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Nonlinear wave propagation in periodic systems: The driven sine-Gordon chain
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The response of the sine-Gordon chain to an inhomogeneous dc driving force is examined. The
model is discussed in terms of the nonlinear dynamics of an adsorbed monolayer solid. There are
two dynamical parameters, up, the external driving momentum and A,, the b.urier height of the sub-

strate potential. In the adiabatic ( up ~~ 1, A, &~ 1) regime the dynamics is described by a propagating
kink lattice with, in some cases, precursor phonons. At long times, the atoms execute periodic
motion with frequencies given by harmonics of up. In the regime Qp &+2k the system is kinetic en-

ergy dominated: There are no well-defmed kinks, the wave front moves at the speed of the long-

wavelength phonons, and the system is well described by the driven harmonic oscillator chain. If
one increases A, at fixed up the motion begins to become complex and eventually one makes a transi-

tion from ordered periodic motion to disordered chaotic motion. This transition is analyzed by ex-

amination of the spectral densities of the velocity-velocity autocorrelation function, return maps,
and an estimate of the maximal Lyapunov characteristic exponent. An explanation for the transi-
tion to asymptotic chaotic motion is proposed which focuses on the role of the Peierls barrier in pin-

ning the kink lattice to the substrate. A possible application to the voltage noise spectrum in
charge-density-wave materials is pointed out.

I. INTRODUCTION

The sine-Gordon (sG} equation has a long history of
modeling dynamic phenomena in condensed matter sys-
tems. It appears naturally in systems which are character-
ized by competing length scales. Some of the better
known applications of the sG equation include the
Frenkel-Kontorova model of dislocation dynamics, ' the
Lee-Fukuyama model of sliding charge-density waves, i

and the dynamics of Bloch and Neel walls. i In a different
context, the sG equation governs the dynamics of Joseph-
son junctions. This range of applications emphasizes the
need to understand the dyntunics of the sG system in

many different configurations.
In this paper we shall study the response of the sG

chain to an inhomogeneous dc driving force. The model
system which will serve as the physical analog is an im
pulse driven adsorbed monolayer. A stmii-infinite mono-
layer sits in a periodic substrate potential and is subjected
to a driving force on one end. The force is communicated
to the lattice through the first particle (the "surface" of a
semi-infinite one-dimensional structure) which acts as a
"piston" driving the monolayer at constant speed. This
boundary condition has been used extensively to probe
nonlinear behavior (shock waves) in model lattices. '

In these model lattices, the dynamic bound~~ condi-
tion generates a propagating wave front with a soliton or
kinklike character. At long times after the wave front has
past, the system either decays to rest in the piston particle
rest frame (the harinonic oscillator limit) or the particles
continue to oscillate periodically (the hard rod limit). One
passes from harinonic oscillator asymptotic behavior to
hard rod asymptotic behavior by increasing the speed of
the piston particle (or equivalently, increasing the role of
the anharmonic part of the nearest-neighbor interaction).

In the Toda system, the transition has been studied care-
fully and it is found to occur at a "critical" value of the
(reduced} piston particle speed.

The presence of an external field (the substrate poten-
tial} in the system studied below radically changes the na-
ture of the long-time asymptotic behavior. In Sec. II we

give the equations of motion and discuss the harmonic os-
cillator limit. In Sec. III we examine the propagating
kink lattice and the long-time asymptotic oscillations in
the adiabatic (weak-disturbance) limit. In Sec. IV, we ex-
amine the precursor phonons and obtain the lowest-order
nonlinear contribution to the dispersion relation. In Sec.
V, we discuss the transition to disordered (chaotic) motion
treating the (magnitude of the} external field and the pis-
ton particle speed as control parameters. Section VI is the
conclusion.

II. EQUATIONS OF MOTION
AND THE LINEAR LIMIT

As a simple model for an adsorbed monolayer, we con-
sider N particles interacting by nearest-neighbor harmonic
springs and placed in an external periodic (substrate} po-
tential. The I.agrangian can be written

L = g [ —,'s„—A,[l—cos(qs„+5„)]I
a=0

%'e introduce reduced quantities wreath s„, a dimension-
less displacement variable. The parameter q measures the
mismatch between the monolayer and substrate. The
phase 5„ is defined by

5„=nq .
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s'„(0)=S„(0)=0 . (4a)

In these units, the long-wavelength speed of sound is uni-
ty. The equation of motion for the nth particle is

s„—»5 s„=—Aq sin(qs„+5„),

where 4 s„=s„+&

—2s„+s„& is the central second
difference operator. The initial conditions, unless stated
otherwise, have all particles at rest and in an equilibrium
configuration

wavelength phonons.
In Fig. 2, we show the velocity profile of the lattice (at

t =1000 and uz ——0.01}. In this view, the wave front
shows a small overshoot, —1.2', trailed by a fairly rap-
idly decaying envelope. This most important aspect of
the harmonic oscillator dynamics, the relaxation of the
system back to rest in the rest frame of the piston particle,
is a manifestation of the dispersive nature of the excita-
tion spectrum. An asymptotic expansion of Eq. (5) to
long times yields

The exception is particle 0, the piston particle, which
moves at constant speed uz at all times: s„-up(t n)—

1/2
2 cos(2t ——,

' ir)
nu

t» (2t)3/2
(7)

so(0)=0» so(0)=up (4b)

V ——cos
2

and thus the wave front moves at the speed of the long-

Thus the dynamical problem is specified by assigning
values to the three parameters ( u~, l,,q).

