
PHYSICAL REVIE% 8 VOLUME 33, NUMBER 3 1 FEBRUARY 19S6

Internal-magnetic-field distribution at the critical cilrrent of a type-II superconductor
subjected to a parallel magnetic field

John R. Clem and Antonio Perez-Gonzalez'
Ames Laboratory U—S. Department ofEnergyand Department ofPhysics, Iowa State Uniuersity, Ames, lomb 50011
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A general critical-state model including the effects of both flux-line cutting and flux pinning is
used to predict the internal-magnetic-field distribution at the critical current of type-II superconduc-
tors subjected to parallel magnetic fields. The anticipated behavior is considered for specimens in
the form of both slabs or strips and thin-walled cylindrical shells. Striking drqxndences upon the
applied field angle are predicted for the direction of the electric field in slab geometry and for the
magnitude and direction of the induced azimuthal current in cylindrical geometry.

I. INTRODUCTION

The internal-magnetic-field distribution just above the
critical current of a type-II superconductor in a parallel
applied magnetic field has long been a puzzling problem'
and still is a subject of controversy. i 47 Recently, we
have developed a macroscopic theory's 's'3 to treat
the related problem of the hysteretic response of a type-II
superconducting slab subjected to a parallel magnetic field
that varies in both magnitude and direction. The theory,
which was motivated by the experiments and the empiri-
cal models suggested in Refs. 10, 28, 29, and 48—S9, takes
the form of a general critical-state model. This model in-
cludes not only the effects of flux pinning, as in the usual
critical-state model, ~ sz but also the effects of flux-line
cutting. Flux-line cutting (intersection and cross join-
ing of adjacent nonparallel vortices) is the quantum ana-
log in the superconducting state of magnetic reconnec
tion, which produces numerous phenomena in astro-
physical plasmas. There is evidence that the correspond-
ing effect also occurs in superfluid ~He, where the process
is called vortex-line reconnection. ss In the present pa-
per, we show how our general critical-state theory can be
used to predict the unique time-independent macroscopic
magnetic field distribution that should accompany the
constant macreicopic electric field just above the critical
current of a type-II superconductor in a parallel applied
magnetic field. For simplicity, we hmit our attention to
specimens in the form of either slabs (strips) or thin-
walled cylindrical shells.

In Sec. II we give the basic equations of the critical-
state theory. This theory is applied to slab geometry in
Sec. III and to cylindrical geometry in Sec. IV. Finally,
we summarize and discuss our results in Sec. V.

The fields B,o and B~ are comprised of not only the ap-
plied field but also the self-field generated by a transport
current flowing in the slab. We assume that to good ap-
proximation B=y,oH inside the sample, and we neglect
any surface barriers against vortex entry or exit. We fur-
ther assume that in steady state the magnetic induction 8
inside the sample is independent of time and depends only
upon the coordinate x; i.e., B(x)=B(x)&(x), where
B=

I
8

I
~d

&=$'sina+z cosa . (2)

The surface boundary conditions on 8 are 8(0)=B,o and
8(X)=8~.

In steady state, Ampere's law, J=V)& H, dictates that
the differences in B„and B, across the slab be determined
by the average current density components J, and Jy,
respectively:

~By =B~y B.oy =is(AX—

hB,=B~ B, ———poJy—K .
(3)

(4)

(6)

Similarly, in steady state, Faraday's law, VXE=O, dic-
tates that E=Eo, a constant independent of x.

Resolving the current density J(x) and the electric field
E info their components parallel and perpendicular to the
local 8 (i.e., writing J=J~~&+Jig and E=E~~&+Eig,
where j5=& )&R), we obtain from Ampere's and Faraday's
laws in steady state

a
J)) =go 8

Bx

II. BASIC THEORY

Consider a high-a, irreversible type-II superconducting
infinite slab of thickness X=2x~. Applied to the sur-
faces x =0 and x =X are parallel magnetic fields
Bso Bso&so atld Bgg ~Bsyt&syt, where Bg =

~
Bg

~
and

&, =ysina, +zcosa, .

BE
E)) + =0,

As discussed in Refs. 16—18 and 36—38, a nonvanish-
ing Ej can occur only where the magnitude of Ji is
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larger than J,i(8), the transverse critical-current density
at the threshold for depinning of the vortex array, and a
nonvanishing Ell can occur only where the magnitude of
Jll is larger than J,ll(B}, the parallel critical-current densi-

ty at the threshold for flux-hne cutting in the vortex ar-
ray. %e assume that the pinning properties are isotropic,
such that J,i and J,

ll
depend upon the magnitude of B

but not upon its angle relative to some symmetry direction
in the specimen.

