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A real-space tight-binding model of fermions involving the competition between an attraction V
between the localized fermion pairs on different sites and an ordinary one-particle hopping t is in-

troduced. The ground-state properties of its one-dimensional version are studied with use of numer-
ically exact finite-chain calculations for up to /=10 sites. A transition of the essential singularity

type between the band and the localized-pairs state is found for finite V/t.

The problem of pairing interactions in fermion systems
has been very intensively investigated following the
development of the 8ardeen-Cooper-Schrieffer (BCS)
theory of superconductivity. ' The famous BCS reduced
Hamiltonian describes the attractive interaction between
the electronic pairs in momentum space. In this model
the range of interaction is short, but the size of the Coop-
er pairs is large. 2 Thus, the BCS superconducting transi-
tion in three-dimensional isotropic compounds can be well
described by a molecular-field —type Ginzburg-Landau or,
equivalently, by the original BCS solution. An additional
assumption requires that the pairing interaction be weak
compared with the kinetic energy t. It has been recog-
nized very early that superconductivity may appear even
if some of these restrictions are relaxed. For instance, the
pairing correlations in nuclear matter correspond to the
vanishing-kinetic-energy situation. Let us mention that
such zero-kinetic-energy models can be solved exactly.
In numerous condensed-matter problems, especially in re-
duced dimensionalities, serious complications arise in the
reciprocal space and one would rather prefer to formulate
the Hamiltonian using localized atomiclike orbitals.

Such real-space formulations were used to treat the su-
perconductivity in narrow d bands, properties of amor-
phous materials, bipolaron transitions, and other prob-
lems. ' These and related treatments ' usually represent
the real-space pairing by the negative- U Hubbard model.
The considerations on U values entering the U&0 Hub-
bard models are already quite intricate, "and even less can
be said about negative values of U. In one dimension (1D)
the U & 0 ground-state wave function can be obtained ex-
actly, ' but it is too complicated to decide whether it
could lead to the superconductivity. Furthermore, for
t=0 any Hubbard-type model becomes classical, render-
ing eventual applications to superconductivity question-
able. Very recently Nozieres et al. ' have analyzed the
transition between the weak (BCS-type) and strong
(negative-U) coupling superconductivity and elaborated
on the nonapplicability of the Hubbard model for

~
U~ &&t.

Here, we wish to propose a new model to describe the
pairing transition with the features that it is defined in
real space, is short ranged, and remains quantum mechan-
ical for both weak and strong couplings. In contrast with
the BCS model, the radius of pairs is zero (like diatomic

molecules). In order to get a feeling for the properties of
it, we investigate it numerically in 1D to extract the prop-
erties of its ground state and its low-lying excitations.

The Hamiltonian of this model is

H —g f(~ cg +le — Vjj ( cg )c()c& (CJ ) +cJgcj pc( pc( ) ) )

&Ij'& &~j &

o'=f, j

with VJ &0, (1)

where c;e creates a fermion with spin e on site i and t;J is
the hopping integral between the sites i and j and is spin-
independent. The interaction VJ describes the hopping of
pairs with opposite spins on the same site. This type of
interaction has been considered by Kulik and Pedan' in
their study of superconductivity in systems with structur-
al disorder. VJ favors the formation of pairs but also en-
courages their mobility. ' It is in this respect that (1)
differs from the aforementioned negative-U Hubbard
model.

I.et us now show how this model provides a mechanism
for pair formation. First for VJ =0, the fermions with
different spin are uncoupled and thus uncorrelated, and,
we have a system of two sets of free fermions whose prop-
erties are exactly known. In the opposite limit t;j =0, 0
favors pair formation, as then each term in the sum in Eq.
(1) acting on a singly occupied site vanishes. This system
of paired fermions can be described by introducing S= —,

pseudospins T;, with T;+ =c;,c;, and

Tf ————, corresponds to an empty site and T,'= + —,
' cor-

responds to a site occupied by a pair with opposite spins.
Then,

H= —2+ V;J(T;"TJ'+TfTj~)
&ij &

is of the form of a XFmodel. For finite Vz and t;1, H in-
terpolates between these two extremes. The degree of
pairing can be measured by the on-site spin-up —spin-
down correlation function g;=(0