We now examine the solution to Eq. (3} in the A, =O
(harmonic oscillator) limit. As first pointed out by Man-
vi, Duvall, and Lowell, the exact solution for the semi-
infinite linear chain with the initial and boundary condi-
tions of Eqs. (4) can be written as

s'„=uz(2n /t) J2„(2t)B(t),

where Jq„ is a Bessel function and B(t) is the Heaviside
unit step function. In Fig. 1 we show s„as a function of
n for selected times between 0 and 2000. The propagation
of a wave front with unit constant speed is evident [a re-
flection of the fact that the Bessel function in Eq. (5) is
negligible until the argument is comparable to the order].
The phonon group velocity is

and thus for tin »1, the particle moves at constant
speed uz in the lab frame. We note that the asymptotic
behavior of this dynamical system differs from continu-
um, linear dispersive systems which decay like t
Equation (7) will play an important role in our discussion
of the asymptotic behavior of the sG chain.

The piston particle does work on the rest of the chain.
The power input at time t is easily shown to be

dE = —u [si(t)—so(t)] .

At time t, the piston particle has moved a distance u~t
and there are t particles behind the wave front. The mean
displacement per particle behind the wave front is u~ (the
lattice contraction). Therefore we obtain (the asymptotic
result)

E
=up

In Fig. 3 we show E versus t for an oscillator system with

10j
0.0125-

Harmonic Oscillator Chain
t =1000 Up ——0.01

8-

0.0100"

t

6+

Sn

0.0075-
dt

O. OO50-'

0.0025-

I I I I I I f I 1
f

I I ~ I I I I I I+TTTI I I I I
f

I I I I I TTT~ I I I I I
I

I I I I I I I I I
I

~ I ~»T»TTl t I T I I
(

I~~ I I I I 1 I I I
[

I I

0 100 200 300 &00 500 600 700 800 900 1000

ATOM

FIG. 1. Phase vs atom number for the harmonic chain with
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TABLE II. The continuum sG soliton in the reduced units of
Sec. II.

Quantity

Soliton wave form

Expression

s, (n, t) =—tan '[exp(g„/lp)]

Lorentz factor

Conventional soliton size

y, =1/(1 —u, )'/

I{)——1/Qp g ——1/(qk' ~)

g„=y, (n u—,t}

Particle speed on
soliton wave front s, (n, t) =(2y, u, l'~i)sech(g/lo)

Soliton energy E, =8y, (A,
'/ /qj

I

0 04-

In Table II, we have gathered together those results of
continuum sG theory which we shall need below. (A brief
discussion of these results can be found in the Appendix. )

We stress that the sG wave form of Table II is not a solu-
tion of the discrete sG equation of motion, Eq. (3),
nevertheless in the limit lo ~~1 it should be an excellent
approximation. (For the parameters used in Fig. 4,
lo ——5.)

The dynamics is more dramatic when viewing the velo-
city rather than the phase and in Fig. 5 we show the parti-

cle velocity profile at t =1000 for this same system. By
comparing Fig. 5 with Fig. 4, we can identify the periodic
array of large velocity oscillations as being the velocity
pattern on the propagating kink lattice. The particle
motions preceding the wave front are the precursor pho-
nons (since from Fig. 4 it is clear that these oscillations
occur in the first potential well). The precursor phonons
will be discussed in detail in the next section.

%e note that the kink velocity is subsonic. Indeed, we
have never found a set of parameters (including, for exam-
ple, u &1) for which the wave front was supersonic.P
Thus some aspects of the velocity restrictions of the con-
tinuum Lorentz-invariant system persist in the discrete
lattice. In this respect then there are no shock waves on
the sG chain.

We compare the kinks in Fig. 5 with the continuum sG
solitons. From Table II we see that the relation between
the maximum particle velocity sm, „and the soliton veloci-

ty is given by
' —1/2

u, = 1+
S max

From Fig. 5, s =0.039, thus, u, =0.525. Therefore at
t =1000 we expect the wave front to be located approxi-
mately at atom 525. Inspection of Figs. 4 and 5 shows ex-
cellent agreement with this sG soliton-as-leading-edge pic-
ture.