Above the critical current of the slab, where Ep&0,
Eqs. (7) and (8) reveal that at some coordinate x either (a)
both E~~ and Ez are nonzero, such that x is in a CT
(cutting-transport) zone where both cutting and transport
are occurring, or (b) only Ei is nonzero, such that x is in
a T zone where only transport is occurring. For the latter
case, each vortex keeps the same angle relative to the
specimen as it moves toward regions of smaller B. Note
that, because Ell can be nonzero only when Ba/Bx is
nonzero, Eq. (7) excludes the possibility of a C zone in
steady state, where EII+0 and Ei ——0, such that flux-line
cutting would occur without flux transport.

We consider the behavior just above the critical current,
where we assume that

Ei =pi(Jj. +&ci)

when Ei &0 and

58,o——B,o—Bo———BIsinao,

58~ Bw—Bo—BIs——inao,

5a&o=a&o—ao = —(BI/Bp )cosa 0

5a~=a~ —ao=(Br/Bp)cosap .

(12)

(13)

(14)

We further define kill pof&ll Bo and p, ="&IIX/2.
Depending upon the angle ao, the average critical-

current density J,=J, is reached when either (a) 8
achieves a constant, critical slope across the slab, such
that

~
Jj

~

=J,i, or (b) a achieves a constant, critical slope
across the slab, such that

~ Jll ~

=J,ll. When condition (a)
applies, we ean say that fiux pinning dominates J, . From
Eqs. (6), (11),and (12) we then obtain

J, =J,j /
~

sinap (
. (15)

When condition (b} applies, we can say that flux-line cut-
ting dominates J, . From Eqs. (5), (13), and (14) we then
obtain

Pz =ap+ 5' of the electric field E=Eofz
(fx ——PsingE+zcosgz) as a function of the angle ao of
the applied field.

We define 58 =8 B—o and 5a=a —ao. Then, with the
definition BI——IMp, X/2, we have to first order in BI
(since BI obeys BI «Bo)

pll( Jll+ J|:II) (10) J =J II/ I
cosao

I
(16)

when Ell & 0. Here, pi and pll are effective flux-flow and

flux-cutting resistivities of the material. Because we as-
sume h««hat [El ( «pi J,i and IElli «pllJ, II, the
distributions of B computed in Secs. III and IV are in-
dependent of pi and pll.

For simplicity, we consider only sufficiently thin slabs
that the magnitude of the self-field at the critical current
is a small fraction of the total 8 in the slab. This guaran-
tee«hat po I

J. I
X«8, po i J, [

X«8
8«1, and

~
a(x) —a

~
&&1, where 8 and a are the aver-

ages of 8 and a over the slab thickness. With the as-
sumption that J,j(8) and J,ll(8) vary smoothly with 8,
we can safely treat J,j and J,ll

as constants; i.e., we take
J,j ——J,i(8) and J,ll

——J,ll(8}.
In the following sections, we use the above formalism

to determine the distribution of B in two different
geometries. In Sec. III we consider a slab or strip, but the
results also apply to a thin-walled cylindrical shell with a
slit along its length. In Sec. IV we consider a cylindrical
shell.

III. APPLICATION TO SLAS GEOMETRY

We consider now the slab of Sec. II for the case that the
net applied current flows only in the z direction. That is,
the average current density components obey J, &0 and

J~ =0. We assume that a magnetic field Bp= Bp&o is ap-
plied parallel to the slab, where Bo——

~
Bo

~

and

ao ——ysinao+Rcosap. We wish to solve for the distribu-
tions of B(x) and J(x), the magnitude of the average
critical-current density J,=J„and the direction

Flux pinning [condition (a)] dominates J, when Bo is
roughly perpendicular to the current direction, while
flux-line cutting [condition (b)] dominates when Bo is
roughly parallel (or antiparallel) to the current direction.
The two conditions coincide at the four angles ap obeying

I
tanao

I
=t»a =—J j/J

II
(17)

i.e., ao ——a„—a„m —a„and —~+a, . At these angles
both 8 and a have constant critical slopes across the slab.
The 8 gradient then carries a current density of magni-
tude J,i, while the a gradient carries a current density of
magnitude J,ll

but in a direction perpendicular to that of
J,z. The net critical current at the angles +a, and
+(m a, ) is found—from Eqs. (15), (16), and (17) to be

