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This paper gives the boundary conditions for the quasiclassical theory of static superfluid Fermi

systems in contact with an arbitrary reflecting surface. %e demonstrate the application of the final

closed circle of equations by displaying a self-consistent numerical solution of He-8 in contact with

a "randomly rough" wall. The results exhibit how great the sensitivity of p-wave pairing is to sur-

face scattering.

INTRODUCTION

This paper is sequent to an earlier one, ' hereafter re-
ferred to as QCB (quasiclassical boundary conditions), in
which the boundary conditions for superfluid Fermi sys-
tems were discussed within the quasiclassical approach.
That paper provides the foundation for a theory of
boundary behavior at reflective surfaces and, as one of its
central results, prescribes a quasiclassical boundary condi-
tion obeyed by superfluid Fermi systems at arbitrary sur-
faces. Further, QCB proposed two model surfaces to
which the theory might be applied. These were the "spec-
ular surface" and the "statistically rough" or "randomly-
rippled-wall" models.

The intent of this paper is twofold. We first point out
that the application of the QCB boundary condition re-
quires further nontrivial prescriptive steps. We emphasize
that the QCB condition is fully true but still incoinplete
without the further specification provided here. Second,
we demonstrate the completeness of augmented theory by
presenting a self-consistent numerical calculation of the
order parmneter for superfluid He Bin p-roximity with a
rough wall. This study considers only the static limit,
leaving the formidable topic of time-dependent behavior
to some later effort. By means of this effort we hope to
indicate the implementation of the full theory and pro-
duce results of interest in their own right.

This paper is divided into three sections. In Sec. I we
review the quasiclassical formulation, introduce notation,
and sketch the general theory of surfaces. In Sec. II we
discuss the quasiclassical boundary condition and its gen-
eralization, and in Sec. III we present the numerical re-
sults for the specific case of a rough wall.

I. THE QUASICLASSICAL METHOD

In this section we provide a brief summary of the logi-
cal and mathematical framework constituting the quasi-
classical method. We rely heavily on Ref. 1 for detailed
discussions and derivations, as well as for notation.

The observation motivating the quasiclassical method is
that the characteristic scales of energy and length in su-
perfluid Fermi phenomena are set by ktt Tc and
%t /kttTc, respectively, where Tc and uF refer to the
transition temperature and Fermi velocity. The quasiclas-

sical formulation proceeds by restricting one's attention
exclusively to variations along these scales. This is affect-
ed by elimination, at the very outset, of variations on the
scale of the Fermi wavelength EF ' «AuF/ktt Tc and the
Fermi energy Ey&&k&Tc. The advantage gained is a
very considerable simplification, elegance, and computa-
tional ease. The method recognizes explicitly that, since
the traditional Bardeen-Cooper-Schrieffer (BCS) approach
is essentially an expansion in the small quantity ktt Tc/EF
anyway, one has made progress by fully acknowledging
this fact and eliminating as many intermediate steps as
possible. Further, the method lends itself to immehate
generalization encompassing "strong-coupling" phenome-
na as well.

The underlying mathematical structure proceeds from
formal many-body perturbation theory expressed in terms
of thermodynamic (imaginary time} Green's functions.
We use the 4X4 matrix notation which contains the
"anomalous" Green's functions in the off-diagonal qua-
drants. The central object of study is the "quasiclassical
Green's function g(k;R:e„). Loosely speaking, g has been
derived from the full one-particle Green's function by in-

tegrating over the magnitude of the relative-spatial
variable's Fourier components. As written, R is the
center-of-mass spatial coordinate, k is the remaining
direction of the Fourier-transformed relative-spatial coor-
dinate, a„ is the Fourier-transformed relative-time coordi-
nate at the Matsubara frequencies, and the superior caret
in g denotes the 4&(4 matrix notation (unfortunately, a
superior caret is also used to denote unit vectors, but this
should cause no confusion).

