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When the electronic g factor is isotropic, one of the muon-spin-rotation (uSR) frequencies of
anomalous muonium is almost isotropic at a particular value of the applied magnetic field, the mag-
ic field. By measuring the field dependence of the uSR frequencies around this magic field, the g-
factor anisotropy g, —g, in Ge is found to be +0.0330(12) while that in Si is zero [+0.0002(8)]
within experimental accuracy. The consequences of these results for a model of anomalous muoni-
um are discussed in terms of the g-factor anisotropies for known defects in Si.

I. INTRODUCTION

Muon-spin-rotation (uSR) experiments in crystals of di-
amond, silicon, and germanium have revealed the ex-
istence of two muonium-like centers when positive muons
are stopped in these crystals.! These two centers are re-
ferred to as normal muonium (Mu), which has an isotro-
pic hyperfine interaction about one-half the free-muonium
value, and anomalous muonium (Mu*), which is quite un-
like muonium in vacuum. Anomalous muonium has a
highly anisotropic hyperfine interaction which is only a
few percent of the free-muonium value and which has axi-
al symmetry about one of the crystalline (111) axes.

Experiments on Mu* have not yet provided sufficient
information to permit the structure of anomalous muoni-
um to be inferred. In the search for additional experimen-
tal evidence which might be useful in determining a
model for the center, we have undertaken a study of the
electronic g factors of anomalous muonium in silicon and
germanium.2  Muon-spin-rotation  experiments  on
anomalous muonium are normally rather insensitive to
the electronic g factors because the frequencies observed
are magnetic dipole transitions of the muon spin, and at
high field Mu* is in the Paschen-Back regime. However,
there are two situations in which the electronic g factors
make a more significant contribution to the observations.
At low applied magnetic fields, there is a small depen-
dence of the uSR frequencies upon the g factors. This is
masked as the field is lowered by the increased linewidth
and accompanying frequency shifts of the uSR lines be-
cause of nuclear hyperfine interactions.> In addition, at
fields near the so-called “magic field,” the small depen-
dence of the uSR frequencies upon the anisotropy of the g
factor is most evident. It is this last phenomenon which
we exploit in this paper.

The precessional frequencies of the muon spin in Mu*
at high fields may be considered to result from precession
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in an effective field which is the vector sum of the applied
and hyperfine fields.* The latter is anisotropic and it has
different values for the two electron-spin states. If the
magnitude of the effective field is the same for the field
applied parallel and perpendicular to the (111) symmetry
axis, then the magnitude of the effective field will be in-
dependent of the orientation of the applied field. The
value of the applied field at which this occurs is the
(first-order) magic field. The applied field and the effec-
tive field are parallel when the applied field is along the
direction of the larger of | 4| and |4, |. They are
antiparallel when the applied field is along the direction
of the smaller of | 4| and | 4, |. By varying the mag-
nitude of the applied field near the magic field, the
lower-frequency uSR lines of all the differently oriented
Mu* centers will cross at a single value of the field. The
approximate values [see Eq. (5)] of the magic fields for
Mu* in Si and Ge are 0.2018 and 0.2920 T, respectively,
so that the high-field approximation used in this descrip-
tion is good (i.e., | 4, |/2upH is 0.0164 and 0.0159,
respectively).

Implicit in this description is the isotropy of the elec-
tronic g factor. If the electronic g factor is anisotropic,
then there is no field at which any uSR line is indepen-
dent of angle. Consequently, if the g factor is not isotro-
pic, then there will be no single crossing of the uSR lines
from the differently oriented Mu®* centers as the field is
varied. A quantitative study of this region of near cross-
ing can thus be used to determine the anisotropy of the g
factor for Mu*.