J,=J, =(J,i+J,ll)'i (18)

Figure 1(a) shows a sketch of the predicted behavior of J,
as a function of ao. A polar plot of J, venus ao would
yield a rectangle of length 2J,ll

and width 2J,j .
Table I presents the solutions for the physical quantities

of interest for arbitrary values of the field angle ao. Fig-
ure 2 exhibits sketches of the profiles of 8 and a versus x
at J, for the series of equally spaced ap values shown in
Fig. 3. To bring out the key features of these results, we
now focus our attention on just two sets of profiles, curves

j and I in Fig. 2.
Curves j show the 8(x) and a(x) profiles for ap in the

r»ge 0&ao&a„where flux-line cutting dominates the
critical current aild J& ——@&II/eosap. Since BI—Bpp/cosap
at J~~ whe~e p=k&~~&~ =go~, ~t&~/&0 &~1, we have from
Eqs. (11)—(14), 58,p/Bo = —p tanap, 58~/Bo ——p tanao,
5a,o= —p, and 5a,» ——p. The a profile has positive criti-
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FIG. 1. (a) Sketch of the critical-current density J, (at the
onset of a steady-state electric field} versus the angle ao of the
applied magnetic field Sp relative to the current direction for
slab geometry. Flux pinning dominates the critical current
(solid curves, J,=J,q/ ( sinao

~
) when

~
tanao

~
& tana,—=J,~/J, ~~, and Aux-line cutting dominates (dashed curves,

I
tanaa

I &tana, . (b) Sketch of the
electric field angle P@ relative to the current direction versus ap-
plied field angle ap for slab grxmetry. The behavior is illustrat-
ed here for J,

~~

——2J,& (or a, =0.46 rad) and p, =0.10 rad.

x x

FIG. 2. Profiles of B(x) and a(x) versus x for the equally
spaced field angles ao labeled in Fig. 3. Left side: ng ao&—0;
right side: 0&ap&m. B,p and 8~ are labeled for curves b, h, j,
and p; a,p and a~ are hLbeled for curves d and l. Also shown
are ap for all curves (), a„ for curves h and j (+ ), and a& for
curves d and l (X). Here, p, =0.17 rad and J,

~~

——J,~ (a, =m/4).
Profiles are calculated only to first order in BI. See Eqs.
(11)—(14).

cal slope for all x, such that

a(x)=a c+kcllx
Jz

The B profile has negative critical slope to the left of the
V-shaped minimum at x =x„where

x„=(X/2)( 1 —tanac/tana, ), (20)

Bsc p'ofcj xI 0=x =xQ.
B~+pP,z(x —X}, x, &x &X .

(21a)

(21b)

and has positive critical slope to the right of the
minimum: ~ac

,C

~ac ~c

At the minimum,

B(x„)=B„=Bc(1—p tana, ) (22}

a(x„)=a„=ac—p tanao/tana, . (23)

Both the perpendicular and parallel components of J are
at their critical values: J~~ =J,

~~
[Eq. (5)] for all x, but Ji

[Eq. (6}]obeys
FIG. 3. Key to the equally spaced field angles ap examined in

Fig. 2. Here, J,
~~

——J,~ (a, =~/4). Forexample, ap ——m/8 for j.
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TABLE I. Solutions at the critical current for slab geometry (J, & 0 and J~ =0) as a function of the field angle ap. %here the sym-

bol + appears, the upper sign holds when a, & ~~~ &n'/2, and the lower sign holds when m/2& ~ao~ &m —a, . Here,

a, =tan '(Jc&/Jell) kcll=poJcll &p a d p=kcllX/2«1. NA=not applicable. The behavior for m —a, &ap&~ is equivalent to that
for —m —a, &ap& —m.