The importance of quasiclassical Green's functions
stems from the fact that the expectation values of all in-
teresting observables may be expressed through them as
follows:

dk(A(R)) =TQN(EF) J —,
'

Tr4[aqp(k)g(k;R:e„)],

where a~(k}, is in the notation of Ref. 2, the quasiparti-
cle operator corresponding to the quantity A(R). For ex-
ample, the operator corresponding to mass current density
is %krak. The equations determining g are derived in turn
from the Dyson equation determining the full Green's
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function. They take the form of a transportlike equation
plus a normalization condition. In the static limit these
are

ie„[v&,g(k;R:e„)]+iUFk Vtig(k;R:e „)

—v,o(k;R:e„)g(k;R:e„)+g(k;R:c„)o(k;R:e„)r& ——0

(1.2a)

rig(k;R:e„)~ig(k;R:e„)= rt I— (1.2b)

where

g(k, e„)=—g ( —k, —e„),
f(k,e„)=f (k, —e„) .

where cr is the quasiparticle self-energy and r; refers to
the Pauli matrices operating on the quadrants of the 4X4
matrices. Closing the circle of equations requires defining
o as a functional of g. This is denoted the "self-energy
equation" and will provide the order-parameter "gap
equation. " As examples we list the results to be used in
Sec. III, i.e., those for a p-wave superfluid in no external
fields. Our notation consistently exploits the fact that g is
most simply viewed by quadrants. The upper on- and
off-diagonal quadrants contain the conventional and
anomalous 2X2 Green's function which we denote g and

f. The lower quadrants contain functions, denoted f and

g, which are related to f and g via simple symmetric
operations. Thus the physical information in g is actually
contained twice. This lavish expenditure of symbols is
justified only by the extreme condensation in notation it
ultimately affords.

Explicitly written out, we have then

may, in fact, be circumvented. The central result of that
paper was a boundary condition on g that was expressed
in the following form. First, we observed that the per-
tinent properties of any given surface entered the equa-
tions through a "surface-scattering t matrix" which we
denote t .This quantity t appeared in our final expres-
sions only in the combination of symbols which we denot-
ed by hg:

hg(k;R, ~.e„)rihg(k;R, „~e„}.=D . (1.3)

This expression is highly nonlinear in the quantity g be-
cause t is itself a functional of g. In the following section
we discuss the condition (1.3) and its necessary generaliza-
tion.

II. THE BOUNDARY CONDITIONS

The correct application of Eq. (1.3) is anything but ap-
parent. Nonetheless, a few simple physical considerations
facilitate the interpretation of its content and provide
motivation for its final form presented below. First, we

note that g(k;R} is the quasiclassical amplitude associat-
ed with particles at position R and with momentum in

direction k. We expect a scattering boundary condition to
relate the amplitude of a particle incident upon a surface
with the amplitudes of particles refle:ted from it. If we
let n represent the surface normal direction, then we may

classify all k vectors as "outgoing" or "incoming" accord-

ing to whether k n is positive or negative. Also, we
reserve the symbol k to represent the "mirror reflection"
of k, i.e.,

k—=k —2nn k .

&g= — „(rPg g t—~, ),
Upk'n

where n designates the local surface normal. Finally, the
condition obeyed by g at a surface in the static limit was
given as

The self-energy in the p-wave case is specified as

0 5 crop
0'=

(h a'o'r) t (1.2c)

The simplest situation to investigate is that of a specu-
larly reflecting surface. In that case QCB found the sur-
face t matrix to be

where the order parameter d trod is found froin the gap
equation

t,~~„———2irUF
~

k n
~
[g(k;R:e„)+g(k;R:e„)]

(2.1)
2

h(k'R) m cr2 —— A, T g f 3—k k 'f (k ';e„:R) .
4a

By inserting this in (1.3), one may observe that the intui-
tively plausible condition

(1.2d) g( k;R:e„)=g(k; R:e„) (2.2)

The prime on the summation specifies a high-energy cut-
off and the symbol A. denotes the coupling constant.
Equations (1.2a)—(1.2d) provide a complete description of
bulk systems. Bounded systems, on the other hand, intro-
duce a brand new class of decidedly nontrivial considera-
tions. A reflective wall presents a huge short-ranged po-
tential to incident quasiparticles. The quasiclassical ap-
proach, however, presupposes weak and slowly varying
external potentials. QCB demonstrated that this impasse

ensures that (1.3) is, indeed, obeyed since then kg=0.
Self-consistent solutions of Eqs. (1.2) and (2.2) have been
calculated and they yield eminently satisfactory results.
This small success supports the conviction that (2.2) is the
correct solution in (1.3) in the specular case, but it should
not hide the fact that (2.2) is an additional statement not
uniquely implied by (1.3). The following question
remains: What should replace (2.2) in the general case?
The following clues suggest an answer. Equation (1.3)
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must be true for all k. This is curious because a scatter-
ing boundary condition specifies refiected amplitudes in
terms of incoming ones. Therefore a scattering boundary
condition should make requireinents involving only one-
half of all the directions. The fact that (1.3) does this may
be seen in the following way. Any 4X4 Fermi Green's
function obeys the following symmetry condition (derived
from the operator properties used to define it):

or

~&3 g
2~UF In kI

= —2~3g A Z3

l
A ~3—— .~3g

2fl

tr 'T3

,T3g
2n'vF In kI +

g(k:e„)= ri—g '( —k:e„}~i . (2.3} Thus A is uniquely determined. Reinserting these results
into (2.7) and defining the quantity