The shifts of the principal values of the g factor, g
and g,, from the free-electron value of 2.0023 are a mea-
sure of the admixture of excited states into the ground
state by spin-orbit coupling. Although we only measure
g, —g&. in this experiment, it can be compared to the
theory of the g shifts for centers in crystals. The theory
of the g tensor of deep centers in silicon was first studied
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by Watkins and Corbett,’ and, subsequently, by these au-
thors,’ Phillips,7 and more recently by Lannoo and Bour-
goin.® By far the most extensive experimental data on g
shifts of defects in semiconductors is that on silicon. In
1973, Lee and Corbett® plotted the g shifts of about 40
centers observed in irradiated Si. More recently, Sieverts'?
has given a more systematic discussion of the g shifts for
various types of centers in Si. Comparison of these g
shifts with those observed for anomalous muonium gives
some insight into the nature of Mu*.

In this paper, we discuss the theory of the measure-
ments near the magic field and the theory of the g shifts
in Sec. II and describe the experimental techniques in Sec.
III. In Sec. IV the results are presented and analyzed,
while in Sec. V we discuss the possible implications of
these results.

II. THEORY

A. ‘“Magic field”

The spin Hamiltonian describing anomalous muonium
is

H=g\upH,S; +8 up(HySx +H,S,)+A,S.1,
+A4,(SeI +S,1,)—g,uHI, (1)

where the z axis is the particular (111) symmetry axis of
the anomalous muonium center under analysis.
Anomalous muonium centers are formed with equal prob-
ability with each of the four possible (111) symmetry
axes. The energy levels and eigenfunctions of this Hamil-
tonian can readily be determined by diagonalizing the
resultant 4 X 4 matrix. From the eigenvectors and the ini-
tial muon polarization ( ~ 100% along the beam axis), the
relative amplitudes of the several precessional components
can be obtained. We compare these exact results with the
experimental data to extract the parameters in the spin
Hamiltonian, particularly g,—g,. Figure 1 shows the
field dependence of the muon precessional frequencies for
four different orientations of the applied field in Si as-
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FIG. 1. Calculated variation of the Mu* uSR frequencies of
Mu* in Si with applied magnetic field for four different orienta-
tions of the magnetic field. Solid line denotes, v43 and dashed
line denotes, v;,. The calculations were made assuming that the
electronic g factor is isotropic and that 4+ 4, >0.
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suming g, =g,. It is seen that the lower uSR frequencies
v43 become equal for all orientations near 0.2 T, the sil-
icon magic field. Near this crossover is the region of in-
terest in this paper.

A better understanding and an analysis valid to better
than the experimental uncertainty results from a perturba-
tion treatment valid at high fields. The particular pertur-
bation treatment used is outlined in the Appendix. In Fig.
1 and throughout much of the discussion in this paper,
the transitions have been labeled assuming 4, +4, >0.
It is based on the approximation that the electronic Zee-
man interaction is much larger than any other term in the
spin Hamiltonian, but that the hyperfine interaction and
the muon Zeeman interaction are comparable. The results
derived in the Appendix are valid to third order, i.e.,
0(A43/(gugH)?), and are consequently very accurate (the
error is less than or of the order of 1 kHz for Mu* in Si
for H>0.1T).

The lowest uSR frequency [either v,; in Eq. (A7) or v,
in Eq. (A8)] can be written to first order as*

2

A4, _ )
hv= T+g”p”H cos“6
4, 2 . 172
+ —2—+g#u,,H sin“6 , (2)
provided that g =g,. By choosing the field so that
4 _ 4, _
—2-—-+gpp, Hl= T+gyp,”H , (3)

we find that v is independent of the field direction. This
value of the magnetic field is the “magic field” (to first
order). Solving Eq. (3), one obtains

(1 1

Hy' =
M g,

At the magic field, the lowest uSR frequency is to first
order

hvi =5 | AL —4 | . (5)

Although this analysis is suggestive, the values of the
magic field are not high enough to allow the neglect of
the second-order terms. Including terms through second
order we obtain Eq. (A10) of the Appendix, which may be
written as

hv=hv{y +S\8uu.(H — Hj;)) cos(26)
—T‘gsch,|+Al);£[1~cos(4e>] . (©)
0

In Eq. (6) the magic field to second order, H}?, is given
by

1
M=7"—|4,+4;|(1-e), (7)
4g/.;p'y
and the corresponding SR frequency by
hvid=+14,—4,|(1+e), (8)
where
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g;t“u A.L
gotip Ay+A4,

