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Finite-size scaling study of the two-dimensional Blume-Capel model
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The phase diagram of the two-dimensional Blume-Capel model is investigated by using the tech-
nique of phenomenological finite-size scaling. The location of the tricritical point and the values of
the critical and tricritical exponents are determined. The location of the tricritical point
( T, =0.610+0.005, D, =1.9655+0.0010) is mell outside the error bars for the value quoted in previ-
ous Monte Carlo simulations but in excellent agreement with more recent Monte Carlo
renormalization-group results. The values of the critical and tricritical exponents, with the excep-
tion of the leading thermal tricritical exponent, are in excellent agreement with previous calcula-
tions, conjectured values, and Monte Carlo renormalization-group studies.

The Blume-Capel model' is a spin-1 Ising model which
exhibits a line of continuous phase transitions, a line of
first-order phase transitions and a tricritical point. The
Hamiltonian of the model is given by

A = —Jg Sg Si +D g St —H g S;, (1)
(ij ) i i

where the spins (S;) take on the values 0, +1, and (ij )
denotes nearest-neighbor pairs on a two-dimensional
square lattice. The parameters J,H, D are the coupling
constant, magnetic field, and crystal-field coupling,
respectively. Considerable theoretical work has been ap-
phed to this model. It has been analyzed using mean-field
theory, ' real-space renormalization-group calculations, 2

Monte Carlo simulations, e-expansion renormalization
groups, high- and low-temperature series calculations,
and Monte Carlo renormalization-group analysis.
Throughout this paper the spin coupling J is set to unity
and the crystal field and magnetic field are measured in
units of J. The phase diagram of this model in zero mag-
netic field is shown in Fig. 1. For crystal-field couplings
less than the tricritical value (D gD, ) the system under-
goes an Ising-like continuous phase transition to an or-
dered ferromagnetic state as the temperature is lowered.
The transition line between (T„D,) and (0,2) is a line of
first-order phase transitions. The magnetization ((S;))
has a jump discontinuity across the first-order phase tran-
sition line. The point (T„D,) is the tricritical point
which separates the first-order line from the continuous
phase transition line. Early Monte Carlo simulations3 and
placed the tricritical point near T, =0.67, D, =1.94 but
with rather large error bars on these values. The fact that
Monte Carlo simulations have difficulty in accurately lo-
cating tricritical points is understandable ' due to the ex-
ceptionally large fluctuations in the order parameter close
to the tricritical point. Real-space renormalization-group
studies placed a tricritical point at T, =0.580, D, = 1.97.

In this paper we will present a phenomenological
finite-size scaling analysis of this model. This technique
has previously been used to analyze other models with tri-
critical points. " The method is known to be very reli-
able and accurate in its predictions of the location of tri-
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FIG. 1. Phase diagram of the Blurne-Capel model. The tran-
sition line for temperatures T~ T, are second order and the
transition line for temperatures T & T, are first order. The
point at the intersection of these two lines is the tricritica1 point.

critical points and it gives accurate predictions for the
values of the leading critical exponents. The accuracy of
this method allows us to pinpoint the tricritical point in
this model at T, =0.610+0.005 and D, =1.9655+0005
which is well outside the range quoted in the Monte-
Carlo-simulation work for the location of the tricritical
point. A more recent Monte Carlo renormalization-group
calculation, '2 however, gives the location of the tricritical
paint as T, =0.6091+0.0030 and D, =1.9655+0.0151
which is in excellent agreement with this work. The criti-
cal exponents along the critical line take on values con-
sistent with the exponents of the two-dimensional Ising
model (as expected). The tricritical exponents are more
slowly converged than is the case with previous finite-size
scaling studies of tricritical points " but are in reason-
able agrimnent with the expected values ' ' and the
values found by the most recent Monte Carlo re-
normalization-group calculations. '

The finite-size scaling technique is based on the (well
founded) hypothesis that the correlation length, (L, in a
system with a strip geometry (with strip width 1.) will
scale near the critical line with the functional behavior
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gL =LQ(L 't),
where t=(T T—, )/T, is the dimensionless temperature
deviation from the critical line. The exponent yi ——1/v
characterizes the scaling behavior of the correlation length
in the infinite system as t~0 (g-t "). The hase transi-
tion line of the infinite system can be located by examin-
ing the way in which the correlation length in the finite
width system scales with I.. At the transition line, the
function gl. /L should be asymptotically independent of L
for large L. In the disordered phase (L, /L will be a de
creasing function of L and in the ordered phase fr, /L
will be a sharply increasing function of L. If the func-
tions fr. /L are plotted as functions of T or D for several
different L's, the points where the curves cross will be
finite-size scaling estimates of the critical temperature.
As L increases the estimates will converge to the exact
critical point. Determining whether the transition is first
order or continuous involves some more analysis. s

