PHYSICAL REVIEW B

VOLUME 33, NUMBER 3

1 FEBRUARY 1986

Magnetoconductance of thin-film superconductors near critical disorder

W. Brenig
Physik-Department, Technische Universitdt Miinchen, D-8046 Garching, West Germany

M. A. Paalanen and A. F. Hebard
AT&T Bell Laboratories, Murray Hill, New Jersey 07974

P. Wolfle
Physik-Department, Technische Universitdt Miinchen, D-8046 Garching, West Germany,
and Max-Planck-Institut fiir Physik und Astrophysik, D-8000 Miinchen-40, West Germany
(Received 21 June 1985)

Gauge-invariant approximations are used to derive all diagrams for the current response function
to lowest order in the superconducting pair fluctuations. The resulting expression for the magneto-
conductance extends the range in temperature and magnetic field over which meaningful compar-
isons with experimental data can be made. This aspect of the theory is illustrated in an analysis of
magnetoconductance data on 100-A-thick In/InO, superconductors near critical disorder where the
transition temperature is rapidly suppressed with increasing sheet resistance. The temperature
dependence and magnitude of the derived inelastic scattering rate is in good agreement with theory
which includes the effect of superconducting fluctuations on the two-dimensional inelastic electron-

electron scattering rate.

I. INTRODUCTION

Only recently have theoretical ideas and experimental
evidence begun to converge towards a unified understand-
ing of how weak localization and Coulomb interactions
affect the resistance of two-dimensional (2D) disordered
superconductors. This understanding has been confined
primarily to the paraconductivity regime, i.e., the region
above the mean-field transition temperature T, where
there is an enhanced conductivity owing to presence of su-
perconducting fluctuations. The early ideas of Maki,!
Thompson,? and Aslamazov and Larkin® stimulated an
intense and productive period of research into the problem
of “fluctuation conductivity.” The more recent theoreti-
cal treatments,*~’ however, have emphasized the previ-
ously ignored contributions of weak localization and
Coulomb interactions. In particular, the work by Larkin®*
demonstrated how the inclusion of impurity vertex correc-
tions to the Maki diagram could lead to a determination
of the inelastic electron lifetime 7; from magnetoconduc-
tance (MC) measurements. This seminal work stimulated
a number of experiments in which the MC of thin films
of Al (Refs. 8—12), Big¢Tly; (Ref. 12), Sn (Ref. 12), Zn
(Ref. 13), W-Re (Ref. 14), and In/InO, (Ref. 15) have
been reported.

Because Larkin’s theory is valid only when the inequali-
ties
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are satisfied (D is the electron diffusivity and H the mag-
netic field), the experiments are necessarily confined to
low fields and temperatures not too close to T, In addi-
tion, there are complications arising from the
Aslamazov-Larkin (AL) contribution to the MC (Refs.
(16—18) which dominate near T,(, and the Coulomb con-
tributions'® in the particle-hole and particle-particle chan-
nels, which can be important at higher magnetic fields.
Recently, Lopes dos Santos and Abrahams®® have ex-
tended the region of validity of the Larkin result, both in
field and in temperature, to the extent that the inequalities
(1.1) and (1.2) with In(T /T,¢) replaced by unity have to be
satisfied. They have also shown that at high field the su-
perconducting fluctuations are completely suppressed so
that the MC saturates at a value —o(0), the negative of
the Maki-Thompson conductivity at zero field."?> The
theory presented in the next section (Sec. II) is valid with
respect to an even larger range of parameters, limited only
by the one condition
44pH <1 (1.3)
c T
where 7 is the elastic momentum relaxation time. This is
the condition for the applicability of a quasiclassical treat-
ment of the magnetic field. The theory contains the
above-mentioned results as limiting cases. In addition, a
theory of the AL contribution to the MC, valid in the
same regime, is presented. It is argued that the Maki-
Thompson and AL contribution constitute the dominant
terms in a temperature region not too far above T,y The
compact form of the theoretical result facilitates compar-
ison with experiment.
Such a comparison is made in Sec. III, where the
dependence of ;! on T and the normal-state resistance
R, is extracted from MC measurements on thin-film
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In/InO, superconducting films near critical disorder
where superconductivity is strongly weakened by localiza-
tion and interaction effects. [Electric-field-effect mobility
studies®! suggest that critical disorder in thicker (600 A)
films is a result of Anderson localization and occurs when
the disorder parameter ky/, the product of the Fermi
wave vector and the elastic scattering mean free path, is
on the order of V/3.] The magnitude of ;' is found to
be slightly less than the upper bound determined by the
energy gap and to have an approximately linear tempera-
ture dependence. Good gualitative agreement with a re-
cently published theory,?? which includes the additional
inelastic process of the single electrons recombining into
Cooper pairs, is also obtained.