The quantities S, and S, can be either + 1 or —1 and
are given by

2
AL—A”
| A} —af |

__ A4y
' VT T
while Ag and g, are given by Ag=g,—&;, &o
=%g”+—§-gl. The coefficient of cos(260) can be made
zero by setting the applied magnetic field to the magic
field. The second-order magic fields of Eq. (7) calculated
for go= 2 are 0.2002 and 0.2897 T for silicon and ger—
manium, respectively. In the group-III—V compounds'!
GaAs and GaP the magic fields to second order are
0.5620 and 0.5491 T, respectively, whereas the value for
diamond is 0.4073 T. A measurement of the lower uSR
frequency as a function of applied field for all Mu*
centers will show a crossing at these values of the applied
field if Ag is small enough. Because of this phenomenon,
the lower uSR frequency has been observed in powdered
silicon and diamond at their respective magic fields.'?

If, however, there is some g-factor anisotropy, the term

|

in cos(40) is no longer zero and a single crossing of the
lower uSR frequencies of all Mu* centers as a function of
the applied field will no longer be observed. This devia-
tion from a single crossing is used here to determine the
value of the g-factor anisotropy, Ag.

B. The g shifts

The g tensor can be calculated by including in the
Hamiltonian the terms which represent the interaction of
the electrons with an electromagnetic field. This can be
written as

H=gusHS+E2 [Ex |p+2A ]S
mc C
= (p At Ap)t—C 42 9)
2me P P omer

where there must be such a contribution for each electron.
If we assume the ground state can be described by the or-
bital, |0), of one unpaired electron then we obtain from
Eq. (9) the spin Hamiltonian for the electron Zeeman in-
teraction as

Ho=us g,H+-e—;(0|E><A|o>—
mc n£0

z T 2 E Eo ({0|p-A+A-p|n){n |EXp|0)

+(0|EXp|n){n|p-A+A-p|O))|S, (10)

where A is the vector potential and E the electric field resulting from the charged particles in the crystal. The first-
order contribution is usually negligible, and the second-order term will simplify if the ground-state orbital, |0), and the
other orbitals, | n ), are written as linear combinations of atomic orbitals (LCAO). Then, if overlap is negligible, one ob-

tains the g tensor

J(n)[a;(n)]*
g=g.— 3 [a(0)]a,(0) 3, —2[—_’,;"—;]—

ij n#0

where

|0)=3Fa;(0)]5,0), |n)=Tan|in),

the sum is over the atoms on which a significant electron
density exists, and the functions |{,0) and |i,n) are
sums of atomic orbitals on the atom i. This version is
more general than usually found in the literature because
of the possible many-center character of the Mu* ground
state. The sum over n includes orbitals both lower and
higher in energy, and thus with E, —E, both less than
and greater than zero. In addition, the coefficients a;(0)
and g;(n) may vary in sign. It is consequently very diffi-
cult to make any predictions about g, and g, for
anomalous muonium. A detailed model of the center, in
which the energies and LCAO:MO (where MO denotes
molecular orbital) eigenfunctions of all states important in
Eq. (11), might permit approximate calculations of g, and
g.1. In the absence of such models, no such calculations
are presented here.

The g shifts arise from the spin-orbit coupling, A, of

t'he silicon or germanium atoms for the crystals studied
here. The larger atomic spin-orbit parameter for the
valence orbitals of Ge than for those of Si suggests a
larger g shift and hence a larger Ag for Ge than for Si.
Assuming the other orbitals differ in energy from the
ground state by an energy which scales roughly as the
band gap from one crystal to the other, then the values of
Ag should be approximately in the ratio of A/E,, where
E, is the k=0 direct energy gap. Taking E;=0.89 eV
for Ge and 4.18 eV for Si (Ref. 13) and the spin-orbit con-
stant A=0.29 eV for Ge and 0.044 ¢V for Si, the ratio of
A/E, for Ge and Si is 31. While this gives an idea of the
relative size of the g shifts to be expected, neither the sign
of Ag nor the signs of g, —g. or g, —g. can be predicted.

