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A perturbation theory is used to compute the leading terms in the difference between low-lying

energy levels of metallic hydrogen. Energy levels are found which are lower than the normal state,
provided that the nuclear mass is large enough, and these levels are assumed to be superconducting,

The description of the superconductivity does not agree with that given by current models. The ori-

gin of the lower-energy states is a direct coupling between electrons and longitudinal long-

~avelength bare phonons.

I. INTRODUCTION

Superconductivity represents a particularly difficult
problem in solid-state theory because it involves the
dynamics of both electrons and nuclei, and is driven by an
exceptionally small energy difference from the normal
state. Since the early work of Frohlich, ' electron-phonon
interaction has played a dominant role in the theory with
the possible exception of the recently discovered heavy
fermion superconductors. Current theory revolves around
the electron-pairing model of Bar deen, Cooper, and
Schrieffer (BCS), where the phonons act only as inter-
mediaries in coupling electrons. In contrast, the analysis
given here is concerned with a new type of wave function
and a new type of interaction which is based on direct
coupling of electrons to phonons. 3 Only the case of me-
tallic hydrogen (or more correctly, a pseudometallic hy-
drogen with arbitrary nuclear mass} is examined, but it is
believed that the interaction is general, and may lead ei-
ther to a new class of superconductors, or to a modifica-
tion of BCS theory. The question of whether the new in-
teraction competes with the electron pairing or replaces it
has been deferred to a later calculation. Predictions for
T, in metallic hydrogen based on current theory vary
from several hundred degrees to a few hundredths de-
pending on the density, lattice symmetry, and the approxi-
mations used. Values obtained here at the computed
equilibrium density range from 0 to 50 K depending on
the mass.

The calculation to be presented is a full many-body
treatment as opposed to screened, one-particle approxima-
tions. No use is made of effective fields or dielectric con-
stants nor is use made of the adiabatic approximation.
However, only the ground state is examined. It is well
known that the many-body theory can be formulated in
two ways drqxnding on vrhether the Haxniltonian is used
in n-body configuration space or second quantized and
used with the formalism of Green's functions. While the
latter is now the common approach, it is useful here to
use the former. A Rayleigh-Schrodinger-type perturba-
tion expansion is made using the complete set of functions
formed from Slater detnminants of plane waves and
bare-phonon functions. 7 The expansion leads to energy
levels which depend only on fixed parameters of the sys-

tern. The virtue of this approach is that no attempt is
made to compute accurate expressions for the energy of a
given state, but only to calculate accurate expressions for
the energy difference between a pair of states. The only
fundamental problems facing the calculation are questions
of convergence, which are similar to those involved in
other many-body calculations, and the effect of degenera-
cy. A basic disadvantage of the method is that the
ground state is not obtained in an absolute sense, but only
by comparison with other energy levels. However, this
disadvantage is balanced by the relative simplicity of fol-
lowing energy levels in perturbation theory as opposed to
following the ground state itself, as attempted in most
other methods.

The new electron-phonon interaction can be interpreted
as a screening by electrons of the zero-point motion of the
nuclei, arising from coupling to virtual phonons and
described by second-order perturbation theory. The im-
portant part of the interaction is that coming from the in-
teraction with long-wavelength longitudinal phonons. En-
ergy levels are found which lie below the normal state
provided the nuclear mass is sufficiently heavy. If the
low levels are assumed to be superconducting states, then
within the accuracy provided by leading terms in the com-
putation, the new interaction does not lead to supercon-
ductivity in ordinary metallic hydrogen but tritium would
be a strong superconductor. However, the importance of
the calculation is in the demonstration that direct
electron-phonon coupling cannot be ignored o priori as a
cause of superconductivity.

II. OUTLINE OF THE PERTURBATION
CALCULATION

A. Perturbation approach

Because of the small observed energy difference be-
tween the normal and superconducting states, an attempt
to establish a theory of superconductivity through ad Iioc
energy calculations is not likely to succeed, as was pointed
out by Bardeen and Schrieffer. s This difficulty is over-
come in the present analysis by the choice of the perturba-
tion theory, which is developed in the configuration space
of N electrons and N nuclei, and designed to compute sta-
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tionary energy-level differences. The unperturbed Ham-
iltonian consists of the kinetic energy of electrons and the
harmonic vibrations of nuclei in a uniform background
charge. Each unperturbed wave function is the product of
a Slater determinant with a configuration of 3N oscillator
functions. The wave functions are denoted by ka. where k
indicates a particular set of wave vectors k which form
the Slater determinant (with spin imphed), and a denotes a
set of phonon wave vectors x (with polarizations implied).
Since a well-defined complete set of wave functions is
demanded, the phonons considered are bare phonons.

