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Soliton density in Rb2ZnBrs
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The modulation wave in Rh2ZnBr4 is pinned over most of the incommensurate phase and ' Rb
NMR line-shape analysis cannot distinguish between a true incommensurate phase and a large-

period commensurate phase with %=17. The temperature variations of the soliton density, the line

shape, and the spin-lattice relaxation rate speak for the coexistence of a large number of domains

pinned by impurities rather than for the existence of a devil s staircase and pinning by the discrete-
ness of the crystal lattice. The large thermal hysteresis in the soliton density demonstrates the pres-
ence of a metastable, impurity-induced "chaotic" phase with random intersoliton spacing which ex-

ists even far below the incommensurate-commensurate transition.

I. INTRODUCTION

Rb2ZnBr4 represents one of the first known examples of
one dimensionally modulated incommensurate insula-
tors. ' ' The nature of the incommensurate phase in
RbzZnBr4 between TI ——346 K and T, =187 K, however,
is still far from being well understood. In contrast to iso-
morphous RbqZnC14 and E2ZnC14 and in contrast to the
predictions of the Landau theory, " the modulation wave
vector does not change with temperature over more than
140 K. It has been recently founds's that in the high-
temperature part of the incommensurate phase the modu-
lation wave vector equals —,„so the unit cell should be in

fact commensurate and 17 times larger than in the high-
temperature phase above Tt. This result is rather unusual
since commensurate phases with a large superstructure
should exist over a narrower range of temperatures than
phases with a small superstructure. Another suprising re-
sult is that close to the incommensurate-commensurate
transition successive jumps in the modulation wave vector
were observed, but the various "steps" are not specified by
an exact fraction as predicted in the devils-staircase
model and, moreover, seem to coexist in a certain tem-
perature range. '

Experimentally, it is rather hard to distinguish higher-
order commensurate phases with large periods from true
incommensurate phases. ' Here we wish to investigate
what s7Rb —,

' -+——,
'

quadrupole perturbed nuclear mag-
netic resonance can say about the nature of the incom-
mensurate phase in RbsZnBr&. We wish as well to redeter-
mine'o the soliton density in this system using recently
improved line-shape analysis techniques.
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Here Q is complex. For convenience we have retained a
higher-order term (Q'Q}" considering only even n, e.g.,
n =10 for [N(CHs}4]2ZnC14, n =6 for RbzZnC14, n =4
for (N~)qBeF4, and n =2 for chiral smectic liquid crys-
tals in an external magnetic field. Here we have
rs=ao(T To) and P—,tt, y, 5 & 0. Introducing polar coordi-
nates Q =A exp(iy), Eq. (1) can be rewritten as

g (x )= —A + A+—y A "cos
2 4 2

—5A p'+ —A (p')
2

Minimizing

"oF= gx x
xp

(2)

with respect to p in the constant-amplitude approxima-
tion A =Ac&A (x) and making use of the identity

cos (nqr/2) =[1+cos(nq&)]/2,

one finds the Euler equation for our problem (i.e., the
sine-Gordon equation)

Bg d t}g

t}p dx t}g)
(3a)

g (x)= —(Q'Q)+ —(Q'Q)' —+[Q"+(Q')"—(Q'Q)" ']
2 4 2

II. LANDAU THEORY yielding

A. The soliton density and the Landau theory

For systems of interest like RbzZnBr+ (NH4)2BeFq,
etc., where the order parameter Q has two components,
the Landau free-energy density can be expressed" as

try"= ——YAO sin(np)
2

with q&'=dy/dx and y"=d yjdx .
The first integral of this equation is

(3b)
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(—y')2=g+ +A
Q [cos(nq ) 1 ]2 2

n —2 2=g —yA p srn
2

where g is an integration constant. The maximum value
of the derivative of the phase, y~,„,determines the soliton
width dQ (Fig. 1), which is given by

' 1/2

—2~ =Pmax =
dQn

The intersoliton distance is, on the other hand, obtained

' 1/2
2w/n

x,= — J'

It should be noticed that the soliton density n, as defined
above measures the "domain-wall fraction" and it is not
equal to the inverse soliton separation 1/xQ which mea-
sures the number of solitons per unit length. Since the
soliton width dp only weakly depends on temperature,
these two quantities are proportional to each other. On
approaching the plane-wave limit the soliton separations
are of the same order or smaller than the soliton width;
therefore n, as defined above gives a better description of
the true physical situation than 1/xQ. The parameter k is
within the constant-amplitude approximation determined
by minimizing

] XoF= gx x
xp

with respect to g, yielding
n —2

g —gA p sin —
q7

2 2

VyA p

' 1/2

(10)

Introducing a new variable p =(n /2)p, we can express xQ
as

Xp=
K

2~g N —2

' 1/2
—kE(k),

where E (k) is the complete elliptic integral of first kind,

l~. (k) =
Q (1—k2sin2y)1/2

k =
1+5

gN —2
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The relation between p and x as well as between xQ and
dQ is illustrated in Fig. 1 both for large and small b, .