III. EXPERIMENT

The experiments were performed at the meson facility
of the Swiss Institute for Nuclear Research. A pure ger-
manium crystal was obtained from EG&G Ortec, Oak
Ridge, with the following order-of-magnitude known im-
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purities: [C]~10'" cm™3, [Si]~10" cm™3 [O]~10"
—108® cm™3, [Ga] and [In]~10° cm™3, [Al]~2
%10'° ¢cm~3, [B] and [P]~2X10'° cm~3, and [H]~ 10"
cm™3, but some of the hydrogen is subsequently baked
out. This crystal was oriented so it could be mounted in a
He-gas—flow cryostat with the magnetic field H||(331 ),
and the muon beam entering along (109 3) which is also
the direction of the muon polarization. In this configura-
tion, two of the four (111) axes make the same angle
with the field, while the other two make different angles
with the field. Thus, six frequencies arising from Mu*
appear in the resultant SR spectrum with generally good
resolution of the three low-frequency lines and with the
weakest line stronger than for other possible orientations.

Since the signals in Si are much stronger than in Ge, no
attempt was made to optimize the amplitudes, and the
magnetic field was applied along (112) with the beam
axis along (11T). Again, in this configuration Mu* con-
tributes six frequencies to the uSR spectrum. The Si crys-
tal used was B-doped (p type) with 10''-cm™3 electrically
active impurities (p=450 to 1000 { cm).

The temperature of measurement was 24.5 K for Ge
and 21.5 K for Si. Time-differential transverse-field
muon-spin-rotation data were collected in four histograms
from which the precessional frequencies were extracted by
multifrequency fits. Data were taken at several fields
around the magic field so that the exact field dependence
of v4; could be determined for the three kinds of ine-
quivalent Mu* centers as shown for each crystal in Fig. 2.
The deviation from a single crossing of these three
branches was attributed to the electronic g-factor aniso-
tropy.

A check on the crystal alignment was obtained from
the other Mu* frequencies v,;, that is at higher frequen-
cies. In Ge, there was no indication of any splitting in
these lines and therefore H must lie in a {110} plane.
The exact location in the {110} plane was left a variable
of the computer fit of the spin Hamiltonian to the field
dependence of all six frequencies. A splitting of the
high-frequency lines in Si was observed, and therefore the
angle out of the {110} plane had to be included as an ad-
ditional variable when fitting the field dependence of the
six uSR frequencies from Mu®*.
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FIG. 2. The measured field dependence of the low-frequency
lines, v43 for Mu® in (a) Si and (b) Ge, (Ref. 2).

IV. RESULTS

The variation of the low-frequency uSR lines, v4;, of
the three differently oriented anomalous muonium centers
with applied magnetic field is plotted for Ge and Si in
Fig. 2. It is clear that while the branches almost cross at
a single point for Si, they do not for Ge. To obtain the
electronic g-factor anisotropy, all six field-dependent fre-
quencies were fit to the numerically determined eigen-
values of the spin Hamiltonian, Eq. (1), using the frequen-
cy of precession of bare muons to determine the value of
the applied magnetic field.

The values of the spin-Hamiltonian parameters giving
the best fit for Ge are

g, —81=0.0330£0.0012 ,
g, =1.953+0.085 ,

g, =2.0021+0.0004 ,

A, =27.294+0.022 ,

A, =130.891+0.013 ,
X*=41.25,

with 29 degrees of freedom. In the case of Si, the values
are

8 —&1 =0.0002£0.0008 ,
g, =2.19+0.085,

g, =2.0022+0.0002 ,
A,=16.760+0.014 ,

A, =92.603+0.005 ,
X*=110.27,

with 70 degrees of freedom.

These results clearly show an electronic g-factor aniso-
tropy in Ge but not in Si. The error in g, makes it com-
patible with the free-electron g value in Ge, and the large
value of g, in Si is probably not significant.