The perturbation series leads to an expansion in terms
of two parameters: the Wagner-Seitz parameter r, and the
ratio m/M of electron to nuclear mass. ' It is assumed
that the leading terms in the energy difference between
two low-lying states can be computed by subtracting the
leading terms in a pair of perturbation expansions. No
special accuracy is required of the individual energies, it is
only necessary that the leading terms in each series are
highly accurate. The perturbation expansion can be bro-
ken up into two series, one which applies for a fixed lat-
tice, the other giving the effo:ts of lattice dynamics. It is
found that the series for the lattice dynamics must be car-
ried to a higher order in the perturbation expansion than
the fixed-lattice series.

In the parameter expansion for the fixed lattice the first
two terms are the familiar kinetic and exchange energies
of an electron gas, proportional to r, and r, ', respec-
tively. The next terms in the fixed-lattice expansion are
the electron-gas correlation energy, 0(const, lnr, ), plus a
constant term arising from the periodic potential. The
fixed lattice also introduces another large term of order
r, ', but this term is the same for all states. The series for
the lattice dynamics starts with a term for the zero-point
motion, which is the same for both states, assuming that
the two states investigated are both taken to have no pho-
nons. Thus, the first relevant contribution of the nuclear
displacements is obtained in the second-order perturbation
energy. It can be shown that in the hmit of wave func-
tions only slightly different from the normal state, the
second-order electron-phonon energy can introduce a
small Coulomb-like term, and therefore this energy should
be considered together with the free-electron exchange en-

ergy, i.e., second-order terms in the second series can give
expressions similar to first-order terms in the first series.
As a practical matter, the perturbation expansion for the
lattice dynamics is broken off with second order, since
starting with third order the terms begin to proliferate,
and since divergences begin to appear of the type which
arise in second order for the electron-electron interaction.
Presumably, such divergence can be removed by summing
a suitable sub-series from third order to infinity following
the well-known treatment of the electron-electron interac-
tion that leads to the correlation energy. "'

Since the perturbation series for the lattice dynamics is
cut off at second order, consistency demands that the
series for the fixed lattice must be cut off at first order,

and, consequently, the energy difference between two en-
ergy levels is examined in the approximation

as=a~k+«k +~&k. ', (1)

where ek is the unperturbed electron energy, i.e., the kinet-
ic energy of the plane waves, E'* is the free-electron ex-
change energy, and E' + " the second-order electron-
phonon energy. The energy difference is computed with
reference to the (spherical) normal state, defined as the
state arising from an electronic Fermi sphere of wave vec-
tors. ' In summary, Eq. (1) corresponds to the first two
terms for the fixed lattice and the lowest-order contribu-
tion of the lattice dynamics. It must be assumed that the
series converges rapidly enough near the equilibrium den-
sity so that these terms give a good approximation for the
total energy difference.

B. Degeneracy

The perturbed states will be labeled by k~ correspond-
ing to the unperturbed configurations. More correctly, in
all but the normal state (which is nondegenerate) degen-
erate perturbation theory should be used, with the per-
turbed state labeled by a linear combination of degenerate
unperturbed states. The present approximation corre-
sponds to replacing the linear combination with the single
configuration at its center. The approximation is based
on the following arguments. (1) In the perturbation
theory for a large many-body system exact degeneracy
plays a much smaller role than in a molecular system, due
to the large amount of near degeneracy and the fact that
sums are replaced by integrals. (2) Degeneracy (nonac-
cidental) exists only for two unperturbed states with the
same phonon configuration. For the energy of the term
of principal interest, i.e., the electron-phonon interaction,
matrix elements between degenerate states do not appear.
It is possible that degeneracy will become more important
as the expansion is carried further, and it offers one possi-
bility for introducing Cooper pairs.

C. Change in ground-state symmetry

Since the individual energy levels rather than the
ground-state wave function itself are followed in the per-
turbation theory, a discontinuous change in the wave
function, or, for example, a change in symmetry of the
ground state with the application of a magnetic field,
occurs in a way which is simple to calculate. The pertur-
bation does not appreciably change the wave functions for
the levels, but rather it produces a crossover of energy lev-
els, leaving a new unperturbed function as the new ap-
proximation for the ground-state wave function.