II. THEORY

The transition to a superconducting state, in which
pairs of electrons are correlated, is signaled by the appear-
ance of a pole in the scattering amplitude for two elec-
trons with equal but opposite momenta. In a perturbation
theoretical calculation terms involving the pair vertex
function (or fluctuation propagator) are therefore strongly
enhanced. Near, but not too close to, the transition tem-
perature T, it is sufficient to consider only contributions
with one or two fluctuation propagators.'—3

In a dirty metal, the superconducting fluctuations are
strongly perturbed by elastic scattering of the electrons
|

K(q,co,)=

where a temperature-dependent coupling constant is de-
fined by

2ve,
7T

11
g(T) ~ NoV,

+In 2.4)

and N, is the density of states at the Fermi level for one
spin species. For a superconducting system V), is negative
and the cutoff energy €, is of the order of the Debye ener-
gy (y is Euler’s constant). Then g may be expressed m
terms of the (unrenormahzed) transition temperature T,
as g~ '=1In(TY /7).

The effect of a weak perpendicular magnetic field H on
the orbital motion of the electrons may be treated in the
quasiclassical approximation. This amounts essentially to
replacing Dg? by the Landau quantized energy levels
a(j+ ), where a=4eDH. At the same time the sum on
g has to be replaced by the sum on j (j=0,1,2,...) mul-
tiplied by the degeneracy factor (eH /).

It is worth noting that the pole of the fluctuation prop-
agator for w;=0 is shifted by the inelastic scattering rate
1/7; as well as by a magnetic field, which both act as
pair-breaking sources. In zero magnetic field, the shifted
(mean-field) transition temperature T, is obtained from
the zero of the denominator in (2.3) as

Tc 0

In
T2
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from static impurities. The fluctuation propagator may
then be taken to satisfy the equation

K(g,0))=Vo—VoT 3 3 [Cle, +©},6,39)GpqEn + )
€ P

XG _p(—e)K(g,0p), (2.1)

where V, represents the interaction. We assume the
photon-mediated interaction to dominate the Coulomb in-
teraction, which justifies the omission of any frequency
and momentum dependence from the interaction function
Vo. The particle-particle impurity ladder C(g,,¢,;q)
(Cooperon) is given by

1 1
Cl(e,,en39)=—
o en—en | + D+ 1/7,

XO(—g,€,)+O(e,e,) (2.2)
with 7 the elastic relaxation time and D =+ v# the bare
diffusion constant (© is the step function). Here, we take
into account inelastic processes, destroying the phase
coherence of the Cooperon, by adding an inelastic relaxa-
tion rate 1/7;. Later we shall calculate 7;

With these approximations, the fluctuation propagator
is easily calculated in terms of the digamma function ¥,
asl (ﬁ]k 3= 1)

-1

(2.3)