~
n;, n;,

~
0), which, for

temperature T =0 and VJ ——0, takes its uncorrelated
value —,', whereas for t;I=0 is equal to —,

' (half-filled
band).
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L

m —1c,= g ( 2'—)
1=1 k=1

( 2S—k) ~

to a system of two coupled S=—,
' chains S~ and r~:

N
H=t g (r+r +i+r~+ir +S~S~+i+S~~iS~ )

—Vg (r~r +iS+S~~i+r~+ir S~+iS~ ), (3)
m=1

where we set t +i i, V—— +i ——V, with V, t&0, and
V~ ~ =t~ ~ =0, if m'+m+1. ' From (2) it follows that
S' = —,

' n, and 2—=—,
' n„—so for the half-filled

band g (S'+2 )=0. The two limiting cases V=O
and V= ao are two uncoupled, exactly soluble XY chains
and the XY chain of pairs (S~,r~), respectively. It is
clear from this representation that the transition, if it ex-
ists, is from a XY (planar) state to another planar state,
and thus is hard to detect by the standard methods. The
following observations may give us a way to identify this
transition. For V=O the ground state is a product
ground state of two-independent planar states. For
N~ ao there is no gap in the spectrum, i.e., if we add an
extra particle the energy does not change due to the planar
character of the system. On the other hand, for V= 00,
an extra particle drastically modifies the system as it can-
not pair up! This contrasts the excitations by injecting a
pair with spin up and spin down (or increasing both

S' and g v by one). The gap for two-particle ex-
citations for N~oo and V~ao is vanishing since it
amounts to adding an extra particle in the V= ce planar
model. So if a transition exists we expect a single-particle
excitation spectrum with the energy gap opening above a
certain ( V/t), . One would„ in analogy with other transi-
tions into a planar phase, ' expect the transition to be of
essential singularity type.

We have performed numerically exact calculations on
finite chains with %&10 sites to obtain the low-lying
spectrum of (1). We used finite-size scaling' to extract
the critical behavior. In practice, the two S=T chains of
Eq. (3) have been represented by an equivalent S=—,

'
chain with an interaction that corresponds exactly to (3).
The following symmetries have been used to reduce the
size of the subspaces to be diagonalized: The total z com-
ponent of spin S and v,

—(S'+&)=—g (S'+& )=1—p,
N

m=1

We now procecxl to study the properties of (1) in 1D.
The Hamiltonian (1) can be transformed by a generalized
Jordan-Wigner transformation for a chain of N sites'

c', = g ( —2S,') S+,
l=l

m —1c,= g( —2S;) S
1=1

(2)
m-1c,= g ( —2v, )
I=1

where p the filling of the band (0&p & 2) is held fixed; the
wave vector is chosen fixed at (2n./X)m, m =0, . . . , X;
the left-right parity of the periodic chain and the reflec-
tion parity of inversion, S ~—S and r ~ ~ (when
it applies, S'=8=0), respectively, are used as good quan-
tum numbers. The calculations are done by direct diago-
nalization for N & 6, and for 6 &N & 10 we use the Lanc-
zos tridiagonalization scheme which yields the ground-
state wave function

~
0) and the lowest part of the spec-

trum.
Here we present the results, primarily for even

N, N &10. From now on we use the representation in
which v; =S =(o i). First, the absolute ground-state en-

ergy per site eo has been determined, and it is verified that
it reproduces the exactly known value for the solu-
ble cases V=O and t=O: (1/t)eo(V=O)=2eo(t =0)/V
= —4/ir, N~ oo. Then we calculate the different ener-

gy gaps in the spectnim. Denoting Eo(S;8), the
ground-state energy in a subspace with given S' and 8,
we define the single particle and the pair gaps as
b i =Eo(2 0)—Eo(0 0) and 52=Eo(2 2)—Eo(0 0), respec-
tively, where Eo(0,0) is the absolute ground-state energy
for the half-filled band, p= l. In order to illustrate that it
takes a finite energy to break a pair in the pair-hopping
regime, V/t large, we show in Fig. 1 the values of b i '/t
for V/t =20. The odd-N and even Nsequ-ences are dif-
ferent, but they both extrapolate towards a common finite
value dL'i" '/r -0.93+0.01. In contrast, the energy gap for
pair excitations hz ' always tends to zero no matter how