III. CALCULATION OF THE
ELECTRON-PHONON ENERGY

For small values of rn/r, M the second-order electron-
phonon energy in Rydbergs is given by

E(2), pb X 9m

W3 4

1/2
, Pal?l

M g f dp f dp'n(p)[l —n(p')]E(p, p', s), (2)
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where N is the number of electrons, n (p} [=nk(p)] is the average occupation of one-electron states given by the unper-

turbed wave function for each spin near a point in p space, and p=k/kF is a reduced wave vector, with kz the Fermi ra-
dius. F(p, p'») is given by

co(01)
I
[(p' —p)/ I

p' —p I
l.v«»} I

2

F(p p', s}= co(«s)

I p —p I [(p ) p+—2v 3(4/9') (r,m /M)' co(«,s)/co(01)]
(3)

where ro(«s} is the phonon frequency for wave vector «
and polarization s, v(«») is the polarization vector, and s
is summed over 1,2,3, with 1 the nearly longitudinal
mode. The phonon vector is given by

«= kF(p' —p) —K,
with K the reciprocal-lattice vector which for each value
of p' —p puts « in the first Brillouin zone. The expression
(2) is observed to be a function (1/r, )f(r,m/M), which is
to be evaluated for r, m /M « 1, since r, & 1 and
m/r, M «1.

Each Slater determinant specifies a distribution n(p)
and leads to a perturbed state of the system. Only states
having distributions n(p) with spherical symmetry are
considered, and the state which arises from a Fermi
sphere, n (p}=1 for p & 1 and n (p) =0 for p & 1 [labeled
no(p)] serves as the normal or reference state. If pz is the
maximum value of p for which n (p) is nonvanishing and

pi the smallest value of p for nonvanishing 1 —n (p), then

p p ll p 1 —pf p F p, p~s

p p'np 1 —n p' Ep, p's 5

and one can write

f dpf dp'=f dpf dp'

+
p p p

p+
p p p p ~

In the first two terms on the right in (6) p' &p, while the
third term describes a region of overlap, which vanishes
for the normal state. Anticipating the form to be as-
sumed for the superconducting ground state, one may
concentrate on the overlap region of the integral. This
follows because for this wave function it will be found
(Appendix A) that the terms for p' &p are nearly the same
as for the normal-state wave function, and, therefore,
these terms represent an energy of the normal state.

For all low-lying states, pz will be only slightly greater
than unity and pl only slightly less than unity. Consider
the integral over the angular part of p' in Eq. (5) under
these conditions, where

p'= p p cos

with 8 the angle between p and p'. The integral over cos8
can be written as

1 1

~ p p', & = cos I' p, p', s with p'=1 and p=1, (8)

which is dominated by the factor
~

p' —p ~

=[(p') +p —2''cos8] ' in expression (3) for p. It is easily shown that

I

lim Hm = —5(1—cos8),
i P' i [(p') +p —2''cos8]in[ ~p' —p ~

/(p'+p)]
(9)

where 5(1—cos8} is a Dirac delta function for the range of cos8, and therefore as a reasonably good approximation
&&'

I
p' —p I

' can be replaced by —in[ I
p' —p l

/(p'+p)]8(1 —cos8) in (8). But for p and p' nearly equal to unity and
cos8=1, it follows that p'~p and «=kz(p' —p)~0 in Eq. (4). Therefore, the integral (8) approximately vanishes for
the modes that become transverse as ~~0, and

pp' d(cos8}F(p,p', 1)=—1 ln (p' —p)/(p'+p)
—1 (p') p+2v 3(4/9n—}(rm/M}'~. (10)

The integral over P and the integral over the angles of p multiply this result by a factor of 8&, and

'2/3
(2), ph %8 9m 1 s

V 3+ 4 r, M J dpp I dp'p' ~ ~ + terms for p' &p
9 '}'—s '+0
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w-2w ~2

(a) {bI

where
- 2/3

' 1/2

g=2v 3
M

(12)

FIG. 1. Surfaces enclosing the occupied one-electron states of
the zeroth-order pvave functions for {a) the normal state and (b)
the Frohlich state.

Spins
n (p} =1/2

FIG. 2. Zeroth-order superconducting wave function. Inside
the inner radius p~, one-electron states are doubly occupied
[n (p) = 1 for each spin]. Between p2 and p, states are singly oc-
cupied in an antiferromagnetic arrangement in p space. The
average occupation for each spin is n(p)= 2. p is defined by
k /kF.

g can be shown to be the ratio of the longitudinal long-
wavelength phonon energy to the free-electron Fermi en-

ergy of the normal state. Thus the value of g is roughly
the same as Migdal's expansion parameter, ' '5 however, it
is observed from (11) that the energy does not have a
power-series expansion in g.