I

As a guiding principle in formulating a systematic ap-
proximation it is useful to require gauge invariance of the
theory.”> A gauge-invariant approximation may be con-
structed by starting from a set of closed diagrams. We
choose the diagram that may be formed by closing a
particle-particle (pp) ladder consisting of an arbitrary
series of interaction and impurity lines on itself as our
starting set (Fig. 1). The single-particle propagators are
understood to be impurity averaged in the sense of the
self-consistent Born approximation (SCBA). The approxi-
mation for the self-energy and the vertex function, is ob-
tained by cutting a single (bare) Green’s-function line or
two G lines, respectively. In this way we find for the
self-energy the approximation shown in Fig. 2. For the
vertex function, or equivalently, the current-correlation
function the diagrams depicted in Fig. 3 are generated.
Here Fig. 3(a) is the so-called Maki diagram and Figs. 3(b)
and 3(b’) represent the Aslamazov-Larkin diagrams. We
have not explicitly shown the self-energy contributions,
because they are less singular than Figs. 3(a) and 3(b) and
3(b’) near T,y and will be neglected. A complete deriva-
tion of all these terms will be given elsewhere.?*

We have evaluated (for details of the derivation see Ref.
24) the contributions to the magnetoconductivity shown
in Fig. 3 assuming the temperature T and the pair-
breaking fields a,1/7; to be small compared to the elastic
rate 1/7, but otherwise arbitrary. The result for the total
Maki-Larkin contribution [Fig. 3(a)] is obtained as
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FIG. 1. Vacuum diagrams composed of a single particle-
particle ladder with alternating (dashed-crossed) impurity lines
and (wiggly) interaction lines. s denotes the spin.

O'ML'—"iz— a i —I—B(g,m) , (2.6)
4T =0 M
where
Blg,m)=—27 [~ dx—————[ImL}(ix)]
-« sinh*(2mx)
X [Imy( 5 +n; +ix)] 2.7
and
a(l+%)+1/fi 2.8
m= 47T ) :
J
11'2

DI

(v

+ "self-energy contributions"

FIG. 3. Diagrams of the current response function, obtained
by attaching two current vertices to the diagrams of Fig. 1.

Here ¢ is the digamma function and I, is defined by

1

Ii(z)= (2.9)

—é+¢<%+m+z>—¢<%>

The integral in (2.7) may be converted into a sum over
residues:

BT, )=5 {¢'(++9)T10)+ 3,
k(>1)

cos’[m(+k+m))]

+¥' (3 +m+5k) =¥ (5 =+ 5k) |Ti($k)

— {wtan[m(k+n)]+Y(5 —m+3K) =5 +m+ 5k} T1 (k)

(—1)k—1

2

However, the integral representation (2.7) is more amen-
able to numerical evaluation because of the slow conver-
gence of the sum in (2.10). A useful approximation (accu-
rate to about 10%) results from expanding the factor mul-
tiplying sinh~2%(27x) in the integrand of (2.7) in the
numerator and denominator to first order in x. The in-
tegral can then be done analytically:

1

=4RY'(2R;) — —— -2, 2.11
B W'(2R;) 2R, ( )
where
La Ip
c| k| c + c| kK| c

g

FIG. 2. Self-energy diagrams in first order in the pair fluc-
tuation propagator K.

47’ 1
Tyi(sk+m) | {- (2.10)
sin2(2mm;) | o ]
[
R,= —§+¢<%+m)—¢(%) /¢'(%+m)- (2.12)

Close to the transition, when |g~!| —0, and for g,
1/7; << T, and hence 7;—0, one finds

27T

B = , 2.13)
T al+ Y41/
where
1/76L=8T /m)In(T /T,q) (2.14)

defines the Ginzburg-Landau time. When this is substi-
tuted into (2.6) and the / sum is performed, the following
result for the magnetoconductance is obtained
2
e T

~ —_—

oML= ———[¥(5+1/arg)— (5 +1/a7)] .
TGL—T;

(2.15)

In the limit of zero magnetic field this reduces to the
well-known result?
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2
om(H=0)=*- r

—_— (2.16)
T I/TGL—l/T,'

lﬂ(T,' /TGL) .