The soliton density which measures the volume fraction
of the crystal in the incommensurate domain walls' is
now obtained as

"Q m/2

xQ SC(k)
'

The temperature T enters the above expression through
the amplitude of the order parameter, A Q

——aQ( Tq T)/p. —
Here E(k) is the complete elliptic integral of the second
kind,

e/2
E(k)= J (1—k sin P}'~ dg .

It should be noticed that for T~T& (i.e., AQ~O),
k~O, lL ~»0, and K(k)~m/2, so that n, —+1. For
T~T, one finds, on the other hand, 62~0, k~—+I,
JC(k}~»0, and n, ~0. It should be also pointed out that
the soliton density n, and the density of the commensu-
rate domains, n„are related by n, +n, = 1. The tempera-
ture dependences of n, and n„apsredicted by the Lan-
dau theory, are illustrated in Figs. 2 and 3. The
constant-amplitude approximation A =AQ ——A (x) breaks
down' very close to T, .

It should be stressed that the temperature dependences
of the soliton density n, and the incommensurate wave
vector q =2m/xQ are qualitatively different both in the
constant-amplitude approximation, A =AQ, and in the
more realistic case with A =A (x). The difference is due
to the temperature dependence of the soliton width dQ.
Near TI dQ decreases with decreasing temperature faster
than xQ, resulting in a rather smooth drop of n, though
q =2m/xQ is nearly constant. Close to T„xQ is critical
and n, and q vanish in the same way.

If the continuum approximation is dropped and the
discreteness of the crystal structure is taken into account,
a chaotic phase intermediate between the incommensurate
and commensurate phases should occur. ' The same is
true if defects are taken into account. " Quenched ran-
dom impurities destroy' the long-range order in the in-
commensurate phase below d =4 dimensions and lead to
the formation of domains. Hence TI and T, mark no
phase transitions in the strict sense if quenched disorder is
taken into account.

FIG. 1. Spatial variation of the phase y of the modulation
wave for different soliton densities n, =do/xo. Here do is the
soliton width and xo the intersoliton spacing. The spatial vari-
able x is measured in units of xo.

B. The NMR line shape

The real displacement u of the ith nucleus in an incom-
mensurate phase is an admixture of a symmetric and an
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The expansion of the NMR frequency in powers of the
nuclear displacements is no longer of the special local
form' v;=v(u;(x)), but contains' both sine and cosine
terms.

The same situation arises if the relation between the fre-
quency and the nuclear displacernents is nonlocal
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dy/o

v;=v(u;(x;), uj(xj), . ) .

In both cases one finds'6

v(x) = vp+ vi, cos[$(x)]+vi, sin[/(x) ]

+ —,
'
v2+ v2, cos[Q(x)]+V2, sin[2$(x)]

This can be rearranged as

V(X) = Vp+ViCOS[g(X)+Pp]

(13)

4
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FIG. 2. (a) Temperature dependences of the soliton density

n, and the density of the commensurate domains n, according
to the Landau theory ( ), (b) if pinning and nucleation is
considered ( ~ ~ ), and (c) the T dependence of the soliton
width do according to the Landau theory.

0.8

antisymmetric component:

u; =up;cos[$(x; )]+uLsin[P(x; )],
so that the components of the displacement vector u;k
( k =x,y, z) can be expressed as

Q'k Qo keosff(xi)+'5'k ] k =x,J,Z (12)

where p'ik' is different for different nuclei in the unit cell.
Here P(x;)=q, x;+p(x) with q, standing for the com-
mensurate part of the modulation vector [qr =q, (l —5)]
and y(x) for a solution of the sine-Gordon equation. The
position of the ith nucleus in the 1th unit cell of the high-
temperature phase is designated by

x;(1}=xp&+1a, 1=0,1,2,3. . . .