IV. THE WAVE FUNCTION

Figure 1(a) describes the unperturbed wave function
which leads to the normal state, consisting of a Slater
determinant with wave vectors bounded by a spherical
Fermi surface. The possibility of lowering the energy as a
result of a different distribution was recognized by
Frohlich who considered a state with an energy gap as
shown in Fig. 1(b). However, as discussed in Sec. X this
calculation was made with approximations which are not
justified in the present analysis. A rigorous proof as to
what constitutes the absolute ground state is difficult to
give, and will not be attempted, since it is regarded as suf-
ficient to show that superconducting energy levels can ex-
ist which lie lower than the normal state. The assumed
form of the ground state is given by the configuration
n(p)= —,

'
between the limits p2 and pi, with n(p)=1 for

p &pi and n (p) =0 for p &pz. In the true wave function
n (p) is probably a continuous function, but the step func-
tion is used for simplicity. Thus the electronic configura-
tion is described by two surfaces as shown in Fig. 2. The
first surface gives the limit of double occupancy of one-
electron states, while the region between the two surfaces
corresponds to single occupancy. Since one expects to

I

V. EI ECTRON-PHONON ENERGY DIFFERENCE

In order to keep the number of electrons fixed it is
necessary for

P2 P2 1

n p —nop p= n p p — dp=0. 13

For n (p) = —,
'

this is accomplished approximately by

p) =-1—w,

P2 1+w —2w 2

(14)

(15)

where w =1—pi is shown in Fig. 2. With the results of
Appendix A, which show that the terms for p'~p in Eq.
(11) represent the normal state energy it follows that

find as many plus spina as minus spins in any volume ele-
ment, the region of single occupancy can be described as
an "antiferromagnetic" arrangement in k space as indicat-
ed in the figure. The details of the spin arrangement
within a small region are unimportant since only the aver-
age occupancy near a point enters the perturbed energy
expression. The reasoning behind the choice of the new
wave function is as follows: In Eq. (11) the integrand be-
comes large for p'~p, in which case n (p)[1 n(p')) a—p-
proaches n (p) —n (p), which is maximized by n (p) = —,

' .

g E(2)e-ph
' 4/3

9~ + i+a —zw2 i+w —2w', p'ln
~

(p' —p)i(p'+p)
~dp p Gfp

3~2 4 ps 1 —m (p')' —p'+g (16)

1 9m

3'' 4

where both g and w are assumed to be small compared with unity. By neglecting w in the upper limit, setting p =p =1
except where the two are subtracted, and using the transformations p = 1+wx, p' = 1+wx' one obtains

' 4/34E"' ~" w2 ' ', [In(wi2)+in
~

x' —x
~ )GX GfX

y(x' —x)+1
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4 9m

3m 4

(18)

where y=2w/g. Integration of the lnw/2 term can be
performed and the expression arranged to read

gE(2 }e-ph
' 4/3

N
[g t(y)»(w/2)+g2(y)],

rs

0. 6

0.4

0. 2

M. 2

gt y —
4 x dx

[(1+2y)ln(1+2y)1

M. 4

H. 6-

+(1—2y)ln
~

1 —2y
~ ] (19) -1.0

-L2-

I

Both gt and gz are well-behaved functions with no singu-
larities. gt(0)=1, g2(0)=ln2 ——', ; while as yahoo both
functions approach zero, with a slower approach for g2,
which is equal to n /4y —in this limit. It follows that
(18}ranges from an expression completely independent of
nuclear mass to a value proportional to w times
(m/r, M)'~, which is the principal dependence of the

-1 4 I I I

1.0 1.2 1.4
I

0. 2

I I I

0. 4 0. 6 0. 8

FIG. 3. Plot of f~(y) and f2(y). For values of y large com-

pared with unity f~(y)~—1 and f2(y)~ z
—2.47/y.

normal-state electron-phonon energy. g~(y) is positive
and leads to a negative contribution to the energy because
of the factor lnw. gt(y}—1 is plotted in Fig. 3 as ft(y},
showing a spike near y =0.54.

VI. THE CHANGE IN KINETIC AND EXCHANGE ENERGY

he 1 9m.

N 3Q 4

with the result

The difference in unperturbed energy between an arbitrary state with spherical symmetry and the normal state is
' 5/3 ' 5/3

=, f dpi''[n(p) —no(p)]= —
3 4 2 f, „~'d& f, —

S S

(21)

4 9m

3m 4

' 5/3

2
+O(w') .

P'S

(22}

The exchange energy difference is
' 4/3hE'* 4 9n 1 t+

3trz 4 p
&P dP'P'», [n (P)n(P') —no(P)no(P')] (23)

hE'" 4 9n'
3n 4

' 4/3 —w (lnw ——)+O(w ) .1 1 3

~s
2

The integrals can be evaluated to give AE 11 2 1 83
2 w — '

w (lnw ——, )
N p,

2 r,

+ '
w [g/(y)»(w/2)+gg(y)],

1.S3

Ps
(25)

VII. CONDITION FOR SUPERCONDUCTIVITY

"4' he-

/=0. 94
M

1/2

Collecting the results of {18),(22), and {24) gives the
following expression for the change in energy per electron
from the normal state

1/2

y = =2.13
r, m

{27)
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For small w it is not obvious that the expansion (25) is
converging, since the exchange and electron-phonon ener-

gies can be larger than the lower-order kinetic energy
term. But this occurs only because pair interactions intro-
duce an extra factor inn not present in a single particle
term. It is expected (though not proved) that the succeed-
ing higher-order terms will rapidly converge for r, &1.6,
as they seem to do for the normal-state energy expansion.