In the limit n; << In(T'/T,() the dependence of B; on 7,
may be neglected altogether and

B=T S (CFT(| 2k =L 3 TE@k+1),
4 k k(>0)

(2.17)

where I'(z)=T(z) and T'"(z)=d*T,(z)/dn} at 7;=0, in
agreement with the result by Larkin* [Note the factor of 2
difference in the frequency argument in Larkin’s defini-
tion of I". Also, in his Eq. (7) the term I'( | m | ) should
be multiplied by the step function ©(m) and the sign in
front of sign (m) should be reversed.] The result of Lopes
dos Santos and Abrahams?® follows from the general re-
sult (2.7) by expanding I';’! in first order in 7; and
neglecting 7; in the argument of Imy.

In Fig. 4 we compare the results of a numerical evalua-
tion of oy as given by the exact expressions (2.6) and
(2.7) (solid lines), the approximate expression (2.15)
(dashed lines), and the expression (2.17) (dashed-dotted
lines) as a function of magnetic field for typical values of
temperature and y; =(27T7;)~!. Larkin’s result (2.17) is
seen to agree with the exact result [Eqgs. (2.6) and (2.7)] for
temperatures sufficiently far above T,y small inelastic
scattering rate, i.e., 7; >>7gL, and not too high magnetic
fields. At high magnetic fields, a >>7gt, the fluctuation
contribution to the conductivity is completely suppressed.
This is not correctly described by (2.17), because of the
neglect of a cutoff in the sum over /.

In Fig. 5 the temperature dependence of the fluctua-
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FIG. 4. Maki-Larkin contribution to the magnetoconduc-
tance —Ao/(e?/27*) versus magnetic field h =2DeH /7T for
typical values of ¥;=1/(27T;) and temperature.

The Aslamazov-Larkin contribution given by Figs. 3(b)
and 3(b’) may be calculated along similar lines. The result
is

2 o

tion-induced conductivity as obtained by evaluating the e
exact result [(2.6) and (2.7)] and the Maki-Thompson re- TALT om 120 (D0 mm ) 219
sult (2.16) is shown for zero magnetic field and B
vi(T,.)=0.1. where the function §; is defined by
J
27 , . 1. T 2
8= f dx‘sm( Re[T) 1 —ix)T (ix)]{Re[¥(5 —ix +m; ) — (5 —ix +7;)]}
— Re{ Ty ((—ix )Ty —ix)[$( 5 —ix +my 1) — (7 —ix +9)]})
— f dx coth(2mx ) Re{ 'y ((—ix)T( —ix)(%[t/:(%~ix +n,+1)—¢(%—ix +n))? . (2.19)

In this case it is not possible to do the first of the integrals in (2.19) analytically, because the arguments of the two-pair
propagators in the product are on different sides of the real axis. The second integral, however, may be converted into a

reasonably fast converging sum.

Employing again the approximation of expanding the expression within bold parentheses in the first integral to first

order in x the following result is obtained:

4¢,(¢;—¢1(R; L1 +R)))

2R (2R;) —2R; W' (2R, 1) 1

I=
V(5 +Mme DV (5 +n) R +R))

+2 3 (DGR =T 5 (G +Thk+me) =¥ (5 + 5k +0)]+[T141(0—T1(0)]¢]

k(>1)

R;;1—R,

" 4R, R;

(2.20)
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FIG. 5. Maki-Larkin contribution to the zero-field conduc-
tance versus temperature for an inelastic scattering rate given by
vi=1/2nT7;=0.1. The exact result (solid line) according to
Eqgs. (2.6) and (2.7) is compared with the Maki-Thompson result
(2.16) (dashed line).