We may also examine the role of solitons from the
point of view of the work done on the chain by the piston
particle. For a system in the adiabatic regime, most of the
work done by the piston particle goes into winding kinks
onto the chain. Thus if ii, is the rate of kink production,
then

l

o.a3i

II,
II

0 02-

SG Chitin

uo=o. oi x=o.ooi
t =1000

i&

I

I

(12)=&sEs ~t

where E, is the energy per kink. For the q =2m system of
interest, ii, =u~, since in time 1/uz one additional kink is
formed. thus with the use of Table II we find

4 Qiik,

dt, n (1 u')'" ' (13)

In Table III we compare (dE/dt), with the calculated
power for selected systems. The agreement is excellent.
We also note that the exact Eq. (S) can also be used to ob-
tain an expression such as Eq. (13). From Eq. (8) we write

-0 Oi

=u~(M &, (14)

0 100 200 300 400 500 600 700 800 900 1000

ATOM

FIG. 5. Velocity profile of a sG chain with u~=0. 01 and
A, =0.001 at t =1000. The periodic spikes are the particle velo-

city distributions on the kinks. The leading structure is the pre-
cursor phonons.

where (M) is a time averaged displacement difference
along a kink. In the lab frame, a soliton consists of
-41&/y, atoms (4lo is the 90-10 length of a sG soliton in
its rest frame). Thus, using lo ——1/qA, 1/2

dE m ~p~ 1/2

dt 2 }—g
(15}

which agrees with Eq. (13}up to a coefficient of O(1).
It is evident therefore that the wave front acts as a con-

tinuum sG soliton and that the kink dynamics is described
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TABLE III. Comparison of (dE fdt), the power input to the
chain in the soliton lattice picture with (dE/dt)~, the calculat-
ed power input for systems with u~ =0.01 and varying values of

sG Chain

Up =0.01 ~=o.oo ~

0.001
0.005
0.010

0.53
0.38
0.33

4.7g10-'
9.7X10-4
1.4x 10-'

(dE/dt)~,

4.7X10-4
9.7X10-'
1.3X 10-'

excellently by the continuum wave form. Thus, under-
standing the dynamics of a propagating kink lattice is the
key to understanding this regime. The principal function
of interest is u, (A, , u~). Qualitatively u, is a monotonical-
ly decreasing function of k and a monotonically increas-
ing function of u~. One can obtain an approximate rela-
tion for u, by equating kinetic energies in the particle pic-
ture and the collective-mode (soliton) picture.

At time T the center of mass kinetic energy for the
chain is

00

2Kp= 2', QgT, (16)

ICE = A, QE QPT,
4 i22 (17}

since there are u&T solitons on the chain. Thus equating
(16) and (17) we immediately find

since there are u, T particles behind the wave front. Simi-
larly, at time T the soliton kinetic energy is

FIG. 6. Three-dimensional plot of atom velocity as a func-
tion of time for the first 16 atoms on the sG chain. The figure
shows the periodic motion of each atom on the kink lattice. For
this system, with u~ =0.01, the period =100.

64
Qg= 1+

Qp

' —1/2

(18)

This result gives kink speeds which tend to be smaller
than those measured. It is accurate in the adiabatic re-
gion, A„u~ &&1, and perhaps is exact in this limit. It
gives results which are qu~Jitatively correct for all )t, and
uz! Thus, with Eq. (18), the energy per soliton E, is
given by

2
Eg ——Qp+

ig

concentrate on particle 10 and show its velocity as a func-
tion of time (in the piston particle rest frame the
equivalent figure would be a closed loop from which the
period could not be discerned). Asymptotically after the
wave front has passed, the particle executes periodic
motion with period =100. In order to understand these
oscillations we return to the equation of motion, Eq. (3),
and examine its behavior in the adiabatic limit.

If we introduce the variable o, =qs„, then the equation
of motion can be written as

which in the limit A, =O reduces to the harmonic energy
per particle. The comparison with the harmonic limit is
simpler by considering s =(uz lu, )E, the energy per parti-
cle on the kink lattice, then,

O'R —6 ETII =ALOE S111(O'N ),
where

COE =Q2 2

(21)

(22)

(20)

and the energy per particle increases linearly with A, as one
moves away from the harmonic oscillator limit.

If the only motion on the chain, at long times after the
passage of the wave front, were steady center-of-mass
motion {as in the case of the harmonic oscillator chain)
then Eq. (18}would be very accurate. However, there are
also important motions of the chain in the piston particle
rest frame In Fig. 6 .we show velocity as a function of
time for particles 0 through 15. The particles are execut-
ing periodic motion vrith a period =100. In Fig. 7, we

(23)

Note that this does not require cr„ to be small and, in fact,
from Eq. (7), o„o-0{1). Then, substituting (23) into (21)
and equating powers of coz we find

no —~ no=0 ~

o'„)—4 o„(———sin(o, o),2

(24a)

(24b)

In the limit coE « 1, we presume that a„can be written in
perturbative form
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FIG. 8. Velocity-velocity autocorrelation function for the
velocity history shown in Fig. 7 (atom 10, u~ =0.01, A, =0.001).
The periodic structure with period =100 is evident.

peait structure similar to that of Fig. 10. The physical
basis for the appearance of higher harmonics can be un-
derstood from Fig. 13, the velocity autocorrelation func-
tion. This structure simply reflects the increasing tenden-

cy for particles to be found (oscillating) near the potential
well minimum as 7I, is increased. Thus, in summary, the
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~/2X

FIG. 10. Spectral density of the velocity-velocity autocorrela-
tion function (power spectrum) of Fig. 8. This figure shows a
major frequency component at co/2m =0.01, which is evident in
Figs. 7 and S, and also two harmonics at 0.02 and 0.03. The
m=0 term has been omitted and the peaks are basicaHy 5 func-
tions whose widths are determined by the grid spacing
(h,a) =0.001).
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FIG. 9. The (off-diagonal) velocity-velocity correlation func-
tions for atoms 10 and 11. Both correlation functions exhibit
period =100 osciHations.