The matrix t obeys an identical condition. With these re-

lations, Eq. (1.3) may be cast as (suppressing unused vari-
ables)

[t,"r383 g]
2~UF In k

I

(2.8)

b,g (k) r2 '( —k) =0,
from which it is clear that demanding

(which manifestly anticommutes with v3g), we arrive at
our final result:

b,g(k) =0 (2.4)
g(k}=r3( 1+t )(I—t )

' r3g(k} (2.9)

for only one-half of all k vectors satisfies (1.3} for all k
vectors.

We may next demonstrate that (2.4) plus the normaliza-
tion condition (1.2b) specify a unique generalization to
Eq. (2.2). To see this, first rewrite (2.4) in the equivalent
orm

[t(k) r3 73g(k)]=0 (2 5)

[g«)+g(k)] '= [2g«)] '

+A
2mF In.kI

(2.6)

Now let us, for the moment, call the last term in

parentheses simply P. If we solve for g(k} we find

g(k) =[I—2g(k)P][l+2g(k&P] g(k) .

Now we demand the normalization condition (1.2b) shall

be true for g(l(, ) if it is true for g(k). Carrying out the

algebra, we find the condition to be [P ~3, r3 g]+——0 which

Hlay be reexpressed as

for one-half the k's. Now express t as the sum of two
parts: one having the specular form given in (2.1) denoted
t2 plus a remainder t„i.e.,

t —ts+ tr

which defines t„. Now if (2.5) is to be true then t r3 must
equal something which commutes with r3g. We write this
in complete generality as

(t, +t„)~3= 2~F Ik nI I[—2g(k)] '+A 1~3,

where A r3 is "anything" which commutes with i3g(k)
(and is yet to be determined). The reason for this decom-
position is that (2.2) is recovered in an obvious manner as
t, approaches 0. We next use (2.1}to express t, explicitly
and then find upon rearranging

for one-half the k's. By construction this expression satis-
fies (2.5), (1.3), and (1.2b). Equation (2.9) is the central re-
sult of this paper and provides the necessary generaliza-
tion to Eq. (2.2}.

III. A MODEL SURFACE EVALUATED

A. The randomly-rippled-eall model

Equation (2.9} completes the basic equations (1.2a)—
(1.2d), and together they constitute a closed system. The
first step in evaluating these equations in any specific case
consists in choosing the boundary surface(s), which is
equivalent to specifying the t matrix as a function of g.
Thereafter, the basic equations specify g uniquely.

This section presents the results of just such a calcula-
tion, namely that of superfluid 3He-8 in the presence of a
"rough" bounding plane. We chose the randomly-
rippled-wall model (RRW) described in QCB as our sur-
face specification. This model provides for local statisti-
cal fluctuations or "ripples" in a smooth average wall
which we take to be the x-y plane. Let the deviation from
the plane at point R in the surface be denoted g(R). All
physical quantities will be averaged over an ensemble of
possible ripples. The RRW model allows a perturbation
expansion in powers of g, and in what follows we retain
only the leading two powers. Since the average of g van-
ishes by definition, we are left with the second-order cu-
mulant denoted $2, as our model parameter:

$2(R —R')—:(g(R)g(R') ) .

Its two-dimensional Fourier transform will be denoted
$2(k). We assume that (3 is of short range ( «go) and
that

I g I kF &1. For this paper we chose the simple
model of a Gaussian distribution for $3.

2

$2(Ri —R2)= 3 exp( —
I Ri —R2

I
kF/2b ) . (3.1)

kF

The two remaining parameters, a and b, describe the aver-
age height and width of bumps in units of kF. Below, we
present our solutions for various input values.

At this point we assemble our basic equations. The
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RRW model specifies the surface~scattering r matrix ex-

plicitly as a functional of g. We find, by following the
logic of QCB (with small corrections)

t, (k)=— J +'(k,Q)[g '(g)

—g '(k)g(4|)g '(k)],

(3.2)

where the kernel W stands for

W(k, g)=(k n)i(Q n)2k+2(k~(k —Q —nn (k—4|))) .