Here the abbreviations
dr=v(3+m)—¥5+m),
¢ =¥ (5 +m) =¥ (5+m)

have been used, and R; is defined by (2.12).
In the limit T—T,,, and for 7; <<1, one may put
¢;=ma /8T. Making use of R; << 1 and

(¥ (5 +n0R 17" >>Ty(7k)
for k40, in (2.20) one obtains

(2.21)
(2.21")

Y ) IR SR T S
a 2 aTgL aTtgL
-1
X |I+2 4 — 2.22)
2 aTtgL

By substituting (2.22) into (2.18), the Aslamazov-Larkin
contribution can be cast into the form

2
e 47T 1 1
oarlh)=— 1-2
AL 211’2 aTGgL atgL
1 1
"'1" 2 atgL },

(2.23)

a result first obtained by Usadel.!® In the limit of vanish-
ing gnagnetic field this reduces to the well-known expres-
sion

K+ K'+g
€0 - €n :r
Claen-en) = 1 + ® G, c
% R i
€ €h

FIG. 6. Integral equation for the impurity particle-particle
vertex C (Cooperon).

Gz = + @ +

. H

+ symmetric terms

FIG. 7. Diagrams contributing to the irreducible part of the
particle-particle propagator G,. The dashed line being the Dif-
fusion starting off with one impurity line.

2 T
e
T
c

(2.24)

The inelastic scattering rate caused by the Coulomb in-
teraction has been calculated by Schmid,?> Abrahams et
al.,’® Fukuyama and Abrahams?’ and Altschuler et al.,®
using different methods. The calculation of Ref. 27 may
be readily generalized to include pair fluctuation effects
originating from the electron-phonon interaction. This is
done by incorporating electron interaction effects into the
impurity particle-particle propagator C as shown in Fig.
6. Here G, is the irreducible part of the particle-particle
propagator. Contrary to the treatment by Fukuyama and
Abrahams,?’ here particle-particle-interaction ladder dia-
grams are not included in C by definition. We approxi-
mate G, by the sum of all self-energy diagrams in first
order in the pair fluctuations, dressed by all possible im-
purity vertex corrections. This is shown in Fig. 7, where
3 are the self-energy diagrams shown in Fig. 2. In this
approximation the inelastic scattering rate is directly
given by the sum of the self-energy terms in Fig. 7. In
zero magnetic field the inelastic relaxation rate obtained
by evaluating the diagrams of Fig. 7 and adding the
Coulomb interaction contribution 75, is given by the self-
consistent equation (for a detailed derivation see Ref. 22)

1 8 T Ti 1 i
=2 In[5(1 ;
Ti m €EFT I—T,'/TGL I—TGL/T,- n[Z( +TGL/T‘)]
1 1
+— [+ (2.25)
1+T,'/TGL Tf

The initial increase of 7;"! proportional to [In(7 /T,)] !
far above T, (7gL <<7;) is cutoff in the temperature re-
gime where 7 > 7;. The enhancement over the Coulomb
rate is larger for larger 7, i.e., for weaker disorder. A sim-
ple interpolation formula for 1/7; is given in Eq. (4.2).
The fluctuation contribution to 1/7; is suppressed by a
magnetic field.?

III. EXPERIMENT

The films for this study were prepared using the tech-
nique of reactive ion-beam sputter deposition in which a
constant partial pressure of oxygen is maintained during
the sputtering of an indium target with argon ions. All of
the films had the same 100 A thickness and the desired
room-temperature resistivity was obtained by carefully
chosen deposition parameters: e.g., ion-beam voltage and
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current density, deposition rate, and reactive gas pressure.
The microstructure of these films has been previously
determined by transmission electron microscopy to consist
of occasional islands of crystalline In,O; embedded in an
amorphous background of In stabilized with oxygen im-
purities.”’ Annealing at ~100°C has been found in ear-
lier work>® to give rise to small decreases in resistance and
was used here to make adjustments ( <5%) in the resis-
tivity of some of our films.