It is observed that the second-order perturbation term
in (25) is similar in form to the exchange term as r ap-
proaches zero. Since gi(0)=1, the lnio terms cancel for
small r, but as r increases the electron-phonon energy be-

gins to dominate. Let f, (r) and fi(r) be defined by

VIII. THE CRITICAL FIELD AND TEMPERATURE

The thermodynamic critical magnetic field H, is de-
fined as

0, V= —hE
8m B

(35)

2.97@10'
3/2
s

where Y is the volume and e /2aii the Rydberg unit, with
e the electronic charge and aB the Bohr radius. Since
Y=4irr, aqN/3 it follows that

' 1/2

H, = hE
(36)

fi(r) =gi(r) —1,
f2(r) =gi(r) —gi(r )»2+-

Then

LE 11 2 1 83~ + '
u tfi(r)»~+fi(r)]

N p,
2

Ts

or in terms of r
4E m 2 6
-N =0 40M r —+fi(r)»(gr/2)+ f2(r)

rs

(28)

(30)

(31)

For A =3 one obtains the relatively large value

H, =1.54X10 Oe. The isotope effect (H, -A '
) does

not begin to hold until A gets in the range of 100.
Although the critical temperature cannot be accurately

deduced from the ground state, an estimate can be made
through the use of an individual particle approximation.
If the number of p vectors (multiplied by two for spin) be-
tween p =1 and p =p, in the normal Fermi sphere is re-
garded as the number of electrons N' involved in the su-
perconducting interaction, then

N'
=3w

The value of &F- will be examined at the equilibrium
density r, =1.6. By substituting r, =1.6 and introducing
the atomic mass A one can write Eq. (31) as

= —2. 19X10 " [fi(r)[4.276+0.51n(A /r )]

= —1.53 X 10 (lnA —0.88), (33)

although the constant 0.88 is not regarded as having signi-
ficance beyond its order of magnitude (see Sec. IX).
Nevertheless, Eq. (33) implies that a sufficient condition
for superconductivity is

lnA ~1 .

The condition given by (34} is not satisfied for a proton
mass A~ =1 but is satisfied for tritium, which leads to an
energy difference of —1.1X10 Ry as given by (33).
The maximum energy difference given by (33) is
—2.3X 10 which occurs for A =6.54.

—3.75 —fi(r)J .

A plot of the functions fi(r) and fi(r) is shown in Fig.
3. Since f2(r ) is relatively constant, the point of
minimum energy is determined by fi(r). Thus &8 is a
minimum either at r=0, or near the peak in fi which
occurs at r=0.54, depending on the sign of the expres-
sion within the brackets in Eq. (32}. In the first case, the
ground state of the system is the normal state, while in
the second case a new type of ground state results, as
described by Fig. 2 with iJ =0.27(. While it remains to
be demonstrated, this state is presumed to be a supercon-
ducting state. Kith y =0.54 the energy at the equilibrium
density finally becomes

By assigning all the energy difference with the normal
state to these electrons, and assuming the energy divided
by N' is the order of k&T„where kii is the Boltzman
constant and T, the critical temperature, one obtains

AE e
kgT, —— (38)N* 2aB

or

AF.
Tc -— ' —X5.3X10

N

AF.
X8.9X 10'

rs
(39)

For A =3 the value obtained is T, -14 K. The max-
imum value of the right-hand side of (39) for r, =1.6 is
51 which occurs for A~ =17.7.

