) and the first zero-field step (ZFS1).
Inset sho~s detail of region where ZFS1 joins the MCB.

Time t

FIG. 3. Dynamics of switching from McCumber curve to
ZFS1 calculated from Eqs. (17) by adding a small perturbation
to the solution before t=500, in terms of Fourier coefficients:
(a) Oo, (b) Ol (larger-amplitude oscillation) and 82 (smaller-
amplitude oscillation), and (c) 83.

y+ ——0.1712+0.0005 and y =0.1401+0.0001. Inserting
the same parameter values, together with n = 1 in Eq. (6b),
into Eq. {14)and (3), yields y+ ——0.1711 and y =0.1404.
Considering that this instability region occurs at the very
lower end of the asymptotic linear region in the
McCumber curve, for which the analysis of Sec. II was

developed, the agreement is more than satisfactory.
Figure 4 shows the stability boundaries, now expressed

in terms of average voltage, calculated from Eq. (14) with
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FIG. 7. (a) Detail of the I- V characteristic of experimental

sample S6-7/4 measured at a temperature slightly below the
transition temperature of the lead counterelectrode and in zero
magnetic field. Arrows indicate switching to the gap state. (b)

Same characteristic with 10&-magnified current scale. Dotted
lines indicate switching from higher-voltage to lower-voltage
states.

The characteristics sho~n in Fig. 7 correspond to a nor-
malized junction length of about 1=3.2 and an a-loss
term, estimated from the slope of the McCumber curve,
of about a=0.03. The experimental determination of the
p-loss term is subject to rather large uncertainties, and so
we have treated p as an adjustable parameter in what fol-
lows. An essential feature of the experimental procedure
is that the parameter values for a given junction can be
"tuned" experimentally by varying the operating tempera-
ture.

Figure 8(a) shows a comparison between the experimen-
tally determined stability boundaries (circles) in a magnet-
ic field associated with ZFS1 and those obtained from Eq.
(28), shown as solid lines. Experimental values of voltage
and magnetic field were translated into normalized terms
using the formulas (P, ) =V/Cga and r1=2mg, „,/Col,
where V is the physical voltage, 4z is the magnetic flux
quantum, P,„, is the applied magnetic flux threading the
junction, and f~ is the plasma frequency. ' The experi-
mental data were taken at a temperature for which
a =0.026 and 1=3.16, and these same parameter values
were used in Eq. (28). The P value used in Eq. (28) was
varied between 0 and 0.07; the effect of this variation is
indicated by the slight thickening of the curves in Fig.
8(a). The agreement between the experimental and
theoretical values for co+ is reasonable. The large
discrepancy for the co branch may be due either to the
fact that here co lies considerably below the lower limit of
the asymptotic linear region of the McCumber curve
(co-=3), or to the fact that a switching mechanism not
described by the model is involved, as mentioned above.

Figure 8(b) shows a similar comparison for ZFS2, using
the same parameter values (same temperature) as in Fig.
8(a). The p value used in Eq. (28) was varied between 0

3
-0,5

)

0.0 05 ~ 10

FIG. 8. Stability boundaries in average voltage (P, ) as a
function of magnetic field g measured experimentally (circles)
and calculated from Eq. (28) {solid curves) for (a) ZFSI and (b)

ZFS2. Fixed parameter values: a =0.026 and I=3.16.
Og p&0.07 in (a) and 0&p+0.05 in (b), giving rise to the shad-
ed regions between the solid curves.

and 0.05; the effect of this variation is indicated by the
shaded regions in Fig. 8(b). The agreement obtained here
for the behavior of the co branch is much better than
that of Fig. 8(a). The reason for this fact may be that
there is no direct switching from ZFS2 to the zero-voltage
state as there is for ZFSl, as can be seen in Fig. 7(b), or
that here co p 3.

Figure 9 shows a similar result for ZFS1 at a higher
temperature, for which a=0.043 and 1=2.56, and for a

1

—05
I

0.0 Q.5 1.Q 1.5 ~
2.0

FIG. 9. Stability boundaries in average voltage (P, ) as a
function of magnetic field q measured experimentally (circles)
and calculated from Eq. (28) (solid curves) for ZFS1 using fixed
parameter values a=0.043 and 1=2.56. P in Eq. (28) is varied
in the range 0&PRO.07, giving rise to the shaded regions be-
tween the solid curves. Triangles indicate experimental stability
boundary co* of the stable piece of the McCumber curve that ap-
pears below the bottom of ZFS1.
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larger range of magnetic field. As before, circles are ex-

perimental points and sohd lines are calculated from Eq.
(28). Also, as before, the shaded regions between the solid
curves represent the effect of varying P between 0 and
0.07. Two new phenomena are represented in Fig. 9. The
first is that at a field value of about ri=0.8, there is an

abrupt change in the behavior of the experimental to+
branch. Physically, this corresponds to the disappear-
ances of ZFS1 with increasing field and the growth of the
second Fiske step (FS2) at approximately the same volt-

age. 's The perturbation theory result derived in Sec. IV is
approximately valid only for sufficiently small values of
sl; it cannot be expected to hold for larger field values.
The second new experimental phenomenon is the appear-
ance of a stable portion of the McCumber curve below the
bottom of ZFS1 at this temperature. In Fig. 9 the lower
curve indicated by circles is, as before, the bottom of
ZFS1, and the curve indicated by triangles is the lower
stability boundary (to ) of this new piece of stable
McCumber curve.

We note from Figs. 8 and 9 that the experimental sta-
bility boundaries are systematically higher than the corre-
sponding theoretical ones. The reason for this might be
that the asymptotic voltage of the ZFS's corresponds to
normalized limiting velocities of the fluxons less than 1,
as discussed by Scheuermann and Chi. 's This would lead
to a calculated value of the normalized length l larger
than the real value and, correspondingly, to a shift of the
theoretical voltage positions on the normalized voltage
scale to lower values since, in normalized terms,
l(4, )=2' for ZFSI.

VII. CONCLUSIONS

A linear-stability analysis of the perturbed sine-Gordon
equation which describes the dynamics of Josephson tun-
nel junctions indicates that the mechanism that deter-
mines the experimental observation of ZFS's may be

described in terms of the growth of parametrically excited
instabilities of the McCumber curve. This analysis gives
good agreement with both numerical and experimental re-
sults in the asymptotic linear region of the McCumber
curve and for sufficiently small values of the applied mag-
netic field. It would be useful to extend the analysis to
the region of the McCumber curve below the asymptotic
linear region in order to be able to study low-order steps
in longer junctions.

Numerical integration of the multimode equations veri-
fies that the parametrically excited instabilities evolve into
fiuxon oscillations. The multimode approach is a useful
alternative to the direct numerical simulation of Eqs. (1}
inasmuch as it gives reasonably reliable results at a con-
siderably reduced computing cost. It should be remem-
bered, however, that truncated mode expansions can be
expected to give reliable results only when the dynamic
states in question are reasonably smooth. Here, as else-
where, the study of phenomena such as subharmonic gen-
eration and chaos will presumably require the use of dif-
ferent tools.
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