FIG. 11. Spectral density for the system u~=0.01 and
A, =0.015. The fundamental frequency ~/2m=v~ plus an addi-
tional eight harmonics are shown. There is no evidence of any
other frequency components.
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FIG. 12. Spectral density for atom 10 and the system

u~ =0.05 and A, =0.001. This figure should be compared with
Figs. 10 and 11. It demonstrates that the increased complexity
in the velocity patterns come from increasing k and not u~.

harmonic structure seen in the velocity auto-correlation
function is a function of A, the reduced barrier height.
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FIG. 13. Velocity-velocity autocorrelation function for atom
10 with u~ =0.01 and A, =0.015 whose spectral density is shown
in Fig. 11.

IV. PRECURSOR PHONONS

In the preceding section, we noted, in passing, the very
leading edge of the wave front as shown in Fig. 5. Refer-
ence to Fig. 4, the phase-atom plane, shows that these os-
cillations are localized within the first potential well and
thus they can be described as phononlike excitations.
Their most interesting aspect is the fact that they are
mo~ing so slowly (from Fig. 5 it is clear that the fastest
phonons are moving with speed u =0.9).

For the atoms involved with this motion we have
s„&1, thus, expanding Eq. (1), the Lagrangian, in powers
of s„, this intrawell motion can be described by

(I.„)= g Ai, ci', +p 8 X cl, c[c ci+[
p=1 p, l =1

m ~p+l

1+ 2 ~ CpClCmCp+l+m
p, l, m =1

where

Az
———,

'
(co p —coE)—2 sin (-,' pk),

(31)

(32)

s„=g c~ cos(p8+s~ ) .
p=1

(30)

After some algebra we obtain for the average Lagrangian
per particle

L ~ &s „(sn sz —i) —
2 coES„+ &Eq sz f

2 2 l 2 2 4

8 0

where we have included the lowest-order nonlinear contri-
bution and coE ——Aq plays the role of an Einstein frequen-
cy in the externally applied field. The nonlinear disper-
sion relation generated by the Lagrangian of Eq. (29) can
be obtained by means of Whitham's variational ap-
proach. ' ' This technique was first applied to lattice
systems by Lowell. '

We search for a solution to (29) in the form of a uni-
form periodic wave:

p= —a)sq
4I

and the average is defined by

1
~ 0 ~ ( )18

2K 0

(33)

(L,„&=-,'X,c'+-', p '+0(p') (35)

(where c =c [ ). The dispersion relation is given by
B(L, ) /Bc =0 and so

co =a)E+4sin ( —,'k) —3pc (36)

The amplitude function is determined by the continuity

The averaging effectively integrates out the fast degrees of
freedom (since 8=kn —cot).

We now reorder the series in powers of P keeping only
the lowest-order nonlinear contribution,
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equation Bk/Bt +Bto/e)s =0,
Bc B[c cos(k/2)]+ =0,
Bt Bs

(37)

1.0-

with appropriate initial and boundary conditions. [Equa-
tion (37) is identical to that obtained in linear theory. 't]

Independent of the functional form of c, it is clear from
Eq. (36) that the presence of the nonlinear texan tends to
decrease the phase and (abncst certainly) the Nscnp reicci-
ties from their hnear values. The basic cause of the slow
phonons, however, is the first tenn in Eq. (36) (the gap in
the spectrum) and not the nonlinear term. It is easy to
show from Eq. (36) (with P=O) that for a given coE the
maximuyn group velocity is given by

Vmox 1+T~[NE HE(4+HE) ] s (3&)

which corresponds to a wave vector k such that

(39)

V. CHAOTIC REGIME

v cos(k M)

In Table IV we show u and k as a function of A,

and we note that for A, =10, U ~=0.91, which is in ex-
cellent agronnent with the results of Fig. 5. In Fig. 14,
we show u (k) for a series of values for l{, and the effect of
the external field is evident.

The gap in the spectrutn thus has an important dyttami-
cal physical consequence for the driven so chain. We
note, however, that for a given toE(k) one can always
make a sufficiently large so that the soliton wave front
travels Faster than u ~ and so there are no precursor pho-
nons (An exatnple can be sam below in Fig. 22 with
A, =10 and tt~ =0.10.)

These results are specific to commensurate systems.
For incommensurate systems an acoustic mode will be
present which signifies that rigid translations of the
monolayer relative to the substrate cost no energy.
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FIG. 14. Phonon group velocities as a function of k/m for
co~mensurate monolayer systems arith A, =10 3, 10 2, 10 ',
and 1. The harmonic oscillator limit is shown for comparison.