It is important to remember that r and g are also func-
tions of R and s„, but that these are not active in the ex-
pression (3.2). The equations we are faced with solving
simultaneously are (3.2), (2.9), and (1.2a)—(1.2d), a some-
what daunting prospect to say the least. As a first step it
is advantageous to exploit every symmetry at hand. Sec-
tion III B sketches the method of solution, and a presenta-
tion of the nmnerical results follows.

8. Solving the RR"Nf model

Bulk superfluid He-8 is characterized by an order pa-
rameter of the following form:

h(k}=6k,
i.e., a single number b, determines the whole order param-
eter. As we approach a plane bounding surface this num-
ber breaks into two in a simple way. If we denote the
component of k perpendicular to the surface by ki and
the components of k parallel to the surface by k~~, we find
that the order parameter becomes

h(k)=b, ()k()+bjki .

The Green's function g also simplifies. The problem
displays spatial dependence in the z direction only and ob-
serves rotation and reflection symmetry about the surface
normal. Further, the absence of magnetic fields means
time-reversal symmetry also obtains. Employing all of
these one may show that g depends on just six numbers
designated g~, . . . ,g6.

A
g = im(gi+g—haik(( &(ki ir),

f= —im(g3k((. cr+g4ki. cr)cry,

f=iso'(gsk~~ cr+gski a), .

g=&m~2( —gi+ig2k[))(ki CT)CT2

Even these are not all inde~ident since normalization re-

quires that
A A

(g] +gzlk[[ Xkg CT) + (gik[[ lr+g4ki 4r)

&&{g5k(( 4r+g6ki cr)=l,
which is actuaHy two conditions, leaving just four in-
dependent numbers. The fact that (2.9) adds the correct

number of boundary conditions may be seen in the follow-

ing way. In a semi-infinite geometry the boundary condi-
tion on g at infinity is that it remains finite. Since o ap-

proaches a constant value away from the wall the solu-

tions of (1.2a) become exponentials. The condition of fin-

iteness means g may contain no components which grow

exponentially. Examination of (1.2a) reveals that this im-

poses two linear conditions among the six numbers form-

ing g(k). Now notice, however, that g(k) must also

remain finite and that g(k) and g(k} are related via (2.9).
This imposes two more conditions on g(k) for a total of
six conditions among the six numbers. Once we have

specified g(k) at the surface, Eq. (1.2a) determines g
everywhere else.

The actual algorithm used to evaluate the equations
self-consistently is "fairly involved" and will be published
elsewhere. The mutual interdependence of all the equa-
tions necessitated an iterative method which, however,
converged very rapidly.

C. Numerical results for superfluid 3He-8

Figure 1 displays h~~ and b,j, the parallel and perpendic-
ular components of the superfluid order parameter, plot-
ted as a function of distance away from the wall. They
are given in units of the bulk value which they approach
asymptotically. Distances are expressed in units of the
temperature-dependent coherence length g(T) =fiuzlb, (T)
and all calculations were performed for TlT, =0.73.
Figure 1(a}displays the results for a perfectly smooth sur-
face. Figures 1(b), 1(c), and 1(d) display situations in
which "bump width" (b parameter) is held constant but
"bump height" (a parameter) is successively increased.
Figures 1(e}, 1(f), and l(g) display situations that have the
same bump height but with increasing width. The central
trends exposed by these results are fairly intuitive. A flat
surface suppresses the perpendicular component complete-
ly while actually enhancing the parallel component some-
what. The inclusion of surface roughness tends to
suppress the parallel component as well. Increasing bump
height corresponds to suppressing b,

~~
even further. An in-

crease in buinp width while holding the height constant
acts to suppress b,

~~
until the "width" is between two and

three times the height at which an additional increase in
width only makes the surface act "smooth. " These results
are in accord with our expectations about what should
happen; yet it is deeply gratifying to see them emerge
naturally from such difficult equations.

IV. CONCLUSIONS

The central result of this paper is Eq. (2.9), which
solves the previously proposed QCB boundary condition
(1.3). The form of Eq. (2.9) lends itself to immediate ap-
plication, and the results derived from it argue persuasive-
ly for its correctness. We hope, as well, that the results of
the RRW calculation will prove interesting and useful in
their own right. It seems a safe inference to conclude that
p-wave Cooper pairing is strongly suppressed by even
small amounts of diffuse surface scattering. This should
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imply significant consequences for small-channel flow ex-
periments or for any experiment where surface area to
volume ratios are large.

Equation (2.9) makes a large number of interesting cal-
culations possible. In future projects we plan to calculate
the surface density of states on a rough wall, the effect of
magnetic surface impurities, and critical velocities in nar-
row rough channels.
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