Quantity

Dominant
mechanism

Js=Jc

58so/Sp

5&~/&o

5a,p

8(x)

a(x)

ac &ao& ~+ac

Flux-line cutting

p tanao

—p tanap

~so pofslx~
0&x &x„;

8~+poJ, s (x —X),
X„&x&X

ap —k ilx

+ac &ao& —ac

Flux pinning

Z„/
~
sinao

~

p tana,

—p tana,

tao

cota,

cotap—P cota,

&*o—poJ, jx

a,p, O&x &x„
a~ Skell(x —X),

x, &x &X

—a, &ap&a,

Flux-line cutting

J,ll/cosao

—p tanao

p tanap

~s 0 P ofcj.»
0&x &x„;

B,x+poise(x —X),
x„&x&X

asp+ kcl lx

a, &ap&m —a,

Flux pinning

J,~/sinap

—p tana,

p tana,

cotap

cota,

cotap

cota,

~so+p&Aix

aso+kcllx
0&x&x,;

a~, X, &X&X

58'/Bp

x, /X

E~(x)

Jll(x)

tanap1+
2 tana,

—p tana,

tanap

tana,

(C T+/C T

—Epcos(a —a„)

Epsin(a —a„)

J,z, 0&x &x„;
—Jcy» Xy &X &X

tanao—P +K
tana,

i
cotao

f

cota,
aso

(T+/C+ T+)

0, 0&x&x„'
Epsin(a —a~),

X, &x &X

Ep, 0+x +x;
Epcos(a —a)),

x, &x &X

0, 0&x &x„'
+Jell» x, &x &X

cotap
p +

cota, 2

1 tanap

2 tana,

—p tana,

tanap—p tana,

(C+T+/C+T )

Epcos(a —a„)

—Epsin(a —a„)

Jell

Jci, 0 &x &x„;
—Jcg» Xy &X &X

tanao—p tana,

NA

/
cotao

f

cota,
aa

(C+T /T )

—Epsin(a —a~ ),
0&x &x, ;

0, x, &x&X
—Epcos(a —a~ ),

0&x &x„
Ep, X, &x &X

Jell» 0&x &xc»
0, x, &x &X

cotap
p cota, 2

—Jg, x„&x&X .
(24a)

(24b)

E~~
——Eocos(a —a„),

Ei = —Eosin(a —a„) .

(25)

(26)

The electric field components E~~ and Ez [Eqs. (7) and
(8)] are

In the lab coordinate system the macroscopic electric field
is constant, E=EofE, where fE —a v and tpE a„——
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Flux-line cutting occurs with E~~ & 0 for all x. Flux trans-

port also occurs for all x but with Ei &0 where 0&x &x„
(a C+T+ zone) and with Ei &0 where x„&x&X (a
C+T zone). We thus characterize the zone structure
across the slab from left to right as (C+T+/C+T ),
where the subscript to C (T) denotes the sign of the elec-
tric field component E~~ (Ei }. Note that, although trans-
port to the right occurs to the left of x„and transport to
the left occurs to the right of x„, flux-line-cutting B con-
sumption' occurs at just the rate needed to make
aB/ar =0. Behavior similar to that described here occurs
for all field angles in the ranges —a, & ao &a„
—n &ao& —@+a„and n a, &—ao&m for which flux-
line cutting dominates the critical current. The details are
given in Table I.

Curves I in Fig. 2 illustrate qualitatively different
behavior of the B(x) and a(x} profiles in the range
a, & ao & n a„—where flux pinning dominates the critical
current and J,=J,i/sinao. Since BI——yoBotana, /sinao,
we have from Eqs. (11)—(14), 5B,o/Bo —p t——ana„
5B~/Bo ——p tana„5a, o

———p, cotao/cota„and
5a~ ——pcotao/cota, . The B profile has positive critical
slope for all x, such that

B(X)=Bso+poJcix (27)

The a profile has positive critical slope only to the left of
x =x„where

x, =X
~
cotao

~
/cota, ,

but is constant to the right of x, :
I

a,o+k~llxa(x}=
xc =x =X ~

(28)

(29a)

(29b}

Note that here a(x, )=ai ——a~. Although Ji is at its
critical value (Ji ———J,i) for all x, J~~ is critical only to
the left of x, :

cII 0&x &xc
~ll

0, x, &x&X.
(30a)

(30b)

The electric field components E~~ and Ei [Eqs. (7) and
(8)] thus obey

—Eosin(a —
a i), 0 &x &x, (31a}

0, x, &x&X

—Eocos(a —ai), 0&x &x,
—Eo, x, &x&X.