0.05;

In Sec. III, we noted that as we increase A, at fixed u~
there appear an increasing number of higher harmonics in
the velocity autocorrelation function. They appear as a
reflection of the increased probability of finding a particle
near the bottoms of the potential weHs. The motion of
the particles in this regime is highly ordered despite the
fact that it consists of many hatmonics. However, if A, is

-0.01 -'

0.05 &

0.04 -;

0.03

S(47) 0.02 -,

0.01 -',

U poo0 0 1 )l, 0*025

ooo -'

TABLE IV. The maxi~urn phonon group velocity u~ as a
function of the reduced barrier height [note, ays ={2m)'A],

0.0 1-.
'

Up=0.01 X=0.030

0
10-4
10
10
10-1
10
10'

0
0.112
0.194
0.319
0.445
On492

0.499
0.5

1.0
0.969
0.906
0.734
0.416
0.155
0.050
0.0

O.OO -;

0.00 0.01 0.02 0.03 0.04 0.05 0.08 0.07 0.08 0.08 0.10

~l 2n

FIG. 15. Spectral densities for atom 10 and the systems
u =0.01 and A, =0.020, 0.025, and 0.030. The transition from
ordered to disordered behavior is evident. The peak truncation
sholem in the bottom figure is an artifact of the large grid size.
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overly increased, the motion of the particles becomes
highly disordered. In this section we discuss the transi-
tion from the ordered regime to the disordered regime.

In Fig. 15 we show S(co) for A, =0.020, 0.025, and
0.030 (u~=0.01). At A, =0.020, the spectral density be-

gins to show structure at frequencies other than harmon-
ics of u~. The grid spacing hco=0. 001 is very wide and
so details of the additional structure are difficult to dis-
cern, nevertheless, it does appear to have a periodic spac-
ing of u~. Increasing A, to 0.025 serves to increase the in-
termediate structure between the u~ harinonics. The reg-
ularity in the spacing of the intermediate structure is no
longer present. By A, =0.030 it is difficult to pick out the

u~ harmonics. There is apparent structure at all frequen-
cies: the power spectrum resembles white noise. The
spectra shown are for atom 10; however, they are typical
of any atom on the chain.

The study of chaotic motions in dynamical systems has
seen much progress in the last few years. ' Other tools in
addition to power spectra have emerged to analyze the
transition from ordered to disordered behavior. We shall
consider two of these: return maps and the I.yapunov
characteristic numbers.

Return maps are familiar from studies of iterated maps
of an interval. Circle maps' ' are of particular impor-
tance since they are closely related to the discretized sG
equations of motion, Eqs. (3) and (10). These maps model
the effects of competing frequencies and exhibit a transi-
tion to chaotic behavior. The sG equations of motions
with a discretized time constitute a two-dimensional,
second-order, nonlinear difference equation which can be
written as

s„(m +1}=2(1—H)s„(m)+rl„(m)+f„(m),

where

0 03-'
Atom 10 Up 0,01 X 0,001
1000 C t ( 1200

Return Map

~ I

0 01-

s

~ ~
~

~

s
~ ~

-0 02-

-0, 0150 -0 0075 0 0000

dh

0 0075 0 0150 0, 0225

FIG. 16. Return map for atom 10 and the system u~=0. 01
and A. =0.001. The interval between points was chosen arbi-
trarily to be 2. There are 50 points representing a full cycle.
This figure covers two periods and so each point was covered
twice. This system is in the ordered (adiabatic) regime.

chosen to be 6~=2. Thus, the figure consists of 50 dis-
tinct points. As hr is decreased, the points seem to be-
come dense on the figure. The scatter about each point is
roughly a part in a thousand which is too small to be dis-
cerned on the scale of this figure.

Figures 17 and 18 are for uz ——0.01 and A, =0.015,

f„(m)= —Aqr sin[qs„(m)}
0 25-

Return Map

i7„(m) =r [s„+i(m)+s„ i(m))

are external "forces" acting on atom n The coup. ling to
the rest of the lattice, g„(m), appears as a noise source if
the lattice is undergoing disordered motion. We shall as-
sume that there exists a return map g(d„) such that
d„(m +1)=g(d„(m)) and plot d„(m +1)=s„(m +1)
—s„(m) as a function of d„(m)=s„(m) —s„(m —1). This
procedure is substantiated only by the observation that the
results are in complete accord with those of the power
spectra. The information is complimentary to that of the
power spectra in the sense that this analysis concentrates
on the particle positions rather than velocities. Of course
position-position correlation functions and spectral densi-
ties can be computed, " however, they tend to be much
more featureless than the velocity correlation functions
since positions are simply integrated (and thus smoothed}
velocities.