This is accomplished by examining the finite-size scaling
behavior of the persistence length, g. The persistence
length is a measure of the surface free energy between the
different phases which coexist at the first-order transition
line. This quantity is measured along the phase transition
line (as determined by correlation length scaling}. If the
scaled persistence length (f/L ) on the transition hne is a
decreasing function of L then the transition is continuous.
If the scaled persistence length is an increasing function
of L then the transition is first order. The scaled per-
sistence length is asymtotically independent of L at the
tricritical point. The scaled form of the persistence length
along the transition line near the tricritical point is"

=Q(L 'g) . (3)

crate in the infinite L limit. However, at a first-order
transition of this type all three largest eigenvalues of the
transfer matrix will be degenerate in the limit L ~ oo be-
cause of the existence of three coexisting phases along this
line. This accounts for this particular choice for the defi-
nition of the persistence length.

The calculations were performed on a Control Data
Corporation Cyber 205 supercomputer at Colorado State
University. The computer code which implements the
sparse-matrix treppen-iteration technique was vectorized
specifically for use on this machine. About 5 central pro-
cessing unit hours were used for the calculations described
here. The largest strip width used (L =10) gave a transfer
matrix with a dimension of 59 049 X 59 049.

Figure 2 shows the scaled correlation length gL /L at
fixed temperature, T=0.61, for a range of D on either
side of the transition line. (This line happens to go
through the tricritical point but the equivalent curves tak-
en from elsewhere in the phase diagram display similar
convergence properties. ) The location of the phase transi-
tion line for this value of T, D'(T), is determined by the
points where the curves cross. For example, at this value
of temperature the transition is accurately located at
D'=1.9655. Temperature or crystal-field scans of this
type were performed over the entire phase diagram in or-
der to determine the exact location of the transition line.
Once the transition line is determined, the scaled per-
sistence length is calculated along the transition line.
(Near the tricritical point and along the first-order line the
persistence length peaks strongly at the transition line. It
is in fact the maximum value of the persistence length for

2.5O —L = IO

L~9

The asterisk indicates that the function is evaluated on the
transition line [as determined by Eq. (2}]. The parameter
g is the scaled distance from the tricritical point along the
transition line. The parameter g is negative on the first-
order line and positive on the continuous boundary. The
exponent y2 determines the scaling of thermodynamic
quantities along the transition line close to the tricritical
pOint 2 5g 12

The correlation length and persistence length are simple
functions of the leading eigenvalues of the transfer matrix
of the model. For this model the transfer matrix is a
3~ X 3~ real matrix. The leading ei envalues are found by
using a treppen-iteration procedure optimized to use the
sparse representation of the transfer matrix. ' The corre-
lation length is determined by
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and the persistence length is given by

(4)
I

l.965
I

l.967

1

ln(A, i/A, 3}
' (5)

where A, i, A,2, A,3 are (in decending order} the three largest
eigenvalues of the transfer matrix. At a second-order
transition only the lading two eigenvalues will be degen-

FIG. 2. Scaled correlation length plotted versus D at fixed
temperature T=0.61. The data are shown as solid circles and
the lines through the points are guides to the eye. The scaled
correlation lengths cross at finite-size scaling estimates of the
transition temperature. This particular set of data coincides
with the tricritical point but other regions of the phase diagram
shoe& similar convergence properties.
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a given temperature which was used to generate the data
in Fig. 3.) Figure 3 shows the scaled persistence length
along the transition line near the tricritical point. The
curves are independent of L at T=0.61. From this data
we can determine that the tricritical point is located at
T, =0.610+0.005 and D, =1.9655+0.005. The quoted
errors are a generous estimate of the uncertainty based on
the finite-size scaling convergence rate. The results of the
scans of the phase diagram are presented in Table I. Note
the excellent agreement with the value of T, obtain-
ed by high- and low-temperature series~ at D =0
(T, =1.690+0.006).