(32a}

(32b}

Vortices nucleate at the surface x =X with angle a~.
They then move in the —x direction across the T zone
under the influence of the Lorentz force. They preserve
their orientations relative to the specimen until they enter
the C+T zone at x=x, . The angle of the elix:tric field,

g@——a~ —m/2, can be obtained from E=BXv. Al-
though this expression does not apply where flux-line cut-
ting is occurring, it is valid in the T zone (x, &x X).
Behavior similar to that described above occurs for all
field angles obeying a, &

~
ao

~
& m —a, (see Table I). The

IV. APPLICATION TO CYLINDRICAL
SHELL GEOMETRY

We consider the experimental arrangement sketched in
Fig. 4: a cylindrical shell of inner radius Ri and outer ra-
dius Ro ——R;+X, where X«R;. The outer surface is
subjected to a longitudinal applied field H, (Ro) =H„and
the inner surface to an azimuthal applied field
H~(R; )=I~/2m R;, where I~ is the current in the z direc-
tion along a wire on the cylinder axis. (Alternatively, this
azimuthal field could be generated by a long coaxial
toroidal field coil.) A current I, is applied to the cylindri-
cal shell, such that the azimuthal field on the outer sur-
face is H~(Ro)=(I +I,)/2rrRo. We wish to solve for
the distributions of B(x}and J(x), the magnitude of the
average current density J,=J, at the critical current, and
the longitudinal magnetic field inside the shell H, (R;) as
a function of the angle ao ——tan '[ H~( R) /H( R)o] of the
net field applied via I and H, . Since the shell thickness
X is much smaller than the average cylinder radius
R =(R;+Ro)/2, we can safely use the slab geometry in-
troduced in Sec. II, provided we treat the boundary condi-
tions carefully. We align the z axis along the cylinder axis
and the x axis in the outward radial direction, such that
the y axis points in the azimuthal direction. The coordi-
nates x =0 and X correspond to the inner and outer sur-
faces. The slab boundary conditions become

B,o pol~/2nR, —— (33)

(34)

angles ao ——+m/2, however, are special, because they are
the only two angles for which the CT zone shrinks to zero
thickness and the T zone spans the entire cross section.

Figure 1(b) exhibits the predicted electric field angle Pz
versus the applied magnetic field angle ao. Just at the
critical current we predict a sharp change in the direction
of E by almost 90' at the angles +a, and +(m.—a, ),
which separate regions of flux-pinning dominance and
flux-line-cutting dominance. At higher currents,
varies more smoothly with ao near +a, and + (m —a, ).

In this section, we have considered the critical behavior
of an infinite slab when a magnetic field is applied paral-
lel to the surface and a current is applied in the z direc-
tion. Our results also should apply to good approxima-
tion near the middle of a finite strip of thickness X, width
Y (sides at y=O and y= 7), and length Z & F (ends at
z=O and z=Z), provided X«F. Our results also
should apply not too close to the edges or ends of a thin
cylindrical shell of thickness X, radius R »X, and length
Z &2rrR. The shell should have a longitudinal slit along
its entire length to permit a longitudinal applied field to
freely enter the space inside the cylinder and to prevent
any persistent azimuthal currents. Either a current-
carrying wire along the axis or a long toroidal field coil
with many turns could be used to apply an azimuthal field
to the cylindrical shell. Experiments on Nb3Sn (Refs. 67
and 68), Pbo9oTlo io (Ref. 69), and recrystallized NbTi
(Ref. 70) have yielded results for J, versus ao similar to
those of Fig. 1(a), but apparently no measurements of the
direction of E have been reported in the literature.
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l

I---(-~—-H, (R, ) I

)$
I

I

I

ii H, (Ro)

I [ ~V

l~

a

Equations (3) and (4) then relate B~~ to J,=I,/2rrRX and
B,u, to the average induced azimuthal current density J„.
By analogy with our treatment in Sec. III, we regard the
applied magnetic field as Bo 8,&P+B~——280&o, '

where &,o——y sinao+ z cosao.
As in Sec. III, we assume that at the critical current of

the shell ! ~„!&&80 and
l
rhS, [ &&Bo, such that to

first order in J, and J„,

FIG. 4. Sketch of the cylindrical shell geometry considered in

Sec. IV. The shell thickness I is greatly exaggerated.

gB,o B——,o B—o p——P «X cosao,

$8~ B—~ B—o p——oJ,X sinao,

5a, o
——a,o—ao ———(p+„X/Bo)sinao,

5a~ a~——a—o (——p+,X/Bo )cosao .

{36)

(37)

(38)

In steady state, just above the critical current, Faraday's
law requires that Ez ——0, such that E=Eo'R, E~~ Eoc——osa,
and Ei ———Eosina.