In Fig. 16 we show the return map for the system

u&
——0.01 and A. =0.001. This system, deep in the adiabat-

ic regime, exhibits obvious periodic behavior. The time
interval between points is arbitrary and for this figure was

~ ~

0 10-

-0, 10- At01A 10 Up=0.01 'h= 0.015
1000 ~ t x 1200

~ rr ~ rrrr]r ~ r ~ rr
f

~ r. rrr ~ r/rrrrr) ~ rr f»rrrr[rr ~ rr]rrr

-0 08 -0 04 0 00 0 04 0 08 0 12 0 16 0 20 0 24

dh

FIG. 17. Return map for atom 10 and the system u~ =0.01
and 1=0.015 over two periods, 1000&t(1200. The basic
period behavior is still evident although the results for the two
adjacent periods do not lie precisely on top of one another as in
Fig. 16.
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In order to approximate k for the sG chain, we shall
only consider the subset of coordinates and momenta gen-
erated by the first ten particles of the chain. The two ini-
tial configurations will be the usual equilibrium configu-
ration, lo——Is„=O, s„=0~Vn), and a configuration
identical to I o except that the positions of the first ten
particles are chosen at random over a small interval, hs.
In Fig. 19 we show A~(t) for the two systems us =0.01,
A. =0.001, and uz

——0.01, A, =0.050 (for both cases we
chose M =10 ~). For the former system, we find
A,~& 0 for all time and thus the dytiamics is stable in the
sense that the long-time behavior is unaffected by a small
perturbation. In the case of the A, =0.050 system, howev-

er, there are intervals of time for which A, &0 and
indeed the figure is not inconsistent with the conclusion
that at long times A may be positive. This certainly
does not constitute proof that the system is mixing;
nevertheless, its behavior is in striking contrast to the
former adiabatic system. Finally we note that in this re-

gime it is difficult to do accurate, q~~ntitative numerical
work since the time step r must be chosen to be small rel-

ative to the smallest scale of motion in the system; howev-

er, in the chaotic regime a velocity reversal will always
eventually occur in a time on the same order or smaller
thag g.

FIG. 18. Return maps for atom 10 and the systems u~ =0.01
and A, =0.020, 0.025, and 0.030. This figure shows the onset of
disordered motion as A, is increased and should be compared
with Fig. 15. The maps cover the interval 1000&t & 1200.

0.01"

&=o.oso

0.020, 0.025, and 0.030, respectively. (The systems whose
power spectra are shown in Figs. 11 and 15, respectively. )
The disorder seems to grow from the points located in the
lower left corner (which represent motions in the potential
well minima). Thus, in agreement with the power spectra,
as A, is increased from -0.015 to -0.030, the motion of
the particles becomes highly disordered. These return
maps are in q~3itative agreement with the behavior ob-
served in studies of the circle map's which is important as
a model for the transition to chaos in the current driven
Josephson junction. ' '

Systems exhibiting chaotic motion are often described
as being extremely sensitive to initial conditions. ~ A
quantitative measure of this sensitivity is obtained from
the maximal Lyapunov characteristic number,
Consider two initial configurations I'o ——Ipo, qo I and
I o

——[po,qo j of the N vectors of coordinates q, and mo-
menta p, . We assum. e I o and I'o are close in some senise.
The equations of motion will generate a flow in phase
space as a function of time and k . is a measure of
whether the configurations I, and I", stay close or
diverge. Thus )t is obtained from

-0.01-

-0.02-

Up O. 10

[ ~ ~ r ~ rs ~ I ~
( ~ ~ ~ ~ ~ s ~ ~ ~ ~ ~ v ~ e ~ ~ ~ ~ ~ ~avIve ~

~ ~ ~ ivv ~ s ~ ws-
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FIG. 19. The maximal Lyapunov exponents for ihe systems
u =0.01, and A, =0.001 and 0.050.
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VI. CONCLUSIONS

In this paper we have studied the response of the sG
chain to an inhomogeneous dc driving force. The system
has been used to model nonlinear wave propagation in an
adsorbed monolayer. We have dealt mainly with systems
in which the modulation of the substrate potential is small
relative to the adsorbate-adsorbate interaction (A, « 1) and
have confined the calculation to absolute zero tempera-
ture. The latter restriction is not fundamental and simply
limits the results to temperatures much smaller than the
Debye temperature of the solid monolayer. The Debye
temperature also sets the time scale over which the piston
particle impulse is applied. As an example, for a system
with T~-100 K we have m~-10' Hz and thus an im-
pulse lasting 10 oscillator cycles corresponds to an inter-
val —10 ' sec.