IX. THE EFFECT OF HIGHER-ORDER TERMS

An exact catalog of all higher-order terms in the pa-
rameter expansion would include a large number of terms
depending on fractional and integral powers of (m/r, M},
which arise, principally, from anharmonic effects and
higher approximations for the matrix elements of H' t'.
The next-order terms believed to be most important in the
energy difference expansion are 0(const. , lnr, ) coming
from (a) electron correlation energy, (b) a term from the
motion of electrons in a fixed lattice, and (c) electron-
phonon coupling from third-order perturbations. Only
the part (b), which is a one-particle term and should be
compared with the kinetic energy, is easy to calculate, and
this part is found to be less than 5% of the r, term in
(25}, and of opposite sign. One way to estimate the effect
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of (a) is to assume that the convergence of the AR' expan-
sion is similar to the convergence for the normal-state en-

ergy. At the equilibrium density the correlation energy
terms in the normal-state energy represent 8% of the
zeroth-order kinetic energy, and 12% of the exchange en-

ergy. Thus the higher-order terms in &R are unlikely to
appreciably change the coefficient of lnA in Eq. (33),
but since the constant —0.88 results from a near cancella-
tion at the equilibrium density of two terms an order of
magnitude larger, this value may be changed considerably.
Assume, for example, that the higher-order terms of in-
terest at r, = 1.6 are positive and equal to 8% of the kinet-
ic energy 1 1 iv2/r, in Eq. (25). Then in (33) the constant
—0.88 will be changed to —2.1. The result still leads to
strong superconductivity, but a larger atomic mass is re-
quired.

In a different context several authors, including Caron
and Whitmore, Carbotte, and Shukla have pointed out
that higher-order corrections to the screening are impor-
tant for the stability of metallic hydrogen, but this point
is bypassed in the present analysis.

X. COMPARISON %'ITH OTHER THEORIES

In the BCS model of superconductivity direct electron-
phonon coupling is neglected in favor of a phonon-
mediated indirect coupling between electrons, whereas the
opposite is assumed here. In the present formalisin pro-
cesses involving other electrons arise only in higher-order
perturbations, where, for example, electron-electron ma-
trix elements mix with electron-phonon elements. These
terms have not yet been investigated, bui it is argued that
they are smaller than the second-order terins. As noted in
Sec. II B it is possible that an exact treatment of degenera-
cy will also lead to an indirect coupling.

The present approach represents an attempt to derive
the energy for a simple system from the exact Coulomb
interactions, with no arbitrary constants. Although it has
been argued in the past' that perturbation theory breaks
down when applied in second-order to electron-phonon
terms, this objection seems to be based on one-particle ap-
proximations and the effects of acoustic phonons. The
many-body calculation given here shows the objection to
be invalid.

The present theory has a formal similarity to Frohlich's
first theory, ' which was later abandoned in favor of an al-
ternate approach. ' In Frohlich's first attempt to con-
struct a theory, the scattering of free electrons by phonons
was considered, and second-order perturbation theory was
used to obtain the energy in terms of n( p)[1 n( p)]. —
The expression obtained had the same form as the many-
body result derived here, except that Frohlich s interest
was in acoustic (screened) phonons (which lead to dif-
ferent results). Frohlich then concluded that the term
n(p) could be deemphasized compared with the term
n(p)n(p'), and this allowed a transformation to be per-
formed on the energy denominator to a more symmetric
form. Essentially the same form was used by Bardeen,
Cooper, and Schrieffer. But in Appendix B it is shown
that in the context of the present analysis Frohlich s as-

sumption is not correct. The full expression
n(p) —n(p)n(p') has been retained here, and it is this
form which suggests that the ground state is given by
n(p)= —,

' near the Fermi surface. The wave function
leads to the result that the. interaction of interest comes
exclusively from the region of p and p' space where occu-
pied and unoccupied one-electron states coexist. To good
approximation only longitudinal phonons interact with
electrons in this region, whereas in BCS theory transverse
modes dominate the interaction.

A brief comparison of the present approach with other
theories, such as "strong-coupling" theory' is given
below. Strong-coupling theory is understood to imply a
generalization of the BCS model based on a Green's-
function expansion and damped quasiparticle excitations;
some discussion of the theory has already been given in
Sec. III. In the present perturbation expansion no as-
sumptions are made concerning weak or strong coupling,
but it is found that the electron-phonon energy is small,
and depends upon a small parameter g which is similar to
the parameter used by Migdal as an expansion parameter.
However, in general, it was noted in Sec. III that an ex-
pansion of the energy in powers of g is not allowed. A
further criticism may be noted as follows: it is an axiom
of strong-coupling theory' that the superconducting state
can be obtained from measurements on the normal states,
but considering the fact that the two types of states are
orthogonal, the arguments behind this assumption are not
obvious. For example, measurements on the normal state
tend to involve real phonons, and most electron-phonon
theories of superconductivity reduce to approximations
where electrons interact with real phonons; whereas in the
perturbation expansion they interact with virtual phonons
(no real phonons exist in the ground state). Virtual pho-
nons are bare, and in a qualitative sense differ from real
screened phonons only for the long-wavelength longitudi-
nal modes. But these are just the phonons which lead to
the new coupling.