For ao not too close to 0, +m/2, or +n, the behavior of
8(x) and a(x) at the critical current is very simple. Both
8 and a develop constant, critical slopes across the slab,
such that !Ji

l
=J,i, ! J~~ [ =J,

~~,
and J has magnitude

J, =(J,i+J,~~)' . The dependence of J,=J„given in
Table II, is plotted in Fig. 5 as the solid curves. The
current density J {ofmagnitude J, ) is aligned along the z
axis at the four angles ao ——+a, and +(m —a, ). For other
angles, J still has the magnitude J, but is oriented at an-
gle a, (or n —a, ) relative to ao, such that J~+0. The
behavior of J„versus ao is shown by the dashed curves in
Fig. 5. In the cylindrical shell geometry of Fig. 4, J„cor-
responds to an azimuthal current, which because of Eq.
(4) makes the internal longitudinal field different from the
applied longitudinal field. For 0 & ao & rr, we have
M=8~ B,o&0 an—d a tendency for flux to be trans-
ported inward from the outer radius Ro of Fig. 4 and
pumped into the hole of radius Ri. For n&ao—&0, we
have &&&0 and the opposite tendency for flux to be
pumped out of the hole and transported outward toward
the outer radius Ro.

On the scale of Fig. 5, sketched for p « I, we note that
J„exhibits discontinuities at ao ——0, +n/2, +n. We
present further details of the behavior for ao near these
special angles in Fig. 6, Table HI, and the following dis-
cussion.

TABLE II. Solutions at the critical current for cylindrical shell geometry (E=Ep'2, Ell ——Epcosa, Ej ———Eosina) as a function of
the applied Geld angle ao. He, k, ll

——ppJ, ~~/Bp, p=k, llX/2&&1, J =(J,~+J,~l)', a, =tan '{Jcj./Jell) and 5=ppJc~&/&p&&1
See Table III for details of behavior near ap ———m, —m/2, and 0.

Quantity

Jz=Je

5&.o/&o
5&~/&o
58/Bp~./&p

5a,o

5a~
ha

8(x)
a(x)

—v+2@ &ap & —K/2 —2p

—Juncos(ao —a, )
—J sin(ao —a, )

—5 sin(ao —a, )cosao
—5 ue(ap —a, )sinap

—Pol, jx /Bo
5 sin(ao —a, )

5 sin{a&—a, )sinao
—5 cos(ao —a, )cosap

—2p
Bs0 P(A j.+
a„—k, llx

J, cos(ao+a, )

J, sin(ao+a, )

5 sin{ap+ a, )cosap
5cos(ap+ a, )sinao

—P,P,&X/Bo
—5 sin(ao+ a, )

—5 sin(ao+ a, }sinao
5 cos{ap+ a, )cosao

2p
&so P&Ai&—
asp+ kc

0&ao & m/2

J, cos(ao —a, )

Jcm sin(ao —ac )

5 sin(ao —a, )cosao
5 cos(ao —a, )sinao

poJ,&X/Bo
—5sin(ao —a, )

—5 sin{ao —a, )sinao
5 cos(ao —a& )cosao

2p
&so+PoJcj&
ago+ kgl lx

—J, cos(ao+a, )
—J, sin(ap+a, }

—5 sin(ao+ a, )cosao
—5 cos(ap+ a, )sinap

y,P„X/Bo
5 sin(ao+a, }

5 sin(ao+ a, }sinao
—5 cos(ao+ a, )cosao

—Zp
Bso+pi&
a,o—k, llx

Zones

Jll(x)
J,{x)

C T+

J,j

C+T+
J~ll
Jcl

C+T
cll—Jg

C T

—Jj
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FIG. 5. Sketch of the critical-current density components at
the onset of a steady-state electric field versus the angle ao of
the applied field So relative to the current direction for the
cylindrical shell geometry of Fig. 4. Sohd curves exhibit the
longitudinal critical-current density J,~7, and dashed curves

exhibit the azimuthal current density 7„. The behavior is illus-

trated here for JgII
——2Jgg (or exp

——0.46 rad) and p && 1 (see Table
II).