Figure 8 is a plot on logarithmic axes of the resistive
transitions of four films which have room-temperature
sheet resistances R, which increase monotonically from
2248 Q/0 for film a to 4580 Q/0 for film d. The
mean-field transition temperature T, for films a—c was
determined using Aslamazov-Larkin theory with a pro-
cedure described previously.3®3! The resulting best-fit
temperatures are shown as vertical arrows for the three
films which become superconducting at low temperature.
The prominent aspect of these data, which has been previ-
ously emphasized,'® is the rapid decrease in T for small
increases in R, near critical disorder where R, has a
value on the order of #i/e?=4114 Q /0. It should be not-
ed that this pronounced sensitivity to the normal-state
resistivity does not occur, for example, in three-
dimensional (3D) granular aluminum films where the de-
crease in T,( spans a two to three decade change in resis-
tivity.3233

Because the superconductivity in our thin In/InO,
films is so sensitive to the value of R,, it is important to
assess the role of spatially varying inhomogeneities. Our
confidence in the homogeneity of our samples is based on
the following observations. (1) Day-to-day variations in
R, for a given set of deposition parameters is on the order
of 15%. By contrast, the variations for granular alumi-
num with similar R, are on the order of a factor of 5. (2)
The variation in R, for adjacent 100 um wide by 400 um
long strips fabricated on the same substrate is typically
~0.1%. The corresponding resistance transitions for

105
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FIG. 8. Logarithmic plot of resistive transitions of four 100-
A-thick In/InO, composite films. The transition temperatures,
indicated by arrows, are 2.494, 0.973, and 0.326 K for films
a—c, respectively.

pairs of these adjacent strips essentially overlap for all but
the lowest T, films (i.e., film ¢). (3) For the supercon-
ducting films there are no bumps or kinks which typically
reflect the presence of clusters®* or other large-scale inho-
mogeneities. (4) Earlier work®®*® on the vortex fluctua-
tion regime of similar films with T,,>2 K was consistent
with Kosterlitz-Thouless predictions®® and confirmed
vortex interactions occurring on length scales approaching
100 pm. Such behavior has not been seen in inhomogene-
ous films.*’

The magnetoconductance (MC) data were taken in a di-
lution refrigerator using a four-terminal resistance bridge
operating at frequencies as low as 5 Hz. All measure-
ments were taken at currents sufficiently low to ensure the
linearity of voltage with respect to current. Typical mag-
netoconductance data, defined as the difference
o(H)—0(0) normalized to e2/27?4#, is plotted in Fig. 9
against the logarithm of field for film a (squares) at 3.120
K and for film c (triangles) at 0.499 K. To obtain a
meaningful comparison with the theory of the preceding
section, we have excluded all data in the field regime
where the MC has reached saturation and begun to de-
cline. This maximum in the MC is observed only for film
c at temperatures less than ~2 K and fields H > 30 kOe.
The maximum attainable field of 85 kOe was insufficient
to reach saturation of the MC of films a and b.

For a comparison with theory we have opted to use the
exact expressions of Egs. (2.6) and (2.7). This decision
was motivated primarily by the rather large errors intro-
duced when the approximate expression of Eq. (2.15) is
used at high temperatures and fields (Fig. 4, dashed line).
The analysis is performed in terms of the characteristic
field

__fic
4€D7',' ’

H, 3.1)

which is that field where the magnetic length is roughly
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FIG. 9. The negative of the normalized magnetoconductance
plotted as a function of field for film a (squares) at 3.120 K and
film b (triangles) at 0.499 K. The solid lines are theoretical fits
and the dashed line is the Aslamazov-Larkin contribution for
film a.
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equal to the inelastic diffusion length L;=(D7;)!/?, where
7; is the electron scattering time and D is the electron dif-
fusivity. The fundamental constants #, kg, and c are re-
stored in all expressions for the remainder of this discus-
sion. With this notation, the parameters a, 7; ! and n; of
Egs. (2.6), (2.7), and (2.8) become, respectively, 4eDH /fic,
4¢DH; /#ic and [a(l+3)+7; "Y%i/4ky Tr. The transition
temperature 7, is included by using Eq. (2.5) in Eq. (2.9).
Finally, the effect of weak localization on the normal-
state conductivity is taken into account with an additive
term due to Hikami et al.3® This term is also dependent
on D and H; in addition to an unknown characteristic
field H,, which is related to the spin-orbit scattering
time in the same way that H; is related to 7; in Eq. (3.1)
above. Spin-flip scattering has been ignored.