V. CONCLUSION

The observation that g;—g, =0.0330£0.0012 for
anomalous muonium in germanium cannot, by itself, pro-
vide much insight into the structure of anomalous muoni-
um. However, when taken together with other informa-
tion it can be a useful constraint on a model for Mu*.
The empirical classification of defects in silicon developed
by Lee and Corbett® and extended by Sieverts'® is prob-
ably the best guide to the significance of the fact that
8| >8.- Sieverts classifies defects into four types. In one
of these four, g is always larger than g, in one g, > g,
and in the other two g, —g, can have either sign. Thus,
on this basis, Mu* in germanium could belong to any of
three types.

However, a specific model for anomalous muonium,
based on several other observed properties, has been sug-
gested. This model is that anomalous muonium is simply
substitutional muonium. Estle!* suggested this based pri-
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marily upon the fact that the contact hyperfine interac-
tion is very small and that Mu®* is more stable than nor-
mal muonium in diamond. Simple molecular orbital ar-
guments, which are confirmed by a detailed calculation,'®
indicate that substitutional muonium or hydrogen should
behave much as a vacancy, i.e., there should be an orbital
triplet state in the gap. Similar conclusions have been
reached by Patterson et al.!® from channeling measure-
ments of the positrons resulting from muon decay.
Theoretically, Das et al. 17 have analyzed such a model as
have Mainwood and co-workers.!® If one takes this model
seriously, then one should regard Mu* as a defect of the
same type as a vacancy, that is, Sieverts’ type B. Type-B
defects are those in which g is always larger than g, .
Thus, the fact that g, >g, for anomalous muonium in
Ge would appear to be further support for the model of
Mu* as substitutional muonium. However, for Si we have
g, —&1 =0 within experimental accuracy. Although this
is reasonable since the spin-orbit interaction in silicon is
smaller than in germanium, and the gap is larger, it does
demonstrate that the value of g, —g, which should be
compared to those of type-B defects in Si is smaller than
for any type-B defect in Sieverts’ tabulation. In this
respect, Mu* in Ge more closely approximates a Sieverts
type-D defect. The anisotropic defects of this type have
smaller values of | g, —g, | than do type-B defects, and
for about half of these g, >g,. Since type-D defects are
substitutional or interstitial impurities, this interpretation
provides no insight into the u* site in Mu®*. The princi-
pal difference between the two types is that g, >g, for
type-B and g, <g, for anisotropic type-D defects. An ac-
curate measurement of g, and/or g, would help to classi-
fy Mu* better according to the empirical classification
scheme of Lee, Corbett, and Sieverts, provided that the
Sieverts classification scheme can be applied to Ge. Un-
fortunately, it does not appear that an accurate g-value
measurement can be made since at low fields, where the
1SR frequencies depend more on the electronic g factor,
nuclear hyperfine interactions broaden and shift the SR
line. An alternate approach, that of measuring the EPR

J

C'=NZ"((g, A, /28 —g, ki, H)sinb, 0, (g A, /28 —g,p,H)cosh) ,

where

g =[gf cos’0+g1 sin?6]'/?,
2

A
cos?0+ L

2g

814
2g

N —gy,up.H "gy.u'yH

2

sin%0
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spectrum by the technique known as double-electron
muon resonance,'® did not give accurate electronic g fac-
tors either because of the large inhomogeneous linewidths
of the EPR lines.?’ Thus, it appears that only the value of
8, —&1 for Mu* in Ge will be available to compare with
theory, and its utility will be limited. In principal, once a
detailed theoretical model exists, the g factor could be cal-
culated. In practice, this has been difficult for even the
simplest of defects. Consequently, the prospects for reli-
able calculated g values for Mu* in Ge are not good.
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APPENDIX

The spin Hamiltonian of Eq. (1) can be written in terms
of the g tensor g, and the hyperfine tensor 4, as

H#=pgHgS+841—guHI. (A1)

Choosing as quantization axis for the electron spin the
unit vector §, along H-g, we may write Eq. (A1) as