A. ep~m/2

For uo slightly 1ess than m/2, which corresponds to
positive values of I~ and H~(R; ) and a very small posi-
tive value of H, (RO) (see Fig. 4), the field lines at the
outer radius take the form of a tightly wound right-
handed helix. For an arbitrary initial magnetic state of
the cylinder, when the critical value of I, is reached
(I, &0), helical vortices tend to be nucleated at the outer
radius and be driven inward by the Lorentz force. Each
entering helical vortex increases the longitudinal
(z-directed) magnetic flux by one quantum of flux,

Po——h/2e=2. 07X10 ' Wb. As the vortices reach the
inner radius, they contribute to the longitudinal fiux in
the hole and thereby increase the value of H, (Ri). This
ultimately leads to a positive value of H, (Ri)—H, (RO)
and a large and pesitive value of the azimuthal current
density J»~J,

~[
(see Figs. 5 and 6). In the final steady

state, the rate of increase of 8 arising from transport is
exactly balanced by the rate of decrease of 8 arising from
flux-line-cutting 8 consumption. '

For uo slightly greater than «/2, corresponding to a
very small »iegatiue value of H, (RO), the field lines at the
outer radius of Fig. 4 take the form of a tightly wound
left-handed helix. Each helical vortex nucleating at the
outer radius and migrating into the hole changes the long-
itudinal (z-directed) magnitude flux by $0. This ultimate-
ly leads to a fina critical state with a negative value of
H, (R;) and a large and negative value of the azimuthal
current density J„=—J,

~~
(see Figs. 5 and 6). The

steady-state value of H, (R; } is thus very sensitive to the
sign of H, (RO).

When uo ——m/2, corresponding to H, (RO) precisely
equal to zero, H, (R, }cfan have any value in the range
—J,~~X&H, (Ri}&J,~~X. The steady-state zone structure
consists of either a C+T zone (when J» &0}or a C T
zone {when J» &0) next to the inner surface and a T

FIG. 6. Sketch of 7„at the critical current versus ao for ao
close to —m, —m/2, 0, m/2, and n. The horizontal scale is

greatly expanded; p && 1 (see Table III).

zone next to the outer surface (see Fig. 6). In the T
zone, vortex rings nucleate at the outer radius with angle
u =«/2 and migrate inward until they meet the CT zone,
in which u varies linearly from n /2 to
tan '(H~(Ri)/H, (Ri)] at the inner radius.

8. ao —e

The details of the behavior when —«/2 —2p, & uo
n/2+—2p (p =k, ~~X/2 && 1 and k,

~~

——poJ, [~/80)&
corresponding in Fig. 4 to I &0, H~(Ri) &0, and

I H, (RO) I « I H~(RI) I, are given in Table III. For an
arbitrary initial magnetic state of the cylinder, when the
critical value of I, is reached (I, & 0), helical vortices tend
to be nucleated at the inner radius and be driven outwards
by the Lorentz force. Each nucleated helical vortex
reduces the magnitude of the longitudinal magnetic flux
in the hole by one quantum, $0. Such fiux motion ulti-
mately reduces H, (Ri) to zero. The final steady-state
zone structure consists of a T+ zone next to the inner sur-
face and either a C T+ zone (when J» &0} or a C+T+
zone when (J„&0)next to the outer surface (see Fig. 6}.
In the T+ zone, vortex rings nucleate at the inner radius
with angle u= «/2 and —migrate outward until they
meet the CT zone, in which u varies linearly from —n /2
to tan [H~(RO}/H, (RO)] at the outer radius.

The behavior when —2p, & uo&0 corresponds in Fig. 4
to I~&0, H, (RO}&0, and ~H~{R;}~ &&H,(RO). The
critical current is dominated by flux-line cutting
throughout the cross section, such that J,=J,=J,~I.

When u0=0, the 8 profile is critical with constant slope
and with 8 larger at 80 than at R;. When ao ———2p, the
critical 8 profile has the opposite slope, such that 8 is
larger at 8; than at Eo. For —p~a0~0, ho~ever, the
critical 8 profile has a V-shaped minimum similar to that
of curve /i in Fig. 2. Flux-line-cutting 8 consumption' is
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TABLE III. Solutions at the critical current for cylindrical shell geometry (B=Eok) for applied field

angles ao near —m, —m/2, and 0. Here, k, ll
——po J,ll/Bo and p=k, llX/2 «1. The expressions shown

in the table are valid to first order in p. %'here the symbo1 + appears, the upper signs holds when
—m/2 & ao & —m/2+2', and the lower sign holds when —2p —m/2 &ao & —m/2. NA= not appli-
cable.

Quantity

Js=Jc
afy

~&.o/&o
&&~/&o
~/8o
Mg /Bo

5a,o

5a,g
ha

8(x)

a(x)

x„ or x,
at)

Zones

Ell(x)

Ej (x)
Jll(x)

Jj (x)

Jell
—J,j (ao+m —p)/p

(poJ„X/Bo)(ao+m p) /—p.
0

—(poJ„X/Bo)(ao+ ~—p, ) /p,

(poJ, ~ XIBo )(ao+ n p) /—p
0

—2p
—2p

B,o—poJ, qx, 0&x &x„;
B,x+pP„(x —X), x„&xXX

ao —k

x„/X =(ap+ ~)/2p

(C T+/C T )

Eokll(x„—x )

J~l!