The scaling form of the correlation length in the neigh-
borhood of the tricritical point is given bys

=Q(L 't, L ' L 'h)

Temperature
T

1.695
1.567
1.398
1.150
0.800
0.700
0.650
0.620
0.610
0.600
0.550
0.500
0.000

Crystal field
D

0.00
0.50
1.00
1.50
1.87
1.92
1.95
1.962
1.9655
1.969
1.99
1.992
2.000

Order of transition

second
second
second
second
second
second
second
second

tricritical
first
first
first
first

TABLE I. Critical and first-order lines.
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FIG. 3. Scaled persistence length along the transition line as
a function of temperature near the tricritical point. The data
points are shown as solid circles and the lines through the points
are guides to the eye. The scaled persistence lengths cross at the
finite-size scaling estimates of the tricritical temperature. T'he
ratio of slopes of these curves at the tricritical point determines
the exponent y2 by using Eq. (8).

where t is the distance from the tricritical point along the
temperature scaling axis (transverse to the transition line),
g is the deviation from the tricritical point, along a line
tangent to the transition line at the tricritical point, and h
measures the distance from the tricritical point along a
direction parallel to the magnetic field axis. By closely
examining the behavior of the scaling function close to
the tricritical point we can determine y i, y2, and y3. For
example, the values of y', and y2 can be determined by the
scaling behavior of the effective exponent" '9

ln[L /(L —1)]
The gradients are numerical derivatives taken in the T-D
plane and evaluated at the tricritical point. The value of

y' will depend on the direction in the D-T plane in
which the gradients are taken. By plotting the effective
exponent y' as a function of direction in the D-T plane
the scaling directions and the exponents can be deter-
mined simultaneously. "' The values of y' in the direc-
tions where y' is independent of L determine the ex-
ponents y~ and y2. The exponent y3 is determined by
varying 8 when T= T, and D=D, . An alternative
method of finding y2 is given by using Eq. (3), i.e.,

dgL /dT
ln

der' i/d'r

In[L /(L —1)]
The analysis of the scaling behavior by these methods
gives the values y ~

——1.75+0.03, y2 ——0.80+0.01, and

y3 ——1.90+0.05. The values for yz and y3 agree very well
with the expected values ' ' of y2

———', and y3 ——40.
However, the leading scaling exponent, y i, is significantly
different from the value yi ———, which is expected from
Ising universality arguments ' ' and the value

y i ——1.80+0.005 found in recent Monte Carlo
renormahzation-group calculation. ' This can be ex-
plained by noting that the temperaturelike scaling direc-
tion at the tricritical point might not lie in the D-T plane.
The most general form for the nearest-neighbor version of
this model involves three independent temperaturelike pa-
rameters and two magnetic fieldlike parameters. There-
fore, the leading thermal scaling direction lies somewhere
in this three-dimensional parameter space and not neces-
sarily in the D-T plane. Further attempts to better deter-
mine this scaling direction in this larger parameter space
using finite-size scaling techniques were unsuccessful.

The exponents along the critical line are y &

——1.00+0.01
and y 3 —1.88+0.02 in agreement with universality argu-
ments that place the Blume-Capel model in the Ising
universality class (yi ——l,y3 ———", ). The exponent g which
determines the algebraic decay of correlations at the criti-

T= T.cal point ((S~SO) '-R; " where R; is the distance
from site i to the origin) can be determined by using a re-
cent conjecture ' ' or by using an argument based on con-
formal invariance. These arguments predict that
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The asterisk indicates that the correlation length is to be
evaluated at the critical point of the infinite two-
dimensional system. Along the critical line we find
ran=0. 253 and at the tricritical point we find r1=0.154
which are both in excellent agreement with the expected
values of rl = —,

'
and g = ~, respectively.

In conclusion, we have performed a phenomenological
finite-size scaling analysis of the two-dimensional Blume-
Capel model. From this analysis we are able to accurately
determine the location of the critical and first-order lines
in the temperature-crystal-field plane. We are also able to
locate the tricritical point accurately at T, =0.61+0.005

and D, = 1.9655+0.0005. The exponents along the criti-
cal line take on the two-dimensional Ising values and the
tricritical exponents, with the exception of the leading
thermal exponent, are in excellent agreement vnth the
values expected for Ising-like tricritical points. The
discrepancy in the value of y i is probably due to difficulty
in locating the proper scaling direction in the three-
dimensional parameter space.
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