+v2+ v2cos [g(x)]+ (15}

where f(x) and Pp are renormalized phases. '6

The frequency distribution function for a static one-
dimensionally modulated incommensurate system is, in
the constant-amplitude approximation, obtained' ' as

const
1v/1" (dv/1y)(dp/1X)

.

Singularities will appear in the spo:trum when (i)
dv/1/~0, and/or (ii) dfl1x ~0.

In the plane-wave limit dg/dx=const and the only
singularities are associated with 1v/1/~0. In the mul-
tisoliton lattice limit the phase f will be nearly constant in
the "commensurate" domains where dg/dx~O, whereas
it will vary with x in the "solitonlike" domain walls
where 1$/dx+0. The appearance of "commensurate"
domains will thus result in the appearance of new "com-
mensurate" lines and in a reduction of the intensity of the
incommensurate background and edge singularities.

Expressing f(x)=p(x)+Pp, we can rewrite Eq. (4) as

1
1x

=const)& I BP+eos [n (P—Pp)/2] J
', (l7)

where 6 is related to the soliton density n, by Eqs. (Sb)
and (9), with

E(k)=E 1

(1+F2)1/2

being defmed by Eq. (8a). Here b, is determined from the
experiment by fitting the observed line shape to Eqs. (16)
and (17).

Expression (17) yields up to n new "commensurate"
lines for 6~0 in addition to the incommensurate edge
singularities arising from dv/1/~0. The new lines will

appear for 6 &~ 1 when cos [n (f—Pp)/2] =0, i.e., when

P=(2m+1)n/n+Pp, m =0, 1,2, . . . , n —1 . (18}

0.2

l

]0 I'
FIG. 3. Variation of n, and n, with 5 .

In the commensurate phase f(x) and y(x} becoine con-
stants which just renormalize the phase shift Pp~tT)p. Ex-
pressing the commensurate wave vector q, characterizing
a given commensurate phase as

«M
q, =b
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where b' is a reciprocal-lattice vector of the high-

temperature phase and M, N are integers, relation (15) can
be written in the simplest linear case (vz ——v2 ——0) as

(M, N} Mv' ' '=vo+vicos 2m —+go, M=0, 1,2, . . . , N —1.
N

N —1

f(v)= —g 5(v-~~) (21)

yielding' N commensurate instead of the quasicontinuous
incominensurate frequency distribution. ' The splittings
between these lines will vary with N roughly as'
b,v =2vi/(N —1). The commensurate peaks will be
smeared out and indistinguishable from an incommensu-
rate plane-wave-type line shape if the natural linewidth of
the individual lines is larger than hv.

It should be noted that on going from one commensu-
rate supercell to another in the devil' s-staircase model, N
will vary discontinuously whereas the amplitude A and v~

will be continuous. Still another quantity which will vary
with N is the commensurability gap in the phase-
fluctuation spectrum,

g2 ~2~2' N/2-2 (22)

Here KN is of the order of a phonon frequency and as

~
&

~
&1, the phase-fluctuation gap b,, goes to zero as

N~00, i.e., as the truly incommensurate phase is ap-
proached.

III. RESULTS AND DISCUSSION

A. Incommensurate or higher-order commensurate phases

The s7Rb —,~——,
' NMR lines ' in Rb2ZnBr4 are sig-

nificantly broader than in RbiZnC14 and the resolution is
not good enough to discriminate' between a true incom-
mensurate phase and a higher-order commensurate phase
with N =17.

Except' very close to TI, the modulation wave is static
and pinned similarly as in other incommensurate systems.
Several arguments which speak for pinning by impurities
and against the possibility of a pinning due to the
discreteness of the crystal lattice and the existence of a
devil's staircase in Rb2ZnBr4 are the following.

(i) The floating' of the modulation wave close to TI is
similar to that in Rb2ZnC14. '

(ii) The phase- and the amplitude-fluctuation branches
in RbzZnBr4 have been clearly identified. ' The phase gap
in the incommensurate phase —as measured by the phase-
fluctuation induced spin-lattice relaxation rate ' —is of
the same order as in R12ZnC14, where it is defect induced.

(iii) In the low-temperature part of the incommensurate
phase, "commensurate" peaks appear, indicating the tran-
sition from the plane wave to the multisoliton lattice-type

(20)

Relation (20) yields the NMR frequencies in a com-
mensurate cell which is N times larger than the high-
temperature cell. The frequency distribution is now a
sum of 5 functions

modulation regime. If these peaks indicated transitions
from one commensurate supercell to another, the changes
~ould be less continuous than observed and would, more-
over, be accompanied by jumps in the phase-fluctuation-
induced Ti as observed in [N(CH3)4]2ZnC14 but not in
Rb2ZnBr4.