Jj, 0&x &x„;
—Jj, x„&x&X

—~/2 —2p &ao & —~/2+ 2@

Jell(ao+ m /2)/2p
0

—poJ jX/Bo
—poJ.IX/Bo

ao+m/2
—(ao+ n./2)

0
ao+ m/2

Bo p(Alx

—m/2, 0&x&x, ;
m/2+kcll(x —xc)~ xc

x, /X=(1 —
~
ao+m/2

~
/2p)

NA
(T /C+T, )

0, 0&x&x,;

+Eok ll(x —x ), x Xx Cg

0, 0&x&x„
RJ, ll, x, &x 4X

Jcl
I—J,~(ao+p)/p

—(poJ„X/Bo)(ao+ p)/p
0

(poJ, IX/Bo)(ao+p) /p
(poJ JXIBo)(ao+p)/p

0
2p
2p

B,o —poJ,~x, 0&x gx„;
B~+poJ,i(x —X), x„gx &X

ao+ kgllx

x„/I= —ao/2p
0

(C,T, /C T )

Eo

Eok,
l
l(x„—x )

Jqj, 0+x &x~,'
—J j, x„&x&g

responsible for this minimum, which occurs
x„=—Xap/2p, where a„, the angle of 8, is zero. Ei is
zero at x„but is positive for x &x„and negative for
x &x„. E~) & 0 throughout the cross section. The
corresponding J~ versus uo is sketched in Fig. 6, and
further details are given in Table III.

The behavior when ir &ap&——5'+2@, corresponds in
Fig. 4 to I &0, H, (Rp) &0, and

l Hp(R;) l« lH, (Rp) l. As in the case of ap-=0, the critical
current is dominated by flux-line cutting. For a&ap-

e+2p, the—critical B profile has a V-shaped
minimum similar to that of curve b in Fig. 2. The
minimum occuts at x„=X(ap+m)/2p. , where a„=—m.

Ei is positive for x &x„, negative for x &x„, and zero
for x =x„; E~( &0 throughout the cross section. The
corresponding J~ versus ao is sketched in Fig. 6, and
further details are given in Table III.

Flux-line cutting ' has been proposed as a mechanism
to explain a variety of phenomena occurring in current-
earrying type-II superconductors in parallel magnetic
fields. Recently we have incorporated flux-line cutting ef-

fects into the usual critical-state theory of flux pin-
ning. 2 The result is a macroscopic theory'6
that permits the calculation of the time-dependent hys-
teretic behavior of type-II superconductors under a wide
variety of experimental conditions. The goals of this
work have been to provide a framework for quantitative
explanations of experimental data and to make predictions
for new experiments not yet performed. We hope that
such experiments ultimately will be able to demonstrate
convincingly whether or not flux-line cutting plays a sig-
nificant role in the hysteretie magnetic behavior of type-II
superconductors.

To set up some stringent tests of the flux-line cutting
mechanism, in this paper we have used the macroscopic
theory to predict a number of details about the internal
magnetic field distribution just above the critical current.
We have applied the theory to predict striking behavior in
slabs or strips and in thin-walled cylindrical shells. In
both cases the critical current is predicted to have maxima
~hen the angle ao of the applied field relative to the z
direction has the values +a, and + (n a, ), where-
a, = tan '(J,i/J, ~~) [Figs. 1(a) and 5]. In the former case,
the direction of the electric field is predicted to change by
nearly n/2 at these four angles [Fig. 1(b)]. In the second
case, the azimuthal current is predicted to vanish at these
four angles but to make large changes in magnitude and
sign at the angles ap-—0, +m/2, and +n (Figs. 5 and 6).

Because the above theory assumes that J,z and J,ll
are
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isotropic and uniform throughout the specimen, it does
not account for the spatially inhomogeneous electric fields
that have been observed in several experiments. ' lt is
possible, however, that incorporating anisotropy and an
explicit dependence of J,i and J,

~~
upon position might

explain these observations. It also would be desirable to
extend the theory by introducing surface barriers against
entry or exit of magnetic flux and by accounting for the
distinction between B and poH inside the superconductor.
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