From the above discussion we see that there are four in-
put parameters: T,.q, D, H;, and H,, . The first of these,
the mean-field transition temperature T,q, has been mea-
sured as discussed above, and the second, the electron dif-
fusivity D, is extracted from critical field H,., measure-
ments. This determination of D is somewhat complicated
by our previously published observation!® that the critical
field slopes near T, decrease with increasing disorder
(i.e., decreasing T.o). Within the context of the dirty lim-
it formula, this result implies the unphysical result that D
increases with increasing disorder. These problems were
circumvented'® with the ad hoc use of a temperature-
independent pari-breaking rate in a pair-breaking model.
A good fit to the dependences of T,y and H_,(T) on the
disorder as measured by R, was obtained using the value
D=0.18 cm®sec™! for films with T,, in the range
1.0-2.5 K. We use the same value for the films dis-
cussed here.

The remaining input parameters, H; and H, , are the
unknown fitting parameters which must be varied to ob-
tain a best fit of the theory to the data in a least-squares
sense. The most computationally intensive part of this
procedure arises from the slow convergence of the sum-
mation in Eq. (2.6) for small a, or equivalently, for small
H. For the high-temperature data where small values of
the MC (=0.01) were typical, “zero” fields as low as

10—20 Oe and summation of as many as 2X 10* terms
were required to obtain sufficient precision in the evalua-
tion of Aoc=o0(H)—o0(0). The solid lines in Fig. 9
represent the typical quality of fit which was obtained
over the entire range of T and H discussed here.

Ideally one would like to include the Aslamazov-Larkin
(AL) contribution to the MC as an additional term. We
are reluctant to do this, however, because of the estab-
lished presence of vortex fluctuations in these films which
cause o(H =0) to diverge at the vortex-antivortex unbind-
ing temperature T,, a temperature which for films with
sufficiently high R, can be significantly below T,.%¢
The theoretical expression for the AL contribution to MC
(Refs. 16—18) does not take vortex fluctuations into ac-
count and consequently diverges at T, a temperature
where there is still a significant amount of resistance in
the sample. There is at present very little understanding
of this transition region separating the vortex fluctuation
regime from the paraconductivity regime. Accordingly,
our expectations are confirmed and the theoretical AL

contribution to the MC is found to diverge much more
rapidly than does the experimental MC as T—T,, Be-
cause of these uncertainties we have chosen to analyze our
data only for those temperatures where the AL term can
be ignored. The data shown in Fig. 9, for example, are
taken for films a and c at temperatures where-the AL con-
tribution (dashed line for film a) is beginning to become
significant. At higher T the relative importance of this
contribution becomes negligibly small.

IV. DISCUSSION

The best-fit temperature-dependent values for H; for
films a—c of Fig. 8 are plotted on logarithmic axes in Fig.
10. The vertical arrows again represent the corresponding
T, for each film and the right-hand axis has been con-
verted to frequency units using Eq. (3.1) and the value
D=0.18 cm?sec™!. It is satisfying to note that the re-
sults for film a (squares) are not significantly different
from the values obtained in an earlier analysis'® of data
over a more limited field range using Larkin’s original
theoretical result* which includes an additional fitting pa-

rameter B(T /T,q).
The solid line in Fig. 10, calculated from the relation
_1 kgT
mil= < 4.1)

when evaluated at T,, for each film, represents an ap-
proximate upper limit to the scattering rate which is con-
sistent with superconductivity, i.e., where the energy
broadening associated with the inelastic scattering be-
comes comparable to the superconducting energy gap.
The MC measurements have thus confirmed that near
critical disorder, where T, is decreasing rapidly with in-
creasing R,, the inelastic scattering rate 7; ! is near its
maximum-energy-gap limited value. Furthermore, the
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FIG. 10. Logarithmic plot of the temperature dependence of
H; (left-hand axis) and ;' (right-hand axis) for films a—c. The
vertical arrows represent the respective transition temperatures
(cf. Fig. 1) and the solid line, discussed in the text, is the approx-
imate boundary for a scattering rate consistent with the ex-
istence of superconductivity.
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approximate linear temperature dependence of 7 Vis in
accord with the expected theoretical dependence of inelas-
tic electron-electron scattering in two dimensions.?%23%
The spread in values of R, for film a (2248 Q/0) and
film c (3454 Q/0) is not sufficient, however, to make a
meaningful comparison with the theoretical prediction
that 77 is proportional to R,,.