V = 20.0
t= 1.0

2.0-

even

1.5-

0
N odd

0.5-

I I

&/1P &/c) 1/8&/7 )/6 1/5 &/g,

t

2 1/

FIG. 1. Single-particle gaps 6'~ '/t plotted as a function of
N ' for V/t=20. 0 for even N and odd ¹ Both even-N and
odd-N sequences extrapolate to a value 5&/t =0.93+0.10.
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large V/t. h'i ' being zero for V/t=0, and finite for
large V/t, implies that there must be a transition at
0((V/t), & ao. In order to locate ( V/t)„we have plot-
ted the scaled gapa Nh'i 2' as a function of V/t in Fig. 2.
For single-particle scaled gaps Xh'& ' the curves coalesce
for small V/t indicating a line of fixed points. ' For
large Vjt the scaled gaps for fixed V/t increase with in-
creasing N, indicating a finite gap. In order to more pre-
cisely determine the transition point, we have calculated
the crossing of h'i ' and hP' for a given N (even N),
which necessarily gives a lover bound for the transition as
h',"'=2h',"' at V/t =0, but h(,~' jh(,"' «, „~. In the
inset we have plotted the crossing points ( V/t)'(N) as a
function of N ', which extrapolate to ( V/t),'= l.4+0. 1.
The single-particle excitations for odd N(S'= I =+i )

behave similarly to the even-N results. %e have also
searched for fixed points ( V/t), (N, N') of the
phenomenoloyical renormalization-group (PRG) equa-
tions, ' Nh'i '[(V/t)']=N'hi '[(V/t)'], and find that
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0.0 1.0 2.0 3.0 t 05.0 6.0 . 7.0

t
1,2

t FIG. 3. Local on-site correlation function g; = (0
~
5 r;'

~
0)

as a function of V/t for different sizes ¹ The curves all have
an inflection point near V/t = 1.4, where the transition occurs.

15,0-

= 6, 8,10

10.0-

40

5.0-
3.0 '

2.0'

1.Q
0.0 0.125

0.0
0.0 1.0 2.0 3.0 I .0 5.0 6.0

t

FIG. 2. Scaled gaps for single-particie excitations XA'[ '/t
and for pair excitations Nhq '/t plotted versus V/t for different
sizes ¹

%'hile the pair excitation gaps (open circles} are finite
for all V/t, the single-particle gaps (soli&] circles} tend to
coalesce for 0~ V/t & 1.4, signaling a line of fixed points. For
large values of V/t, the Xh'& '/t scaled gaps diverge with in-

creasing ¹ In the inset the crossing points of 5'12', i.e., the
solutions of hI '[(V/t) ]=hz '[(V/t) j are plotted as a func-
tion of X '. ( V/t}& extrapolates to ( V/t}„=1.40+0. 10 for
N~ao, suggesting that the line of fixed points terminates at
this value.

for odd N, (V/t), =0 for all N, and for even N,
(Vjt), (N, N') extrapolates to zero with increasing N, N'.
The critical exponent v calculated from the PRG in-
creases dramatically with increasing X,N . This is typical
for behavior observed at transitions of essential singularity
type. ' The results from PRG combined with the results
from Fig. 2, then suggest a whole line of critical points
extending from V/t=O to V/t =1.40.

The knowledge of the ground state
~
0) allows one to

calculate the correlation functions. We present the local
spin-up —spin-down correlations g;=(0 ~S,' 2 ~0) for
p= 1, which measure the degree of local spin pairing. In
Fig. 3, g;(N) are plotted as a function of V/t One o.b-
serves that g; approaches its limiting value like 1/N (indi-
cated by the dashed line). Note that the curves have an
inflection point at about the value of the transition,
Vjt-1 4

In conclusion, we have presented an analysis of a real-
space model which describes the hopping of highly local-
ized electron pairs. The single-particle hopping acts
against the pairing, and a transition results for a finite
V/t-1. 4 of an essential singularity type. Several exten-
sions of this approach are being considered. Among them
the inclusion of the Hubbard term, the extensions to finite
temperatures and higher dimensions should provide a clue
to what extent (1) may be a model of real-space supercon-
ductivity.
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