(iv) The incommensurate-commensurate transition in
Rb2ZnBr4 is accompanied by a jump in the phase-
fluctuation-induced T&, which is of the same order as in
Rb,zncl, .""

We thus believe that the modulation wave in R12ZnBrs
is pinned by defects and that the observed behavior'
close to the incommensurate-commensurate transition is
due to a large number of coexisting long-period phases or
domains due to pinning by frozen impurities, 's which des-
troy lang-range order in the strict sense. The fact that in
some samples the incommensurate-commensurate transi-
tion could not be observed at all supports this conclusion.

V-Vy
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RbzlnBr,
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2
~

.5 MHz

j I t I I

)80 200 220 210 260 280 300 320 340 360 TIK}

FIG. 4. Temperature dependence of the splitting of the Rb

2 ~—
2 spectra in Rh2ZnBr4 at an orientation where the linear

term is dominant.

B. The soliton density and its T dependence

The temperature dependence of the line splitting is
shown in Fig. 4 for aJ.HO, 4 b, HO ——162'. The relation be-
tween the nuclear resonance frequency and the nuclear
displacements is here such that the linear term is dom-
inant. The splitting can be fitted by v& ——35 kHz and
go=0. A comparison between the experimental and
theoretical line shapes is given in Fig. 5 for Rb(2). The
commensurate lines appearing at the center of the spec-
trum are clearly visible and gradually increase in intensity
on approaching T„whereas the other two groups of com-
mensurate lines merge with the edge singularities. The
critical exponent P is 0.36+0.04 and n, has
qualitatively —though not quantitatively —a similar
behavior as in RbqZnC14. On cooling n, is nonzero at
T„demonstrating the existence of metastable randomly
pinned solitons which persist even below T, . The density
of pinned solitons at T, is considerably higher here than
in Rb2ZnClz. ' This seems to be due to a greater concen-
tration of impurities (i.e., Cl admixtures), thus suggesting
that the metastable chaotic phase' —intermediate between
the incommensurate and commensurate phases —is defect
induced.
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FIG. 5. Comparison between experimental and theoretical
line shapes in RbqznBr4 for the case that the linear term in ex-
pansion (15) is dominant. The coefficients are given in the text.
The positions of the incommensurate (I} edge singularities at
(v—vp)/vi = —1 are shown by dashed vertical lines„whereas the
positions of the commensurate ( C) lines at (v—vp) jv~ ——0, +0.87
are shown by solid lines at the bottom of the figure.

The temperature dependence of the soliton density in
Rb2ZnBr4 (Fig. 6) is qualitatively similar to the one in
Rb2ZnClq but there are several important differences:

(i) The soliton density n, in Rb2ZnBr4 is practically
constant and equal to the plane-wave modulation value
0.97+0.03 within a temperature interval of more than 100
K, i.e., from Tl-+80 to —40'C in sharp contrast to
RbqZnC14, where it continuously varies with temperature.

(ii) The Rb —,
' —+ —

z NMR lines measured by the
spin-echo techniques are much broader than in Rb2ZnC14,
thus showing the presence of impurities. In addition to
the lines shown in Fig. 5, there is a broad background due

FIG. 6. Temperature dependence of the soliton density n, in

Rb2ZnBr4 obtained by a comparison of experimental and

theoretical line shapes for n =6 in the constant-amplitude ap-
proximation.

to Rb nuclei in the vicinity of defects.
(iii) Close to T, in the I phase, as well as below T, in

the commensurate phase, a large thermal hysteresis of
10—15 K (Fig. 6) is n, is observed. On cooling the lowest
observed value of n, at T, is 0.65, whereas the value of n,
at T, on heating from low T is about 0.5. Here T, is
determined by the jump' in T&. The n, values are as well
rather high if one cools the sample below T„demonstrat-
ing the presence of a metastable chaotic phase with ran-
domly pinned solitons similar to the one observed' in
Rb2ZnClg.

The differences between the present n, results and the
results of Ref. 10 are mainly due to the fact that in Ref.
10 the soliton density was determined from the intensity
of the commensurate lines and not from a line-shape
analysis.
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