H=gupHS;+(Sc&-4 —guu,H)1

+(SE+S, 741,

where g is the angle-dependent g factor for axial symme-
try, defined in Eq. (A4), and § and % are unit vectors nor-
mal to § and to each other. By quantizing the muon spin
along i 2§ ‘A—guu,H for the electron-spin state with
M=+ 2, one immediately obtains the energies, if terms
< O(Az/g,u pH) can be neglected. These vectors are
— 8ukt, times the effective fields acting on the muon spin
and consist of the vector sum of the applied and hyperfine
fields (see Ref. 4). Using this as the starting point for a
third- order perturbation calculation, we define the unit
vectors § by

(A2)

(A3)

172
(A4)

Defining the spin-; ra1s1ng and spin-lowering operators relative to §,17 § for the electron spin, and §’ ] ’,§ ' for the
muon spin, where § and %) ' are perpendicular to {,’ and to each other and %) '=7%), then Eq. (A2) can be written as

KX =gupHS;+N _Ip+K cosp_(Sg—5) g+ 5K sing_(Sg— -+ +1_)

+ (N —A NS T, +S_1_)

+ 3N +A S T_+S_ T )+5Ny(S, +S_ g .

(AS)

This form of the spin Hamiltonian is used to calculate the energies of the electron-spin-up states. The additional param-

eters in Eq. (A5) are
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K =§(gﬁAﬁ cos0+gA? sin?0)'/2

g p.u

cosp_=N_'|3K — (g4, cos?0+g, A, sin’0)

. 8ultpH .
sing_=— KN _ (g, 4, —g)4,)sinf cosb ,

N,=N_!

>

1 .
sA4,4; — ;(g”Al cos’0+g, A, sin’60)g,u,H

Ny=gN ! g'z'zl (A2 —A2)—(g A, —g, A, )g,upu,H |sinb cosh . (A6)

Solving the eigenvalue equation for the Hamiltonian of Eq. (A5) to third order for the upper two energy levels actually
involves using some terms which appear in fourth-order perturbation theory. The energy difference between these two
levels gives the frequency of one SR line,

hvg=N_— AN 1 (N2—N?— A})K cosp_ +2N N,K sing_+2(N} + A2 )N_ ———43N2| . (A7)
dgusH ~ 16(gupH)> 2N_
A similar analysis but using the muon quantization axis appropriate to Mg = — + gives the result
hvy =N, — —1Vs L (N2—N?—A})K cosp, +2N:NK sing, —2ANI+ AN, + ——A2N2 |, (A8)
+7 4gugH 16(gugH)? L + + ++ 2N, )
where
g4, 2 172
S| 14] .
N,= 2% W 4 g, H | cos?0+ 2% H [sin’|
1 1 gp.upH .
cosp, =— N, K+ oK (8,4 cos’0+g, A, sin’0)

sin<p+=—gKN (g, 4, —g4,)sinB cosb ,
+

1 .
Ny=— Nl %A||A1+_g_(8nA1 cos’0+g, A sin’0)g,u,H | ,
+
(A9)
1 8,8 .
Ny=—— LSS (Al"‘A”H'(gnAL“gl 118 uttpH (sin6 cosb .
gN, | 28

The frequency v43 or v,; will be lower depending on whether 4+ 4, is positive or negative, respectively. The lower
of these is the one observed in the experiments described in this paper. It can be written in a particularly useful form
providing that the anisotropy of the g factor is small and the field is close to the magic field. Equation (A7) or (A9),
now just to second order, then becomes

1 8ukty AL | A —A |
2 goup  A)+4,

h‘V—‘ |A||—All+

A} -4} 1 8utty A4 +4L) | A1-47 Ag
W (H—H))+— =+ 08(260) — — —=——1_ 1—cos(40)], (A10)
|4} — A4} | Bubtu 2 goup | A +A4,| 16 |A1—AH| [ I
where
Ag =£,—81 >
g0=%g||+'§_gl ’ (Al1l1)

1
Hi = A +A4, | .
M 48,;,“” | 1l 1
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