XI. EXCITED STATES

Two types of electronic excitations are expected for the
wave function of Fig. 2. The low-lying excited states cor-
respond to redistributing the electrons in the half-
occupied region, but these states are superconducting. To
obtain a normal electron, an energy the order of

~

&&
~

/N* is first required to lift the electron out of its
energy well in the half-filled region. Thus at low tem-
peratures an energy gap exists between the ground state
and the normal excitations, but superconducting states ex-
ist within the gap. In a qualitative sense the latter may be
expected to (a) introduce a temperature dependence in the
effective gap between normal and superconducting states
as a result of the thermal population of higher-energy su-
perconducting levels and (b) to introduce a term in the
specific heat which is proportional to some power of T, in
addition to the usual exponential term in 1/T produced at
low temperatures by the energy gap. A detailed investiga-
tion of the thermal properties is beyond the scope of the
present analysis.
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XII. EXTENSION OF THE THEORY
TO OTHER METALS

It should not be expected that the results for metallic
hydrogen can be directly applied to other metals because
(1) the electron density of other metals is much lower, (2)
the correct Fermi surface should be used for the normal
state, as opposed to a Fermi sphere (results of Min, Jan-
sen, and Freeman' indicate that even in metalhc hydro-
gen the Fermi surface deviates considerably from a sphere
for hcp and sc lattices), and (3) for a large number of elec-
trons per atom one must abandon all hope for an exact
series expansion, inasmuch as some type of ion-core
model must be used. Nevertheless, for other metals the
principle of the calculation remains the same: The total
energy may be divided into an electronic part which ap-
plies for a fixed perfect lattice, and a second smaller part
which results from lattice dynamics when the nuclei are
no longer held fixed. In going from the normal state to
the superconducting state, the first part is expected to in-

crease, with the second decreasing. The ground state is
superconducting if the do:rease in the energy associated
with the lattice dynamics is greater than the increase in
the fixed-lattice energy. The results for metallic hydrogen
indicate that Coulomb correlation is relatively unimpor-
tant, and therefore as a first attempt, the following ap-
proach suggests itself. One can compute the fixed-lattice
energy in terms of a one-electron approximation, where
the one-electron states are doubly occupied, and the Fermi
surface is that which leads to lowest total normal-state en-

ergy. The results for metallic hydrogen then indicate that
the energy of the lattice dynamics will be lowered if the
one-electron states near the Fermi surface are taken to be
singly occupied, and this may be used to represent the su-

perconducting wave function. The slight difference in
fixed-lattice energy between the two states can be comput-
ed because of exact cancellations which occur in terms off
the Fermi surface. The extent of the single occupancy is
determined by that which maximizes the total energy
difference between the two states. The difference in ener-

gy of the lattice dynamics for the superconducting and
normal states can be estimated from second-order pertur-
bation theory, with the region in k space which is singly
occupied providing the dominant contribution.

XIII. SUMMARY AND DISCUSSION

The leading terms have been computed in a series ex-
pansion for the energy difference between low-lying levels
and the normal state for metallic hydrogen. The leading
terms are believed to be precise, and no arbitrary con-
stants appear. The terms are computed from a many-
body perturbation theory in configuration space, where
stationary energy levels for the system are emphasized
rather than single-particle behavior. Insofar as the lead-
ing terms approximate the total energy difference, energy
levels are found which lie lower than the normal state,
where the lower levels occur only if the nuclear mass is
sufficiently large. The interaction responsible for the
lower levels is a direct coupling between electrons and
bare long-wavelength longitudinal phonons. This cou-
pling leads to an energy which has the same form as the
correlation energy for electron exchange. In zeroth order
the electronic wave function is a single Slater determinant,
where in a region near the Fermi surface only half the
one-electron states are occupied. Opposite spins are taken
to have an antiferromagnetic arrangement in k space. It
is assumed that the lower-level states are superconducting,
and that the condition for the onset of superconductivity
requires that the lowering of the energy due to the
electron-phonon interaction must overcome the increase in
kinetic and exchange energy relative to the normal state.
An estimate of the critical temperature shows that the
coupling can lead to a T, the order of several tens of de-
grees.

To make the calculation exact for metallic hydrogen,
higher-order terms and the effects of degeneracy of the
unperturbed wave functions must be examined more
closely. An extension of the calculation to other metals,
and an investigation of how the theory overlaps with con-
ventional theory is suggested but remains to be given.
The principal importance of the calculation is the demon-
stration that direct electron-phonon coupling can intro-
duce a strong superconducting interaction.