In Fig. 11 we have selected the data which has a slope
closest to unity (film b of Fig. 10) and plotted in on a
linear scale. The solid line represents a best fit to the ex-
pression

\_ kaT
26FT

T (4.2)

21n2
IT/T.0)+B |’

where B=41n2/[(a*+128ep7/m#)'*—a], a= In(epT/#),
and €p7 is the product of the Fermi energy €r and the
electron scattering time 7. The first term of the above
equation is the 2D normal-metal electron-electron inelas-
tic scattering rate,2® and the second term arises from the
inelastic processes associated with the recombination of
electrons into superconducting pairs.”? For quasi-two-
dimensional films where the elastic mean free path !/ <<d
and L; >>d, we can replace €x7 in Eq. (4.2) by the quanti-
ty*® m#?/e?R, which thus relates 77! solely to R,, the pa-
rameter which was varied in obtaining the solid-line fit of
Fig. 4. The best-fit value, R, =4600 Q /00, is satisfyingly
close to the experimental value R, =3394 Q /0. Extrapo-
lation of the theory curve below the lowest-temperature
data point shows the predicted upturn associated with the
superconducting fluctuations. We emphasize, however,
that there is no direct evidence of such an upturn in our
data because of our inability to properly take account of
the AL fluctuations for data close to T,o. This is not a
problem in the data of Gordon et al.,*’ who have observed
an enhanced rate near T, in Al films with lower R, and
interpreted this enhancement using a pair-breaking rate
which diverges at T,o.*"*? It is, however, reasonable to
speculate that the competition between the two different
scattering processes embodied in Eq. (4.2) gives rise to an
effectively temperature-independent scattering rate near
T =T,y which thus might account for the temperature-
independent pair-breaking mechanism used to describe the
disorder-induced trends in T,, and H,, observed for simi-
lar films.!

Although the results discussed above are in good agree-
ment with theoretical expectations and show interesting
new physics for thin-film superconductors near critical
disorder, it is appropriate to frame our conclusions with
some cautionary remarks. The first of these is that the
theory of Sec. II is a perturbative theory, valid only for
err/fi>>1. For film c, the most disordered film. for
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FIG. 11. Linear plot of the temperature dependence of H;
for film b. The solid line is theory.

which MC data was analyzed, R, =3454 /0O implying
€p7/%=23.7, a number uncomfortably close to unity. The
question of dimensionality is also important. For our
100-A-thick films the dimensional crossover d=L;
occurs when H; =fic /4eDd*=16 500 Oe which from Fig.
10 is at ~5 K. One can argue that for this case of mar-
ginal dimensionality (d ~L;) we are unlikely to be in the
3D limit because the requisite large number of perpendic-
ular wave vectors is not possible unless d >>L;. A similar
argument can be applied to the quantum diffusion length
Ly =(#D /kgT)'?, which for D=0.18 cm®sec ™! is equal
to the film thickness at 1.4 K. An additional issue which
has not been confronted in the analysis presented here is
the magnetic field dependence of 7;.?* Finally, in Eq.
(4.2) we have chosen to use for the inelastic electron-
electron scattering rate the expression given by Altschuler
et al?® rather than the expression by Abrahams et al.,*®
which gives a factor of 5—10 greater scattering rate than
that shown by the data. The theoretical issues delineating
the conditions under which either one of these rates is ap-
propriate are still unsettled.*>*
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