In Sec. II we posed the sG dynamical problem as a
function of two parameters uz and A, (after fixing q, the
static mismatch parameter). In Sec. III, we identified the
region uz «1, A, «1 as the adiabatic regime. The name
is apt since in the torsion pendulum mechanical analog,
the total phase difference along the chain is the extensive
thermodynamic variable (conjugate to the torque) and
thus for u~ &&1 the system can be compared to a box of
atoms with a slowly moving wall or a pendulum whose
length is slowly changing. This regime is characterized by
a uniformly propagating kink lattice. The fundamental
dynamical information is contained in the function
u, (u~, A, }. A simple theory for this function yielded a re-
sult shown in Eq. (18). A striking feature of this relation
is that u, does not depend on u~ and i(, separately, but
only in the combination A, /u~. To test this assertion in
the actual system, we have plotted A, /u~ as a function of
u, in Fig. 20. Also shown on this figure is Eq. (18). We

2Q)i)) 22k, ,
16

(42)

for KE domination. Further we note that in the limit

u& » 1, the kink length in the lab frame is given by

32 1ls=
q Qp

(43)

a result independent of A, .
In the vicinity of the KE dominated crossover, the velo-

city patterns can acquire quite complicated symmetries.
For example, in Fig. 22, we show the velocity pattern for
the system A, =0.001 and i' ——0. 10 at t =1000. The pat-
tern shown is periodic in time with frequency = uz and
most interestingly it is also periodic as a function of atom
number with a period =100.

conclude that the analytic result is accurate only in the
limit of high kink speeds and elsewhere gives results
which tend to be overly small. The A, /u~ data do not fall
on a universal curve; however, there is very little scatter
and the worst points are in fact not in the adiabatic re-

gime. One may conclude from Fig. 20 that the dominant
dependence of u, on uz and A, is in the form A, /u~.

If either uz or i(, is made overly large, we leave the adia-
batic regime. We first discuss the large uz limit. For
large uz, the system is kinetic energy dominated and the
presence of the external periodic potential becomes unim-
portant. That is, the piston particle simply drags the
chain behind it as fast as it can go, u, = 1, and the dynam-
ics is described by the harmonic oscillator limit as dis-
cussed in Sec. II. Thus we expect the crossover to the ki-
netic energy (KE) dominated regime to occur when
—,
'

uz ——2A.. This crossover is shown in Fig. 21.
One can obtain this same basic result from another

point of view. In this regime, the kink speed u, = 1 and
thus using Eq. (18},we fmd

Dynamic Parameters vs Soliton Speed
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FIG. 20. A, /u~ vs u, . The 0 are data for u~=0. 01 and
A, =0.002, 0.005, 0.010, 0.015„0.020, and 0.025. The 0 are data
for X=0.001 and uz ——0.005, 0.010, 0.015, 0.025, 0.050, 0.0'75,
0.100, and 0.150. The 4 are data for u~ =0.05 and 0.0250 (the
circled data point). The solid line is Eq. {18). The agreement is
best in the kinetic energy dominated regime.
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FIG. 21. u~-i, parameter space. The short dashed vertical
line is Eq. (45).
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0.25]

0.20-

dSn
dt Oi0

sG Chain

Up =0.10 "4=0.001
t =1000

barrier Ez is simple to compute numerically. (Use of the
continuum wave form is justified by the discussions in
Sec. III.) Indeed, with the use of the analytic continuum
soliton, one can apply the Poisson summation approach of
Bak and Pokrovsky to derive an approximate analytic
form for Ez O. ne finds

E~ 8——exp( —Hlc) .

In Fig. 23 we compare Eq. (44) with the numerical re-
sults and find excellent agreement. It is apparent from
Eq. (44) that the Peierls barrier is important only for
small kinks. If we appeal to the collective-mode approach
then a simple picture of pinning by the lattice can be ob-
tained by setting2

—,
'

az ——Eq(A, ) . (45)
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FIG. 22. Velocity profile of a sG chain with v~ =0.10 and
A, =0.001 at t = 1000. The pattern shown behind the wave front
is periodic in time (with period 10) snd periodic in atom num-

ber. The wave front is the onset of the kink lattice, there are no
precursor phonons in this system.

This trajectory is shown in Fig. 21 and it clearly lies in the
region where the transition from ordered to disordered
motion occurs. The kink pinning can be seen vividly in
Figs. 24 and 25 which show the phase s„as a function of
n for the systems u =0.01 and A, =0.025, 0.050, respec-
tively. The nonuni(orm propagation of the wave fronts
should be contrasted with Fig. 4.

Thus, the disordered behavior can be understood as the
result of the following sequence of events. At fixed u~, as
I, is increased, the kinks slow up [Eq. (18)] and become
smaller [lo ——1/(qA, '~i)]. At some critical value of A, [Eq.
(45)] the kink motion becomes erratic due to the pinning
effect of the Peierls barrier. The propagation of the wave
front can be thought of as the mechanism by which the

In Sec. V, we discussed the transition to chaotic
behavior when A, is increased at fixed u~. We now wish to
consider the mechanism responsible for this transition. In
Sec. II, we introduced a perturbation expansion for
the atom coordinates in Powers of cox~. For el' && I we
found that perturbation theory could explain the appear-
ance of the Bz harmonics in the particle motion. This ap-
proach should break down for oi~x-1 and indeed we find
that this is precisely the region where the chaotic behavior
begins. The conventional kink size (see Table II)
lo = 1/elg alld thus the ollset of disordered behavior lo —1