APPENDIX A: CALCULATION OF THE TERMS
FOR p'&p

It is desired to show that the terms for p' &p in Eq. (11)
correspond within 0(ic ) to the energy of the normal
state. Let

P) ce P2 CO

f, dp f dp'+ f dp f dp' n(p)[1 —n(p')]E(p, p', s)

f, dpp f dp'(p') + f dpp' f dp'(p')' n(p)[1 —n(p')]G(p p', s),
where it is assumed that n (p) does not depend on angle, and

G(p,p', s)= f dQ& f dQ& E(p, p', s)

(A 1)

with dQ& the angular part of the differential. In the normal state p& ——p2 ——1, n (p) =no(p), and C has the value

Co ——f dp p f dp'(p') G(p,p', s) . (A3)

For the wave function of Sec. IV where n (p) = —,
' for pi &p &p2, n (p) =1 for p &pi, n (p) =0 for p &p2,
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c= f dp f dp'y —,
' J' dp I dp +'—,' f dp J dp' p'(p')'G(pp', s)

f dp f dp'+ f, dp f dp' p'(p')'G(p, p', s).

By means of a scale transformation and by subtracting Co one can write

2 f() dP f) dP P (P ) [P l«pip pip'») G{—p p'»)]

+ —,
' f dp f dp'p (p') [P2G(p2pp2p', s) G(p,—p', s)] .

(A4}

Introducing the notation G~ ——G (p~p, p&p', s), Gz —G (P2P,
P2p', s), and G =G(p,p', s), and using the fact that ac-
cording to Eqs. (14) and (15}p~+p2 —2 is of order urz,

one may subtract —,(p~+pz —2)Co from (A5) to obtain

C—Co-2 p p p p

+P2{Gz—G}]

(A6)

Gg
Gi =G+(pi —1)

dpi p(=&
(A7)

where terms of order u)z are neglected. If it can be as-
sumed that G~ has a first derivative in the domain where
p'&p, then

D= f dp f dp'[n(p) —no(p)]E(p, p', I), (B1)

which gives the difference with respect to the normal
state. Since dn =n —no vanishes except between p& and
p2

D mSf dp=p kn (p I dp'p'
Jp~ 0 [(P'}'—P'+0]

APPENDIX B CONTRIBUTION OF n (p}
IN THE FACTOR n (p) —n {p}n(p')

It is of interest to investigate the contribution of the
term in n (p) to the electron-phonon energy given by Eq.
(2), since Frohlich assumed that this term could be ig-
nored. Let

aG , aG
G~ —G=(p~ —1) p +p'

Bp Bp
'~

(A8)

where the approximations of Sec. III have been used. For
the wave function used here hn (p) = (p —1)/2

~ p —1
~

be-
tween p~ and pz, and the transformation p x, {p') =x'
g1VCS

BG , BG
G, —G=(P, —1) P +P'

t}p clp
{A9)

which is the order of t02, and integration in (A6) leaves
the order unchanged. Since in Eq. (2) C becomes multi-
plied by a factor fir, -w/r„ terms of order u) in C be-
come of order u)3/r~ in the energy. Thus it is concluded
that the difference between C and Co is negligible. In a
similar way it can be shown that the terms referred to in
Ref. 9 as "mixed" terms in the second-order perturbation
expression are also approximately the same for the super-
conducting and normal states, with an energy difference
of order m /r, .

Substituting the values of p& and pz in terms of w, one
obtains

p )(G) —G)+pz(Gz —G)

=~{pz—pi) p +p', (Aio)t}G,BG

p p

D=H f, 'dx f, d-x
P]

x dx', in[(~x'+~x) /~x' —x
~ ]

0 x —x+g
(B3)

DH f 'dx f dx-

dz ln
x (v'hz+1+1)

xz+1 g~z
~

where the result can now be integrated over x to give

(B4)

The transformation to a new variable z given by
x'=gxz+x leads to

D=a dz ln
(v'hz + 1+1)~ P2 —1+p i

—1 1 (z+ 1}+—ln—1/g z z' (p2z+1)(p', z+1}
(B5)

onsider only the portion of the integral given by the element of z space between —1+2w and —1 —2w, and let this

portion be denoted by D':
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—1+2' (z + 1)D'=sr ln — dzln —

z
(p 2z + 1)(p iz + 1)

2
1 —P

2WP 2

l p2
2+t

2LUp ]

The term (p ~& —1+p f —1)/z has been neglected since it is proportional to w . The transformation z =—1+2wt gives

4 1 t2
D'=2&w ln — I dt ln

Substituting the values for p, and pz from Eqs. (14) and (15) finally gives

1 2

D'=2tr w ln — J dt ln — = —86(ln2)w 1n(4/g) .
1 —t'

The remaining part of the D integral tends to give smaller terms of order w Fr. om the result (B8) one may conclude
that the contribution of n (p) to the difference in electron-phonon energy is the same order of magnitude as the contribu-
tion of n (p)n (p').
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