occurs when the kink senses the discreteness of the lattice.
It is well known that, unlike in a continuum, kinks with
arbitrary velocity can not propagate freely on a lattice.
Kiuks see a periodic potential because of the lattice sym-
metry and slow kinks can bilcome pimMld to the lattice. In
dlsloCatlon dyn&mica thlS mech'»Sm 1S Well klioWIl aS the
Peierls barrier. The Peierls barrier is the difference be-
tween a Blaxiinum energy coilflgllratlon and a BllnlBllHtl
energy configuration for a kink in a lattice. From sym-
metry arguments, there are only two types of extremal
configurations in a uniform one-dimensional lattice. The
maximum energy configuration has a kink centered on a
lattice site since then a particle is on top of the potential
barrier. The minimum energy configuration has the kink
centered between two adjacent lattice sites. Thus, if one
uses the continuum kink wave form (Table II) the Peierls
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FIG. 23. In(E~) vs kink size lo. The dashed line is Eq. (44)
and the solid line is the numerical computation, as described in
the text, and both are in exceHent agrennent with one another.
In the inset we show E~ vs size which shows the importance of
the Peierls barrier for small kinks.
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FIG. 26. The i ipos't'on of atom 10 (in the piston particle rest
frame vs time. The atom executes ordered periodic motion until

t = 1500, the onset of kink pinning (cf. Fig. 24).
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FIG.
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G. 25. Phase vs atom number for th G h
'

e s c ain with

250
u~ = . and A. =0.05. The profiles shown fare or

& 2000 in steps of 250. This system, weH into the chaotic
regime, s ows strongly the effects of k[~k pinning due to the
Peierls barrier.

lattice cools off a local hot spot. When the wave front is
pinned over some time interval, the energy input from the
piston particle is not disseminated but must be shared by
the particles behind the wave front. Thus th
are eat up" resulting in the observed disordered
motion.

This scenario can be supported by the following argu-
ments. First, the phase plots of Fig. 24 show the wave
rout propagates more or less uniformly until t=1500,

the
when the first kink pinning occurs I F' 26n ig. we show

e p ase as a function of time for atom 10 Th e atom
utes periodic motion with frequen =0.025cy = . untilr=, after which the motion becomes disordered.

Second, one can compute the second velocity cumulant
per particle as a function of time. For systems in the adi-
abatic regime it goes asymptotically to some constant

velocit
v ue. For systems in the disordered regime th de secon

of time

'
y cumulant is a monotonically increasin fing unction

o ime (thus, we describe the system as heating up). We
note in passing that the system is not an equilibrium
(Gaussian) velocity distribution since the higher cumu-
lants do not vanish.

An imphcit assumption of the above scenario (and the
existence of a right-hand boundary in Fig. 21) is that there
exists a critical value of A, for each bel h'

system will always execute ordered motion. We have
shown this to be truo true numerically; however, rigorousl
this ma not be

'
ani

. (44 b
y so. The Peierls barrier never vani h

[Eq. ) ecomes exact as 10~ao ], which leaves open the

ion time
possibility that any system if followed for a suff '

or a s iciently
ng ime would begin to exhibit disordered motion and
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that the "Peierls barrier" of Fig. 21 is only the crossover
between systems which show disordered behavior after
times 0(1) to systems which show disordered behavior
only after exponentially long times.

The adsorbed monolayer plays a useful role as a physi-
cal model of the processes discussed in this paper but, as
stressed in the Introduction, the sG equation enjoys many
applications in condensed matter physics. Indeed the
above results might have their most immediate applica-
tion to explaining the periodic noise spectrum observed in

some charge-density-wave materials. The noise voltage
spectrum measured by Weger, Gruner, and Clarke~ in

NbSe3 bears a striking resemblance to Fig. 11 above.
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APPENDIX: CONTINUUM LIMIT
FOR THE SINE-GORDON CHAIN

In this section we very briefiy describe the passage to
the continuum limit and the concomitant sG soliton. The
continuum Lagrangian density corresponding to Eq. (1)
can be written, in physical units,

'2
3' 3' & 3'

r)t t)x Bt

—Vp[1 —cos(ky)], (Al)

where p is the mass density, T the tension, and Vp the
barrier height per unit length.

The equation of motion is

t)y t)3p—Cp
Bt Bx

kVp
sin(ky), (A2)

where cp ——T/p is the longitudinal sound speed. A travel-
ing wave solution to (A2) can be written as

y (g) = —tan '[exp(g/Io) j,k

where

(A3)

(=y, (x —u, t),

y, =(1—u, /cp)
(A4)

u, is the soliton speed and from the (accidental) Lorentz
invariance of Eq. (A2) it is clear that

Us &&p i (A5)

the continuum sG soliton is always subsonic. The conven-
tional soliton size lp is given by

k up
Io=

pep
(A6)

and we find

2 1
E, —8pcpy,

0

(A7)

(AS)

One can easily relate the particle speed to the soliton
speed by use of Eq. (A3):

2/scs
sech(g/lo) . (A9)

0

The entries in Table II were obtained by rewriting Eqs.
(A3), (A4), and (A6)—(AS) in terms of the dimensionless
units of Sec. II.

The soliton energy can be easily obtained from the
Hamiltonian density:
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